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A Note on Certain Divisibility Properties of the Fourier
Coefficients of Normalized Eisenstein Series
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Abstract: In this note, we shall prove certain divisibility properties of the
Fourier coefficients of a class of normalized Eisenstein series modulo certain
prime powers.

Keywords: Divisibility property, Fourier coeflicients, Divisor Sigma function.

1. Introduction

First we shall fix up the following notations. Throughout this article (;) denotes
the Legendre symbol modulo a prime p. For an integer 7, the elementary divisor
function o,(n) is defined as o,(n) := ¥y, d’. Also, ¢(n) denotes the Euler function
which counts the number of positive integers up to n and relatively prime to n.

The normalized Eisenstein series Eox(z) is a modular form of weight 2k for the full
modular group SLs(Z) and it is given by the Fourier expansion

Eu(z) =1- B > on-1(n)d",

where By is the 2k-th Bernoulli number, ¢ = exp(2miz) and z is in the upper half
plane of the complex plane. Hence, if we write

Eo(2) = i esr(n)q",
n=0
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then, from the definition, it is clear that

4k
e2k(n) = —B—%Uwc—l (n),

whenever n > 1 and eq(0) = 1. We shall prove the following theorems.

Theorem 1. For a positive integer k, let p = 3 (mod 4) be a prime such that
2k —1=(2r+ l)ﬂg—al, for some integers a > 1 and r > 0. Then we have

ex(n) =0 (mod 24p®) V n satisfying (%) = -1,

Note 1. The above theorem is true for p = 3; a = 1. Moreover, if k =2 (mod 3),
then the result is valid for p=3;a=2and p=T7;a = 1.

Corollary 1. For a given integer k > 1, let p; > pp > -+ > py > 3 be prime
numbers of the form d4m — 1 and let r; > 0, a; > 0 be integers, 1 = 1,2,---,£ such

that -
(2r; + 1)?—(%Q =2k-1,i=1,2,--- 4.
Then
ex(n) =0 (mod 24P)

for all n satisfying

where P = [T, p¥.

Example 1. Let £ = 8. Then 2k — 1 = 15. Now, we can choose p; = 31, p, = 11
andps=7,a1=ay=az3=1,and r; = 0,7 = 1,73 = 2 to get,

P — P2 — p3—1

1 1
2r+1) = (27‘2 + 1) = (27‘3 + 1) = 15.

Now —1 is a quadratic non-residue modulo 7,11, 31. Then, Corollary 1 says that

€15(2387n — 1) =0 (mod 57288) V n € N.

We need the following notations for further results.

For a fixed prime number p, we define a positive integer n, > 1 as follows. The
integer n, has at least one prime divisor ¢ such that ¢ = —1 (mod p) and ¢"||n,
= r is odd. Moreover we write n, as n, = k[[;_, ¢/’ where ¢; = —1 (mod p) are
primes and (k,¢;) = 1 for every 7 = 1,2,---,s and r;’s are odd positive integers.
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(Here p®||m, means that p* | m and p®*! [ m.) For example, ny can be any one
of the following integers 3,5,6,7,10,11,12,13,14,---. Obviously, for a fixed prime
p, we have infinitely many n,.

Definition 1. A prime p is said to be regular if p does not divide any of the
numerators of the following Bernoulli numbers;

B27 B4a Y Bp—3-

For example, any odd prime p < 29 is a regular prime. The first non-regular prime
is 31. It is not known whether there are infinitely many such primes or not.

Theorem 2. Let k be any positive even integer. Let p > 3 be a prime number such
that either (p — 1)|k or

k! 1

P>f(k):2'(ﬁ),c 1 95—k

where 3 = (2 + log(1 — (6/7%))/log2. If n, has s number of prime factors q such
that g = —1 (mod p) and ¢"||n, where r is odd, then

e (n):{ 0 (mod 24p™*') if (p—1)[k
M) =10 (mod 24p%) if p>f(k)

Theorem 3. Let k be any positive even integer. Let p =2 or 3. If n, has s number
of prime factors q such that ¢ = —1 (mod p) with ¢"||n,, r odd, then

ex(ny) =0 (mod 24p°).

Corollary 2. Let k be a positive even integer and let p > 3 be any regular prime. If
n, has s number of prime factors ¢ such that ¢ = —1 (mod p) with ¢"||n,, 7 odd,
and p fk, then

ex(np) =0 (mod 24p°),

2. Preliminaries

In 1945, K. G. Ramanathan [Kgr2| (see also [Kgrl]) proved the following congruence,
namely,
0%1(11) =0 (mod p),

if n is a quadratic non-residue modulo any odd prime p. This can be seen as follows:
First note that o,—14m(n) = om(n) (mod p). Now,

gea(n) = 3d7 =07 3 (d/n)T =n"T0_pi(n)

: din din 2
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(ﬁ) 0y 1oens(m) = (E) 0es(n) (mod p)

p D

I}

Thus Ramanathan’s result follows at once. Furthermore, it was generalized by D.
B. Lahiri [Lah1] as follows:

Theorem 4. (D. B. Lahiri, [Lahl]) For an odd prime p and an integer a > 1, let
m = 16(p°) = %(p —1)p*~Y, and let n be a quadratic non-residue modulo p. Then

Om(n) =0 (mod p%).

Since for any integer k > 0 and a prime p, we have

Trgpeyim(n) = Y APV =3 d" = o,n(n)  (mod p?),
dln dln

by Euler’s theorem, we obtain, using Theorem 4, the following more general theorem.

Theorem 5. If p is an odd prime, a > 1, and n is a quadratic non-residue modulo
p, then

U(2k+l)ﬂ§_ﬂl(n) =0 (mod p?)

for any integer k > 0. In particular, it is true that
0(2k+1)p_;l(pn —1)=0 (modp) YVneN
for every prime p=3 (mod 4).
Using Chinese remainder theorem and Theorem 4, we obtain the following corollary.

Corollary 3. Let p; > pa > - -+ > p, be odd prime numbers, which are of the form
40 —1. Fort=1,2,---,r, let k; > 0 and a; > 0 be integers such that

o(pt") ¢(p3’) ¢(pr)

(2k1+1)—2—:(2k2+1)T=‘—‘(2kr+1) 9 =t (say).

Then
oi(n) =0 (mod P)

for all n satisfying

where P =TI, p{".
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Theorem 6. Let p be any prime number. Let n, has s number of prime divisors g;
such that q?e"HHnP and ¢; = —1 (mod p) for every j = 1,2,---,s. Then for any

odd positive integer m we have

om(n,) =0 (mod p*).

Proof. Let g be a prime divisor of n, such that ¢ = —1 (mod p) and ¢**!||n,
for some £ > 0. Let n, = kg®**!, with (k,q) = 1. Since o,,(n) is a multiplicative
function, we have
Om(np) = Om(k)om ().

Now, consider

Um(q2£+1) =1+ qm +q2m 4ot qm(2l+1).
Since ¢ = —1 (mod p), we have ¢* = 1 (mod p) and ¢**! = —1 (mod p).
Since m is odd, we see that

Om(@)=1-14+1-1+---+1-1=0 (mod p)
and hence o,,(n,) = 0 (mod p). Since there are s number of such factors in n,,

the result now follows. 0

Before going to the proofs of Theorems 1 and 2, we shall recall some properties of the
Bernoulli numbers. The Bernoulli numbers, denoted by By, are rational numbers
which are obtained by the following generating function.

t & Bitf
et—1 K

k=0

Since
t X Bitt ot t tet+1)

st Z T T3t a@-1)

and the right hand side is an even function of ¢, we deduce that B, = 0 for odd
integer k > 3. Since By are rational numbers, we write By = t& where uy, v, are
integers such that (ug,v¢) = 1. The denominators v, are well understood.

Theorem 7 (von Staudt - Clausen (see [Howl], [Johl])). For k > 1, vy is square
free and a prime p divides vor if and only if p— 1 divides 2k. In particular, 6 divides
vy, for every k > 1.

Kummer first proved the following periodicity property of these Bernoulli numbers.

Theorem 8. (Kummer, [Kuml]) Let p > 5 be a prime. Ifn#0 (mod p—1) and
n=m (mod p— 1), then

(mod p).

B, B,
n m
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The following theorem is well known in the literature (see for instance ([Johl],
p-257)); but proof is not included in many standard text books. Since this theorem
is crucial for our discussion, for the sake of completeness, we give a proof.

Theorem 9. Let p > 3 be a prime number of the form 4k — 1 for some integer
k > 1. Then p does not divide By.

Proof. Using some well-known properties of Bernoulli polynomials, it can be proved
that for any prime p > 3 and for any even integer n > 2, we have

(p—1)/2 1 B,
o ot l=- (2 - 2n_1) — (mod p).

a=1

In particular, if
-1)/2
Z a”'#0 (modp), then p /B,.

In our case, p = 4k — 1 and hence (p — 1)/2 = 2k — 1. Take n = 2k. To end the
proof, it enough to prove that

2%k~1
S a®*1£0 (mod p).
a=1
Now consider
(p—1)/2 b2 %/,
a1 = Z a7 = 3 (;)%0 (mod p)
a=1 a=1

as Legendre symbols takes 1 and odd number of summands involving them. O

Conjecture 1. (S. Chowla and P. Chowla, [CC1]) Let p be a prime number of the
form 2™k — 1 for any integer m > 1 and k > 1. Then p does not divide Byy.

Note 2. Here, we have not stated the full version of Conjecture 1 (see [CC1] for
the full version). For our purpose, this version suffices.

3. Proofs
Proof of Theorem 1. Let p # 3. Then,

2% = (2 + 1)?-%’3 +1=ré(®) + ¢(§a) +1= —'5—-1 (mod p — 1)
as ¢(p?) =p*'(p—1) and p* =1 (mod p — 1). Now, by Theorem 8, we get,

Box _ By
o = a1y modp)
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Since, by Theorem 9, we know that By1y2 Z0 (mod p), it follows that By, #
0 (mod p). Also, p cannot divide the denominator of By, since 2k = (p + 1)/2
(mod p—1) and by Theorem 7. But, 6 always divides the denominator of By, which
follows again by Theorem 7. Hence 24 always divides es;(n) for any n. Thus, the
factor of p in eg(n) comes from og_1(n) alone for any n. From the expression of
2k — 1 and Theorem 5, it follows that p® divides og;_1(n) whenever n is a quadratic
non-residue modulo p. Hence p* divides eg(n) whenever n is a quadratic non-residue
modulo p, which completes the proof in this case.

Now we consider the case p = 3. In this case, we have
2k —1=(2r +1)3*7%,

for some integers r and a. Now, by Theorem 7, it follows that 6 divides the denom-
inator of By,. Hence 24 divides eg(n) for any n. Since —1 is the only quadratic
non-residue modulo 3, by Theorem 5, we get og,_1(3n—1) =0 (mod 3?) for every
n. By putting together all these information, we get ex(3n—1)0 =0 (mod 24-3%).
This completes the proof. ]

Proof of Corollary 1. This follows easily from Theorem 1 and Corollary 3. O

Remark 1. In our proof of Theorem 1, the crucial result we used is Theorem 9.
So, if we assume Conjecture 1, then we can extend the same divisibility conditions
to many different moduli p. More precisely, we obtain similar divisibility results as
in Theorem 1 for ey (n) for prime moduli p, which are of the form 2™¢ — 1.

Proof of Theorem 2. Given that k is an even positive integer. In 2000, H. Alzer
[Alz1] gave a tight upper bound for Bernoulli numbers as follows.

k! 1
|Be| < 2W 5%
where 8 = (2 + log(1 — (6/7%))/log2. If the prime p is such that (p — 1)|k, then
by Theorem 7, we know that p divides the denominator of By and hence it cannot
appear in the numerator of By. That is, a p-factor appears in 2k/By. Also, by
Theorem 6, we have ox_1(n,) = 0 (mod p°). Therefore, in this case, ex(n,) = 0
(mod 24p**!). If the prime p is such that (p — 1) Ak, then, by assumption, p is
bigger than the Alzer’s bound. Therefore, p cannot divide Bg. Thus, by Theorem
6, it follows that ex(n,) = 0 (mod 24p®). Note that the factor 24 appears in the
moduli because of the fact that 6 divides all the Bernoulli numbers & > 2 and a
factor of 4 is already there. 0.

Proof of Theorem 3. Let p =2 or 3. Then by Theorem 7, we see that p divides the
denominator of By, for any even integer k£ and hence p never divides the numerator
of By. Now, we proceed as the proof of Theorem 2 to get the result. O
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Proof of Corollary 2. By Theorem 2, we can assume that (p — 1) fk. Therefore, p
doesn’t divide the denominator of By (by Theorem 7). Let £=% (mod p — 1) be
such that 2 < £ < p — 3. By assumption, we have p fk. Also by Definition 1, it is
clear that p doesn’t divide any of the numerators of By, Bs, - -, By_3. If possible,
let p divide By; i.e., p divides the numerator of B;. Then by Theorem 8, we know
that B B

—k—k = ~€—£ (mod p).

Note that as (k,p) = 1, the p factor of By doesn’t get cancelled with k. Also, since
£ < p and p divides %‘, we see that p divides B,. This contradicts the fact that p
is a regular prime. Now proceeding as in the proof of Theorem 2, we arrive at the

required congruence. O

0

fii
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