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Abstract:  In this note, we shall prove certain divisibility properties of the 
Fourier coefficients of a class of normalized Eisenstein series modulo certain 
prime powers. 
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1. In t roduc t i on  
First we shall fix up the following notations. Throughout this article (~) denotes 
the Legendre symbol modulo a prime p. For an integer r, the elementary divisor 
function ar(n ) is defined as ~r(n) :--- ~-]dl n d r. Also, ¢(n) denotes the Euler function 
which counts the number of positive integers up to n and relatively prime to n. 

The normalized Eisenstein series E2k(z) is a modular form of weight 2k for the full 
modular group SL2(Z) and it is given by the Fourier expansion 

4k 
E2k(z) = 1 ~ a2k-l(n)qn, 

n = l  

where B2k is the 2k-th Bernoulli number, q = exp(2~riz) and z is in the upper half 
plane of the complex plane. Hence, if we write 

E2k(z) = ~ e2k(n)q n, 
n = 0  
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then,  from the definit ion,  i t  is clear t ha t  

4k 
e2k(n ) = - - ~ 2 k O 2 k _ l ( ~ ) ,  

whenever n _> 1 and e2k(0) = 1. We shall  prove the following theorems.  

T h e o r e m  1. For a positive integer k, let p = 3 (mod 4) be a prime such that 

2k - 1 = (2r + 1)2A~ -, for some integers a 2 1 and r >_ O. Then we have 

e2k (n )=O ( m o d 2 4 p  ~ ) V n s a t i s f y i n g  ( n ~ = - l .  
\ P /  

N o t e  1. The  above theorem is t rue  for p = 3; a = 1. Moreover,  if k - 2 (mod 3), 

then the result  is val id for p = 3; a = 2 and p = 7; a = 1. 

C o r o l l a r y  1. For a given integer k >_ 1, let pl > P2 > "'" > Pl > 3 be prime 
numbers of the form 4m - 1 and let ri >_ O, ai >_ 0 be integers, i = 1, 2 , . . . ,  ~ such 
that 

(2ri + 1) q)(pi~)''~" - 2 k -  1, i = 1 , 2 , . . .  g. 
" 2 

Then 

for all n satisfying 

w h e r e  P ~ t  ai = l l i= l  Pi  • 

e2~(n) =- 0 (mod 24P)  

E x a m p l e  1. Let  k = 8. Then  2 k -  1 = 15. Now, we can choose Pl = 31, P2 = 11 

and P3 = 7, a l  = a2 --  a3 = 1, and r l  = 0, rz = 1, r3 = 2 to get, 

1) pl  
1 ~ _ ~  

1) pa 
1 

(2rl  + - (2r2 + l ) r - ~  - - (2r3 + = 15. 

Now - 1  is a quadra t i c  non-residue modulo  7, 11, 31. Then,  Corol la ry  1 says t ha t  

e 1 5 ( 2 3 8 7 n -  1) -- 0 (mod 57288) V n C N.  

We need the following no ta t ions  for fur ther  results.  

For  a fixed pr ime number  p, we define a posi t ive integer n ;  > 1 as follows. The  
integer np has at  least  one pr ime divisor  q such t ha t  q = - 1  (mod p) and q~llnv 
===* r is odd.  Moreover  we wri te  np as nv = k l-Ii=lS q~i where qi --  - 1  (mod p) are 
pr imes and (k, q/) --  1 for every i = 1, 2 , . . . ,  s and  ri's are odd posi t ive  integers.  
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(Here pallm, means that pa I m and pa+l ~(m.) For example, n2 can be any one 
of the following integers 3, 5, 6, 7, 10, 11, 12, 13, 14,.. . .  Obviously, for a fixed prime 
p, we have infinitely many np. 

Def in i t ion  1. A prime p is said to be regular if p does not divide any of the 
numerators of the following Bernoulli numbers; 

B2, B4,""", Bp-a. 

For example, any odd prime p _< 29 is a regular prime. The first non-regular prime 
is 31. It is not known whether there are infinitely many such primes or not. 

T h e o r e m  2. Let k be any positive even integer. Let p > 3 be a prime number such 
that either ( p -  1)lk or 

k! 1 
p > f (k )  = 2(2~) k 1 2~-k, 

where 13 = (2 + log(1 - (6 /7r2) ) / log2 .  / f  np has s number of prime factors q such 
that q - - 1  (mod p) and q~[Inp where r is odd, then 

0 (mod 24p TM) i f  ( p -  1)lk 
ek(np)-- 0 (mod24p s) i f  p > f (k )  " 

T h e o r e m  3. Let k be any positive even integer. Let p = 2 or 3. I f  np has s number 
of prime factors q such that q --- - 1  (mod p) with qrllnp, r odd, then 

ek(np) =-- 0 (mod 24pS). 

Coro l l a ry  2. Let k be a positive even integer and let p > 3 be any regular prime. If 
np has s number of prime factors q such that q - - 1  (mod p) with qrllnp, r odd, 
and p Xk, then 

e~(np) - 0 (mod 24p8), 

2.  P r e l i m i n a r i e s  

In 1945, K. G. Ramanathan [Kgr2] (see also [Kgrl]) proved the following congruence, 
namely, 

a~_~ (n) _= 0 (mod p), 

if n is a quadratic non-residue modulo any odd prime p. This can be seen as follows: 
First note that ap-l+rn(n) =- am(n) (mod p). Now, 

E a ~ ( n )  = ~ - ~ d ~  = n ~  ( d / n ) ~ = n  2 a_p_=!(n) 
din din 
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Thus Ramanathan's result follows at once. Furthermore, it was generalized by D. 
B. Lahiri [Lahl] as follows: 

T h e o r e m  4. (D. B. Lahiri, [Lahl]) For an odd prime p and an integer a >_ 1, let 
m = ld) (pa  ) = 1 ~ ( p  - 1)p a-l, and let n be a quadratic non-residue modulo p. Then 

am(n) =- 0 ( m o d / ) .  

Since for any integer k _> 0 and a prime p, we have 

crk~(p,)+m(n) = ~ d  k¢(p")+rn - y~.d m = am(n) (mod pa), 
din din 

by Euler's theorem, we obtain, using Theorem 4, the following more general theorem. 

T h e o r e m  5. I f  p is an odd prime, a > 1, and n is a quadratic non-residue modulo 
p, then 

a(2k+l)~<~o/(n) = 0 (mod pa) 

for  any integer k >_ O. In particular, it is true that 

a ( 2 k + l ) ~ ( p n - - 1 ) = O  (modp) V n 6 N  

for  every prime p = 3 (mod 4). 

Using Chinese remainder theorem and Theorem 4, we obtain the following corollary. 

Coro l la ry  3. Let Pl > P2 > • • • > PT be odd prime numbers, which are of the form 
4g - 1. For i = 1, 2,. •. ,  r, let ki >_ 0 and ai > 0 be integers such that 

1) ¢(p71) , ,  ¢(p~) ~, ¢(pa.) 
(2kl + , ~- - (2k2 + ±) ~ . . . . .  (2kr + ±) ~ - t (say). 

Then 

for  all n satisfying 

where P r a, = H i = l  Pi • 

at(n) = 0 (mod P) 
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T h e o r e m  6. Let p be any prime number. Let np has s number of prime divisors qj 
2 t j + l  such that qj Ilnp and qj = - 1  (mod p) for every j = 1, 2 , . . . ,  s. Then for any 

odd positive integer m we have 

am(np) - 0 (mod pS). 

Pro@ Let q be a prime divisor of np such that q - - 1  (mod p) and q2t+l[[n, 
for some g _> 0. Let n p =  kq 2e+1, with (k, q) = 1. Since am(n) is a multiplicative 
function, we have 

am(Up) = am(k)am(q2e+l). 

Now, consider 
am(q 2~+1) = 1 + qm + q2m + . . .  + qm(2~+l). 

Since q - - 1  (modp) ,  we have q2k _- 1 (modp)  and q2k+l - - 1  (modp).  
Since m is odd, we see that 

am(q 2 ~ + 1 ) = 1 - 1 + 1 - 1 + - . - + 1 - 1 = 0  (modp) 

and hence am(np) -- 0 (mod p). Since there are s number of such factors in np, 
the result now follows. [] 

Before going to the proofs of Theorems 1 and 2, we shall recall some properties of the 
Bernoulli numbers. The Bernoulli numbers, denoted by Bk, are rational numbers 
which are obtained by the following generating function. 

t _ ~ Bkt k 

e t - 1  k=oA" k! " 

Since 
t ~-, Bkt k t t t(e t + 1) 

+ 2_. - 2 - 2(e - I--------U 
k=0 

and the right hand side is an even function of t, we deduce that Bk = 0 for odd 
integer k > 3. Since Bk are rational numbers, we write Bk = ~ where Uk, vk are 

- -  V k 

integers such that (uk, vk) = 1. The denominators vk are well understood. 

T h e o r e m  7 (von Staudt - Clausen (see [Howl], [Johl])). For k >_ 1, v2k is square 
free and a prime p divides V2k if and only if p -  1 divides 2k. In particular, 6 divides 
V2k for every k > 1. 

Kummer first proved the following periodicity property of these Bernoulli numbers. 

T h e o r e m  S. (Kummer, [Kuml]) Let p > 5 be a prime. I f  n ~ 0 
n - = m  ( m o d p - 1 ) ,  then 

B~ _ B m  
_ - -  ( m o d  p ) .  

n m 

(mod p -  1) and 
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The following theorem is well known in the literature (see for instance ([Johl], 
p.257)); but proof is not included in many standard text books. Since this theorem 
is crucial for our discussion, for the sake of completeness, we give a proof. 

T h e o r e m  9. Let p > 3 be a prime number of the form 4k - 1 for some integer 
k >_ 1. Then p does not divide B2k. 
Proof. Using some well-known properties of Bernoulli polynomials, it can be proved 
that for any prime p > 3 and for any even integer n > 2, we have 

(p-W2 ( 1 ) B n  (modp). Z a n - l - - -  n 
a~-i 

In particular, if 
(v-1)/2 

a n - l ~ O  (modp), then pXBn. 
a = l  

In our case, p = 4k - 1 and hence ( p -  1)/2 = 2k - 1. Take n = 2k. To end the 
proof, it enough to prove that 

2 k - 1  

a 2k-1 ~ 0 (modp). 

Now consider 

(p-1)/2 (p-1)/2 
E a2k- i  ~-- E a 2 --  
a=l a=l 

as Legendre symbols takes +1 and odd number of summands involving them. [] 

(mod / 
a----1 

Note  2. Here, we have not stated the full version of Conjecture 1 (see [CC1] for 
the full version). For our purpose, this version suffices. 

3. P r o o f s  

Proof of Theorem 1. Let p ~ 3. Then, 

¢(pO) p + 1 
2 k = ( 2 r + l ) ¢ ( P ~ )  + l - r ¢ ( p  ~ ) + T  + 1 - -  ( m o d p - 1 )  

" 2 2 

as ¢(p~) = p ~ - l ( p _  1) and p~ -- 1 (mod p -  1). Now, by Theorem 8, we get, 

B2k__ _ B(p+l)/2 (mod p). 
2k (p + 1)/2 

Conjec tu re  1. (S. Chowla and P. Chowla, [CC1]) Let p be a prime number of the 
form 2mk - 1 for any integer m > 1 and k >_ 1. Then p does not divide B2k. 
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Since, by Theorem 9, we know that  B(p+l)/2 ~ 0 (mod p), it follows that B2k 
0 (mod p). Also, p cannot divide the denominator of B2k, since 2k -- (p + 1)/2 
(mod p -  1) and by Theorem 7. But, 6 always divides the denominator of B2k which 
follows again by Theorem 7. Hence 24 always divides e2k(n) for any n. Thus, the 
factor of p in e2k(n) comes from a2k-l(n) alone for any n. From the expression of 
2k - 1 and Theorem 5, it follows that pa divides a2k-l(n) whenever n is a quadratic 
non-residue modulo p. Hence pa divides e2k (n) whenever n is a quadratic non-residue 
modulo p, which completes the proof in this case. 

Now we consider the case p = 3. In this case, we have 

2 k -  1 = (2r + 1)3a-1~ 

for some integers r and a. Now, by Theorem 7, it follows that 6 divides the denom- 
inator of B2k. Hence 24 divides e2k(n) for any n. Since - 1  is the only quadratic 
non-residue modulo 3, by Theorem 5, we get a2k_l(3n - 1) - 0 (mod 3 a) for every 
n. By putting together all these information, we get e2k(3n- 1)0 _= 0 (mod 24.3~). 
This completes the proof. [] 

Proof of Corollary 1. This follows easily from Theorem 1 and Corollary 3. [] 

R e m a r k  1. In our proof of Theorem 1, the crucial result we used is Theorem 9. 
So, if we assume Conjecture 1, then we can extend the same divisibility conditions 
to many different moduli p. More precisely, we obtain similar divisibility results as 
in Theorem 1 for e2k(n) for prime moduli p, which are of the form 2"ff - 1. 

Proof of Theorem 2. Given that k is an even positive integer. In 2000, H. Alzer 
[Alzl] gave a tight upper bound for Bernoulli numbers as follows. 

k! 1 
IBk] _< 

2(2 )k 1 - 2 -k' 

where/3 = (2 + log(1 - (6 /Tr2) ) / log2 .  If the prime p is such that ( p -  1)lk , then 
by Theorem 7, we know that p divides the denominator of Bk and hence it cannot 
appear in the numerator of Bk. That  is, a p-factor appears in 2k/Bk. Also, by 
Theorem 6, we have ak-l(np) - 0 (mod p*). Therefore, in this case, ek(np) - 0 
(mod 24p~+1). If the prime p is such that (p - 1) Ak, then, by assumption, p is 
bigger than the Alzer's bound. Therefore, p cannot divide Bk. Thus, by Theorem 
6, it follows that ek(np) -- 0 (mod 24p~). Note that the factor 24 appears in the 
moduli because of the fact that 6 divides all the Bernoulli numbers k > 2 and a 
factor of 4 is already there. [~. 

Proof of Theorem 3. Let p = 2 or 3. Then by Theorem 7, we see that p divides the 
denominator of Bk for any even integer k and hence p never divides the numerator 
of B~. Now, we proceed as the proof of Theorem 2 to get the result. [] 
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Proof of Corollary 2. By Theorem 2, we can assume that (p - 1) Xk. Therefore, p 
doesn't divide the denominator of Bk (by Theorem 7). Let g = k (mod p - 1) be 
such that 2 < g < p - 3. By assumption, we have p ~k. Also by Definition 1, it is 
clear that p doesn't divide any of the numerators of B2, Ba,. .  -, Bp-3. If possible, 
let p divide Bk; i.e., p divides the numerator of Bk. Then by Theorem 8, we know 
that 

Bk Bt 
0-- k -- g (modp). 

Note that as (k,p) = 1, the p factor of Bk doesn't get cancelled with k. Also, since 
g < p and p divides -~, we see that p divides Be. This contradicts the fact that p 
is a regular prime. Now proceeding as in the proof of Theorem 2, we arrive at the 
required congruence. [] 
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