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Abstract

If we denote Bn to be nth Bernoulli number, then the classical result of Adams (J. Reine

Angew. Math. 85 (1878) 269) says that pcjn and ðp � 1Þ[n; then pcjBn where p is any odd

prime p43: We conjecture that if ðp � 1Þ[n; pcjn and pcþ1[n for any odd prime p43; then the

exact power of p dividing Bn is either c or cþ 1: The main purpose of this article is to prove

that this conjecture is equivalent to two other unproven hypotheses involving Bernoulli

numbers and to provide a positive answer to this conjecture for infinitely many n:
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The nth Bernoulli number Bn in the even suffix notation defined by the recurrence
relation

Xnþ1

i¼1

n þ 1

i

� �
Bnþ1�i ¼ 0 ðnX1Þ; B0 ¼ 1:

Thus, we have B0 ¼ 1; B1 ¼ �1
2
; B2 ¼ 1

6
; B3 ¼ 0; and so on. It is easy to show that

ð�1Þi�1
B2i40 and B2iþ1 ¼ 0 for iX1: Let us write Bn ¼ un=vn where un; vnAZ and
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ðun; vnÞ ¼ 1: The von Staudt–Clausen theorem (see for instance [11, p. 56]) asserts
that vn is square-free and pjvn if and only if ðp � 1Þjn: Therefore, 6jvn for all positive
integer nX2:

By pajjn we mean that pa divides n but paþ1 does not divide n:
In 1878, Adams [1] proved the following result regarding the divisibility properties

of un: More precisely, he proved that if p is a prime such that pajjn for integer aX1
and ðp � 1Þ[n; then pajun:

Adam’s classical result seems to be almost sharp.

Conjecture 0. Let p43 be any prime number such that pcjjn (here cX1 is an integer)

for some even positive integer n and ðp � 1Þ[n: Then pbjjun implies bpcþ 1:

Note that when ðp; nÞ ¼ 1; Conjecture 0 is false because if we take p ¼ 37 and

n ¼ 284; we have ð37; 284Þ ¼ 1 and 372jB284:

Definition 1. An odd prime p is said to be an irregular prime if p divides one of
numerators of the following Bernoulli numbers; B2;B4; y; Bp�3: Otherwise, the

prime p is said to be a regular prime.

For example, the first few irregular primes are 37; 59; 67; 101; 103; 131; 149;
157;y It is known that there are infinitely many irregular primes (see [3,7]). But it is
not known whether or not there are infinitely many regular primes, though
numerical evidence suggests that about 60% of the primes are regular (see for
instance [8, p. 109]).

The following theorem provides a positive answer to Conjecture 0 for infinitely
many n’s.

Theorem 1. Let pX5 be any prime. Let n be any positive even integer such that pcjjn
(for any positive integer cX1) and ðp � 1Þ[n: Then Conjecture 0 is true for n whenever

p is a regular prime or p is an irregular prime and p less than 12 millions.

2. Preliminaries

Kummer (see for instance [5]) proved the following congruence property of
Bernoulli numbers (which is now, called Kummer congruence).

Kummer Congruence. If m and n are positive integers such that n � mðmod prðp � 1ÞÞ
and m is non-zero modulo prðp � 1Þ; then

Bn

n
� Bm

m
ðmod prþ1Þ;

whenever nXmXr þ 1:
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Now, it is easy to see from Kummer congruence that a prime p is irregular if and

only if p2jBnp for some even integer nA½2; p � 3
:

Lemma 2.1. Let n be any even positive integer. Let p43 be any odd prime number such

that pcjjn and ðp � 1Þ[n: Then

un

pc
� buc ðmod pÞ;

where b is a non-zero element modulo p and c is the least positive residue of n modulo

ðp � 1Þ:

Proof. Result easily follows from Kummer congruence. &

Corollary 2.1.1. Assume p; n and c as in Lemma 2.1 together with p[uc; then pcjjun:
In particular, we have

(i) if p is regular, then pjjBnp;

(ii) if p is irregular and p[Bn; then pjjBnp:

Proof. The result is clear from Lemma 2.1. &

Theorem 2.2. (Sun [9]). Let p be any odd prime and n be any even integer with

nc0 ðmod p � 1Þ: Then

Bkðp�1Þþn

kðp � 1Þ þ n
� k

Bp�1þn

p � 1þ n
� ðk � 1Þð1� pn�1ÞBn

n
ðmod p2Þ

for all integer kX1:

Theorem 2.3. (Johnson [6]). Let p be any irregular prime such that pjBn for some even

integer nA½2; p � 3
: If

Bnþp�1

n þ p � 1
c

Bn

n
ðmod p2Þ;

then, there exists an integer kX2 with kcn ðmod pÞ and ðp; kðp � 1Þ þ nÞ ¼ 1 such

that

Bkðp�1Þþn � 0 ðmod p2Þ:

Theorem 2.4. Let p be any odd prime. Let n be any even integer in ½2; p � 3
 such that

pjBn: Then if pjj Bkðp�1Þþn

kðp�1Þþn
for some integer kX1; then pjjBn:

Proof. Assume that pjj Bkðp�1Þþn

kðp�1Þþn
for some positive integer kX1: We have to prove

pjjBn:
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Case (i): (
Bnþp�1

nþp�1
� Bn

n
ðmod p2ÞÞ: Then by Theorem 2.2, for all integer cX1; we get

Bcðp�1Þþn

cðp � 1Þ þ n
� c

Bp�1þn

p � 1þ n
� ðc� 1ÞBn

n
� Bn

n
ðmod p2Þ:

In particular, when c ¼ k itself, then we get

Bkðp�1Þþn

kðp � 1Þ þ n
� Bn

n
ðmod p2Þ:

Since pjj Bkðp�1Þþn

kðp�1Þþn
; we have pjjBn:

Case (ii): (
Bnþp�1

nþp�1
cBn

n
ðmod p2ÞÞ: In this case, by Theorem 2.3, there exists an

integer mcn ðmod pÞ and ðmðp � 1Þ þ n; pÞ ¼ 1 such that

Bmðp�1Þþn � 0 ðmod p2Þ )
Bmðp�1Þþn

mðp � 1Þ þ n
� 0 ðmod p2Þ:

Therefore, by Theorem 2.2, we get

0 �
Bmðp�1Þþn

mðp � 1Þ þ n
� m

Bnþp�1

n þ p � 1
� ðm � 1ÞBn

n
ðmod p2Þ;

which implies

Bnþp�1

n þ p � 1
� m � 1

m

Bn

n
ðmod p2Þ: ð1Þ

Thus, for every cX2; we get,

Bcðp�1Þþn

cðp � 1Þ þ n
� c

Bnþp�1

n þ p � 1
� ðc� 1ÞBn

n
ðmod p2Þ:

Therefore by Eq. (1), we get

Bcðp�1Þþn

cðp � 1Þ þ n
� cðm � 1Þ � ðc� 1Þm

m

Bn

n
� m � c

m

Bn

n
ðmod p2Þ: ð2Þ

Put c ¼ k in the above, we get

Bkðp�1Þþn

kðp � 1Þ þ n
� m � k

m

Bn

n
ðmod p2Þ:

By our assumption, we know that pjj Bkðp�1Þþn

kðp�1Þþn
and hence ðm � kÞ=n and Bn=n are not

congruent to 0 modulo p2: Since nop � 2; we see that p2[Bn: &

Theorem 2.5. The following statements are equivalent:

(i) Conjecture 0;

ARTICLE IN PRESS
R. Thangadurai / Journal of Number Theory 106 (2004) 169–177172



(ii) Bnpc0 ðmod p3Þ for every even integer nAf2; 4;y; p � 3g;
(iii) Bnc0 ðmod p2Þ for every even integer nAf2; 4;y; p � 3g:

Proof. First, we shall prove that (i) 3 (ii).
That is, assume that Conjecture 0 is true. We have to prove that (ii) is also true.

Because of Corollary 2.1.1, it is enough to assume that p is an irregular prime such
that pjBn for some even integer nA½2; p � 3
: Since pjBn; we have 0cnp �
n ðmod p � 1Þ: Therefore, by Conjecture 0, we know that pcjjBnp implies cp2:

Since p is irregular, we know that p2jBnp and hence p2jjBnp: Thus, the statement (ii) is

true.
Assume that statement (ii) is true. We shall prove the conjecture 0 is true.
First, let us observe the following: if p is any irregular prime such that pjBn for

some even integer nA½2; p � 3
; then for any integer cX1; we have pcþ1jjBnpc if and

only if p2jjBnp: One way is obvious by letting c ¼ 1: To prove the other implication,

assume that p2jjBnp: That is, when c ¼ 1 the result is true. Assume that the result is

true for all mpc: We shall prove for cþ 1: Now, by Kummer congruence and cX1;
we have

Bnpcþ1

npcþ1
¼

Bnpcðp�1Þþnpc

npcþ1
�

Bnpc

npc
ðmod p2Þ:

By induction, we know that pcþ1jjBnpc and hence p2[
B

npc

npc
: Therefore, we get,

pcþ2jjBnpcþ1 : Thus, we have, p2jjBnp3pcþ1jjBnpc for every integer cX1:

Let n ¼ kpc be an even positive integer such that pcjjn and ðp � 1Þ[n: By Adams’

result, we know that pcjBn: To prove Conjecture 0, it is to prove pbjjBn implies
bpcþ 1: Since ðp � 1Þ[n; it is clear that n � kc0 ðmod p � 1Þ: If kA½2; p � 3
; then
by the assumption and by the above observation, we have pcjjBkpc or pcþ1jjBkpc

depending on p[Bk or pjBk (by Corollary 2.1.1). Suppose k4p � 1: Then, k ¼
rðp � 1Þ þ c for some positive integers r and c with cA½2; p � 3
 an even integer.
Therefore, by Kummer congruence, we have

Bn

kpc
¼

Bðrðp�1ÞþcÞpc

kpc
¼

Brpcðp�1Þþcpc

kpc
�

Bcpc

cpc
ðmod p2Þ:

We see from the above observation that p2[
B

cpc

cpc
because statement (ii) is true by our

assumption. Therefore, pbjjBn implies bpcþ 1: Thus, Conjecture 0 is true.
Now, we shall prove that (ii) 3 (iii). Assume that statement (ii) is true. That is,

pjjBnp

np
: Since np ¼ nðp � 1Þ þ n; by Theorem 2.4, we see that statement (iii) is true. For

the other implication, let us assume that statement (iii) is true. In case (i) of Theorem

2.4, we have clearly pjjBnp

np
: In case (ii) by Eq. (2) we have

Bnp

np
� m � n

m

Bn

n
ðmod p2Þ:

Since mcn ðmod pÞ (by Theorem 2.3) and pjjBn

n
; we get the result. &
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3. Proof of Theorem 1

Let n be any even integer such that pcjjn and ðp � 1Þ[n: Let n ¼ pck where

ðp; kÞ ¼ 1: If p is regular, then by Lemma 2.1, it is clear that pcjjBn: Suppose p is an
irregular prime and p is less than 12 millions. In [2], they have verified that

Bmc0 ðmod p2Þ for all mAf2; 4;y; p � 3g

is true for all irregular primes upto 12 millions. Therefore, for these primes by
Theorem 2.5, we know that

Bmpc0 ðmod p3Þ for all mAf2; 4;y; p � 3g:

This implies, for any integer cX1;

Bmpcc0 ðmod pcþ2Þ for all mAf2; 4;y; p � 3g

by the observation in first part of Theorem 2.5. If kop � 1; then it follows that

pbjjBn implies bpcþ 1: As ðp � 1Þ[n; it is clear that ðp � 1Þ[k: If k4p � 1; then let
k ¼ rðp � 1Þ þ c where c is an even integer such that cAf2; 4;y; p � 3g: Then, by
Kummer congruence, we get

Bkpc

n
�

Brðp�1Þpcþcpc

n
�

Bcpc

cpc
ðmod p2Þ:

Since cop � 1 and by the above observation, we see that pcþ2[Bcpc and hence

pcþ2[Bn: This implies bpcþ 1:

4. Connections with cyclotomic fields

The main reference for this section is [11]. Let p be any odd prime. LetQðzpÞ be the
cyclotomic field generated by zp a primitive pth root of unity. Then Qðzp þ z�1

p Þ is its
maximal real subfield. Let h be the class number of QðzpÞ and h ¼ hþh� where hþ is

the class number of Qðzp þ z�1
p Þ and h� is called the relative class number. In fact,

h� ¼ 2p
Yp�2

j¼1;j odd

�1

2
B1;o j

� �
; ð3Þ

where B1;o j is the first generalized Bernoulli number attached to o j (here o j is any

odd character attached to QðzpÞÞ and o is a Teichmüller character modulo p: Note

that B1;o p�2 � p�1
p

ðmod ZpÞ where Zp is the ring of p-adic integers. Thus, pB1;o p�2

has no p-factor in it.
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Proposition 4.1. Let p be any irregular prime. Let n be any even integer in

f4; 6;y; p � 3g: Then,

B1;on�1 �
Bðn�1Þðp�1Þþn

ðn � 1Þðp � 1Þ þ n
ðmod p2Þ:

Proof. Ernvall and Metsänkylä [4] proved the following results. For all
nAf4; 6;?; p � 3g; we have

Bp�1þn

p � 1þ n
� Bn

n
� �1

2
p
Xp�1

a¼1

anq2
a ðmod p2Þ; ð4Þ

where qa ¼ ðap�1 � 1Þ=p is the Fermat quotient of a: Also, in the same paper, they
proved that for all nAf4; 6;?; p � 3g;

B1;on�1 � Bn

n
� n � 1

2
p
Xp�1

a¼1

anq2
a ðmod p2Þ: ð5Þ

Therefore, from the Eqs. (4) and (5), we get

B1;on�1 �Bn

n
� n � 1

2
2

Bn

n
� Bp�1þn

p � 1þ n

� �
ðmod p2Þ:

�ðn � 1Þ Bnþp�1

n þ p � 1
� ðn � 2ÞBn

n
ðmod p2Þ

�
Bðn�1Þðp�1Þþn

ðn � 1Þðp � 1Þ þ n
ðmod p2Þ;

since nX4; we can apply Theorem 2.2 to get the last congruence. &

Corollary 4.1.1. Let p be any irregular prime. Let n be any even integer such that

nAf4; 6;?; p � 3g: Then

B1;on�1 � Bn

n
ðmod pÞ:

Proof. The result follows from Theorem 4.1 and Kummer congruence. &

Also it is known that B1;o � B2

2
ðmod pÞ: Since un ¼ 71 for all n ¼ 2; 4; 6; 8; 10;

we can assume that nX12 for the rest of the article. Also, we denote the number of
even integers n’s such that 2pnpp � 3 and pjBn by IðpÞ: This number IðpÞ is called
the index of irregularity. Because of Corollary 4.1.1 and from the formula of h�; we
see that

ordpðh�Þ ¼ ordp

Yp�4

i¼11; j odd

B1;o j

 !
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and we have ordpðh�ÞXIðpÞ: If one proves B1;o jc0 ðmod p2Þ for all j ¼ 1; 3;?;

p � 4; then we have ordpðh�Þ ¼ IðpÞ: Here ordpðaÞ is the exponent of p in the

canonical decomposition of a:

Theorem 4.2. Let n be any even integer such that nA½2; p � 3
: We have

B1;on�1c0 ðmod p2Þ ) Bnc0 ðmod p2Þ:

Proof. Let n be any even integer such that 12pnpp � 3: Assume that

B1;on�1c0 ðmod p2Þ: We have to prove Bnc0 ðmod p2Þ: By Theorem 4.1, we

know that

B1;on�1 �
Bðn�1Þðp�1Þþn

ðn � 1Þðp � 1Þ þ n
ðmod p2Þ:

Therefore, by the assumption, we have p2[ Bðn�1Þðp�1Þþn

ðn�1Þðp�1Þþn
: Therefore, by Theorem 2.4,

we get the result. &

Also, note that p3[Bnp3ordpðLpð1;onÞÞp1 where Lp is the p-adic L-function

(See [11, p. 162]). Thus, to prove Conjecture 0, p3[Bnp and p2[Bn for every even

integer nA½2; p � 3
; it is enough to prove

B1;on�1c0 ðmod p2Þ

for all even integer nA½2; p � 3
:
These hypotheses play very crucial role in the arithmetic of cyclotomic fields

including Fermat last theorem. Also, Bernoulli numbers have numerous applica-
tions. For instance, as referee pointed out, in [10], they use these numbers to obtain
tight estimations on some apriori infeasible calculation.
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