

JOURNAL OF

Journal of Number Theory 106 (2004) 169-177

http://www.elsevier.com/locate/jnt

Adams theorem on Bernoulli numbers revisited

R. Thangadurai*

School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India

Received 25 July 2003; revised 11 November 2003

Communicated by D. Goss

Dedicated in the memory of my father

Abstract

If we denote B_n to be nth Bernoulli number, then the classical result of Adams (J. Reine Angew. Math. 85 (1878) 269) says that p'|n and $(p-1)\nmid n$, then $p'|B_n$ where p is any odd prime p > 3. We conjecture that if $(p-1) \nmid n, p' \mid n$ and $p'^{+1} \nmid n$ for any odd prime p > 3, then the exact power of p dividing B_n is either ℓ or $\ell+1$. The main purpose of this article is to prove that this conjecture is equivalent to two other unproven hypotheses involving Bernoulli numbers and to provide a positive answer to this conjecture for infinitely many n. © 2004 Elsevier Inc. All rights reserved.

Keywords: Bernoulli numbers; Class number of cyclotomic fields

1. Introduction

The *n*th Bernoulli number B_n in the even suffix notation defined by the recurrence relation

$$\sum_{i=1}^{n+1} {n+1 \choose i} B_{n+1-i} = 0 \ (n \geqslant 1), \quad B_0 = 1.$$

Thus, we have $B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_3 = 0$, and so on. It is easy to show that $(-1)^{i-1}B_{2i}>0$ and $B_{2i+1}=0$ for $i\geqslant 1$. Let us write $B_n=u_n/v_n$ where $u_n,v_n\in\mathbb{Z}$ and

E-mail address: thanga@mri.ernet.in.

0022-314X/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jnt.2003.12.006

^{*}Fax: +91-532-266-7576.

 $(u_n, v_n) = 1$. The von Staudt-Clausen theorem (see for instance [11, p. 56]) asserts that v_n is square-free and $p|v_n$ if and only if (p-1)|n. Therefore, $6|v_n$ for all positive integer $n \ge 2$.

By $p^a||n$ we mean that p^a divides n but p^{a+1} does not divide n.

In 1878, Adams [1] proved the following result regarding the divisibility properties of u_n . More precisely, he proved that if p is a prime such that $p^a||n$ for integer $a \ge 1$ and $(p-1) \nmid n$, then $p^a|u_n$.

Adam's classical result seems to be almost sharp.

Conjecture 0. Let p > 3 be any prime number such that $p^{\ell}||n$ (here $\ell \geqslant 1$ is an integer) for some even positive integer n and $(p-1)\nmid n$. Then $p^{\beta}||u_n|$ implies $\beta \leqslant \ell+1$.

Note that when (p, n) = 1, Conjecture 0 is false because if we take p = 37 and n = 284, we have (37, 284) = 1 and $37^2 | B_{284}$.

Definition 1. An odd prime p is said to be an irregular prime if p divides one of numerators of the following Bernoulli numbers; $B_2, B_4, \ldots, B_{p-3}$. Otherwise, the prime p is said to be a regular prime.

For example, the first few irregular primes are 37, 59, 67, 101, 103, 131, 149, 157, ... It is known that there are infinitely many irregular primes (see [3,7]). But it is not known whether or not there are infinitely many regular primes, though numerical evidence suggests that about 60% of the primes are regular (see for instance [8, p. 109]).

The following theorem provides a positive answer to Conjecture 0 for infinitely many n's.

Theorem 1. Let $p \ge 5$ be any prime. Let n be any positive even integer such that $p^{\ell}||n$ (for any positive integer $\ell \ge 1$) and $(p-1) \nmid n$. Then Conjecture 0 is true for n whenever p is a regular prime or p is an irregular prime and p less than 12 millions.

2. Preliminaries

Kummer (see for instance [5]) proved the following congruence property of Bernoulli numbers (which is now, called Kummer congruence).

Kummer Congruence. *If* m *and* n *are positive integers such that* $n \equiv m \pmod{p^r(p-1)}$ *and* m *is non-zero modulo* $p^r(p-1)$, *then*

$$\frac{B_n}{n} \equiv \frac{B_m}{m} \pmod{p^{r+1}},$$

whenever $n \ge m \ge r + 1$.

Now, it is easy to see from Kummer congruence that a prime p is irregular if and only if $p^2|B_{np}$ for some even integer $n \in [2, p-3]$.

Lemma 2.1. Let n be any even positive integer. Let p > 3 be any odd prime number such that $p^{\ell}||n$ and $(p-1)\nmid n$. Then

$$\frac{u_n}{p^\ell} \equiv bu_c \; (\bmod \; p),$$

where b is a non-zero element modulo p and c is the least positive residue of n modulo (p-1).

Proof. Result easily follows from Kummer congruence.

Corollary 2.1.1. Assume p, n and c as in Lemma 2.1 together with $p \nmid u_c$, then $p^{\ell} || u_n$. In particular, we have

- (i) if p is regular, then $p||B_{np}$,
- (ii) if p is irregular and $p \nmid B_n$, then $p||B_{np}$.

Proof. The result is clear from Lemma 2.1.

Theorem 2.2. (Sun [9]). Let p be any odd prime and n be any even integer with $n \not\equiv 0 \pmod{p-1}$. Then

$$\frac{B_{k(p-1)+n}}{k(p-1)+n} \equiv k \frac{B_{p-1+n}}{p-1+n} - (k-1)(1-p^{n-1}) \frac{B_n}{n} \pmod{p^2}$$

for all integer $k \ge 1$.

Theorem 2.3. (Johnson [6]). Let p be any irregular prime such that $p|B_n$ for some even integer $n \in [2, p-3]$. If

$$\frac{B_{n+p-1}}{n+p-1} \not\equiv \frac{B_n}{n} \pmod{p^2},$$

then, there exists an integer $k \ge 2$ with $k \not\equiv n \pmod p$ and (p, k(p-1) + n) = 1 such that

$$B_{k(p-1)+n} \equiv 0 \, (\operatorname{mod} p^2).$$

Theorem 2.4. Let p be any odd prime. Let n be any even integer in [2, p-3] such that $p|B_n$. Then if $p||\frac{B_{k(p-1)+n}}{k(p-1)+n}$ for some integer $k \ge 1$, then $p||B_n$.

Proof. Assume that $p||\frac{B_{k(p-1)+n}}{k(p-1)+n}$ for some positive integer $k \ge 1$. We have to prove $p||B_n$.

Case (i): $(\frac{B_{n+p-1}}{n+p-1} \equiv \frac{B_n}{n} \pmod{p^2})$. Then by Theorem 2.2, for all integer $\ell \geqslant 1$, we get

$$\frac{B_{\ell(p-1)+n}}{\ell(p-1)+n} \equiv \ell \frac{B_{p-1+n}}{p-1+n} - (\ell-1) \frac{B_n}{n} \equiv \frac{B_n}{n} \pmod{p^2}.$$

In particular, when $\ell = k$ itself, then we get

$$\frac{B_{k(p-1)+n}}{k(p-1)+n} \equiv \frac{B_n}{n} \pmod{p^2}.$$

Since $p||\frac{B_{k(p-1)+n}}{k(p-1)+n}$, we have $p||B_n$.

Case (ii): $(\frac{B_{n+p-1}}{n+p-1} \neq \frac{B_n}{n} \pmod{p^2})$). In this case, by Theorem 2.3, there exists an integer $m \neq n \pmod{p}$ and (m(p-1)+n,p)=1 such that

$$B_{m(p-1)+n} \equiv 0 \pmod{p^2} \Rightarrow \frac{B_{m(p-1)+n}}{m(p-1)+n} \equiv 0 \pmod{p^2}.$$

Therefore, by Theorem 2.2, we get

$$0 \equiv \frac{B_{m(p-1)+n}}{m(p-1)+n} \equiv m \frac{B_{n+p-1}}{n+p-1} - (m-1) \frac{B_n}{n} \pmod{p^2},$$

which implies

$$\frac{B_{n+p-1}}{n+p-1} \equiv \frac{m-1}{m} \frac{B_n}{n} \pmod{p^2}.$$
 (1)

Thus, for every $\ell \geqslant 2$, we get,

$$\frac{B_{\ell(p-1)+n}}{\ell(p-1)+n} \equiv \ell \frac{B_{n+p-1}}{n+p-1} - (\ell-1) \frac{B_n}{n} \pmod{p^2}.$$

Therefore by Eq. (1), we get

$$\frac{B_{\ell(p-1)+n}}{\ell(p-1)+n} \equiv \frac{\ell(m-1) - (\ell-1)m}{m} \frac{B_n}{n} \equiv \frac{m-\ell}{m} \frac{B_n}{n} \pmod{p^2}.$$
 (2)

Put $\ell = k$ in the above, we get

$$\frac{B_{k(p-1)+n}}{k(p-1)+n} \equiv \frac{m-k}{m} \frac{B_n}{n} \pmod{p^2}.$$

By our assumption, we know that $p||\frac{B_{k(p-1)+n}}{k(p-1)+n}$ and hence (m-k)/n and B_n/n are not congruent to 0 modulo p^2 . Since n < p-2, we see that $p^2 \nmid B_n$. \square

Theorem 2.5. The following statements are equivalent:

(i) Conjecture 0;

- (ii) $B_{np} \not\equiv 0 \pmod{p^3}$ for every even integer $n \in \{2, 4, ..., p-3\}$;
- (iii) $B_n \not\equiv 0 \pmod{p^2}$ for every even integer $n \in \{2, 4, ..., p-3\}$.

Proof. First, we shall prove that (i) \Leftrightarrow (ii).

That is, assume that Conjecture 0 is true. We have to prove that (ii) is also true. Because of Corollary 2.1.1, it is enough to assume that p is an irregular prime such that $p|B_n$ for some even integer $n \in [2, p-3]$. Since $p|B_n$, we have $0 \not\equiv np \equiv n \pmod{p-1}$. Therefore, by Conjecture 0, we know that $p^{\ell}|B_{np}$ implies $\ell \leqslant 2$. Since p is irregular, we know that $p^2|B_{np}$ and hence $p^2||B_{np}$. Thus, the statement (ii) is true.

Assume that statement (ii) is true. We shall prove the conjecture 0 is true.

First, let us observe the following: if p is any irregular prime such that $p|B_n$ for some even integer $n \in [2, p-3]$, then for any integer $\ell \geqslant 1$, we have $p^{\ell+1}||B_{np^{\ell}}|$ if and only if $p^2||B_{np}$. One way is obvious by letting $\ell=1$. To prove the other implication, assume that $p^2||B_{np}$. That is, when $\ell=1$ the result is true. Assume that the result is true for all $m \leqslant \ell$. We shall prove for $\ell+1$. Now, by Kummer congruence and $\ell \geqslant 1$, we have

$$\frac{B_{np^{\ell+1}}}{np^{\ell+1}} = \frac{B_{np^{\ell}(p-1)+np^{\ell}}}{np^{\ell+1}} \equiv \frac{B_{np^{\ell}}}{np^{\ell}} \pmod{p^2}.$$

By induction, we know that $p^{\ell+1}||B_{np^{\ell}}$ and hence $p^2 \nmid \frac{B_{np^{\ell}}}{np^{\ell}}$. Therefore, we get, $p^{\ell+2}||B_{np^{\ell+1}}|$. Thus, we have, $p^2||B_{np} \Leftrightarrow p^{\ell+1}||B_{np^{\ell}}|$ for every integer $\ell \geqslant 1$.

Let $n=kp^{\ell}$ be an even positive integer such that $p^{\ell}||n$ and $(p-1)\nmid n$. By Adams' result, we know that $p^{\ell}|B_n$. To prove Conjecture 0, it is to prove $p^{\beta}||B_n$ implies $\beta \leq \ell+1$. Since $(p-1)\nmid n$, it is clear that $n\equiv k\not\equiv 0\pmod{p-1}$. If $k\in[2,p-3]$, then by the assumption and by the above observation, we have $p^{\ell}||B_{kp^{\ell}}$ or $p^{\ell+1}||B_{kp^{\ell}}$ depending on $p\nmid B_k$ or $p|B_k$ (by Corollary 2.1.1). Suppose k>p-1. Then, k=r(p-1)+c for some positive integers r and c with $c\in[2,p-3]$ an even integer. Therefore, by Kummer congruence, we have

$$\frac{B_n}{kp^{\ell}} = \frac{B_{(r(p-1)+c)p^{\ell}}}{kp^{\ell}} = \frac{B_{rp^{\ell}(p-1)+cp^{\ell}}}{kp^{\ell}} \equiv \frac{B_{cp^{\ell}}}{cp^{\ell}} \pmod{p^2}.$$

We see from the above observation that $p^2 \nmid \frac{B_{cp'}}{cp'}$ because statement (ii) is true by our assumption. Therefore, $p^{\beta}||B_n|$ implies $\beta \leq \ell + 1$. Thus, Conjecture 0 is true.

Now, we shall prove that (ii) \Leftrightarrow (iii). Assume that statement (ii) is true. That is, $p||\frac{B_{np}}{np}$. Since np = n(p-1) + n, by Theorem 2.4, we see that statement (iii) is true. For the other implication, let us assume that statement (iii) is true. In case (i) of Theorem 2.4, we have clearly $p||\frac{B_{np}}{np}$. In case (ii) by Eq. (2) we have

$$\frac{B_{np}}{np} \equiv \frac{m-n}{m} \frac{B_n}{n} \pmod{p^2}.$$

Since $m \neq n \pmod{p}$ (by Theorem 2.3) and $p||\frac{B_n}{n}$, we get the result. \square

3. Proof of Theorem 1

Let n be any even integer such that $p^{\ell}||n$ and $(p-1)\nmid n$. Let $n=p^{\ell}k$ where (p,k)=1. If p is regular, then by Lemma 2.1, it is clear that $p^{\ell}||B_n$. Suppose p is an irregular prime and p is less than 12 millions. In [2], they have verified that

$$B_m \not\equiv 0 \pmod{p^2}$$
 for all $m \in \{2, 4, ..., p - 3\}$

is true for all irregular primes upto 12 millions. Therefore, for these primes by Theorem 2.5, we know that

$$B_{mp} \not\equiv 0 \pmod{p^3}$$
 for all $m \in \{2, 4, ..., p - 3\}$.

This implies, for any integer $\ell \geqslant 1$,

$$B_{mp^{\ell}} \not\equiv 0 \pmod{p^{\ell+2}}$$
 for all $m \in \{2, 4, ..., p-3\}$

by the observation in first part of Theorem 2.5. If k < p-1, then it follows that $p^{\beta}||B_n$ implies $\beta \le \ell+1$. As $(p-1) \nmid n$, it is clear that $(p-1) \nmid k$. If k > p-1, then let k = r(p-1) + c where c is an even integer such that $c \in \{2, 4, ..., p-3\}$. Then, by Kummer congruence, we get

$$\frac{B_{kp^{\ell}}}{n} \equiv \frac{B_{r(p-1)p^{\ell}+cp^{\ell}}}{n} \equiv \frac{B_{cp^{\ell}}}{cp^{\ell}} \pmod{p^2}.$$

Since c < p-1 and by the above observation, we see that $p^{\ell+2} \nmid B_{cp^{\ell}}$ and hence $p^{\ell+2} \nmid B_n$. This implies $\beta \leq \ell+1$.

4. Connections with cyclotomic fields

The main reference for this section is [11]. Let p be any odd prime. Let $\mathbb{Q}(\zeta_p)$ be the cyclotomic field generated by ζ_p a primitive pth root of unity. Then $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$ is its maximal real subfield. Let h be the class number of $\mathbb{Q}(\zeta_p)$ and $h = h^+h^-$ where h^+ is the class number of $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$ and h^- is called the relative class number. In fact,

$$h^{-} = 2p \prod_{j=1,j \text{ odd}}^{p-2} \left(-\frac{1}{2} B_{1,\omega^{j}} \right), \tag{3}$$

where B_{1,ω^j} is the first generalized Bernoulli number attached to ω^j (here ω^j is any odd character attached to $\mathbb{Q}(\zeta_p)$) and ω is a Teichmüller character modulo p. Note that $B_{1,\omega^{p-2}} \equiv \frac{p-1}{p} \pmod{\mathbb{Z}_p}$ where \mathbb{Z}_p is the ring of p-adic integers. Thus, $pB_{1,\omega^{p-2}}$ has no p-factor in it.

Proposition 4.1. Let p be any irregular prime. Let n be any even integer in $\{4, 6, ..., p-3\}$. Then,

$$B_{1,\omega^{n-1}} \equiv \frac{B_{(n-1)(p-1)+n}}{(n-1)(p-1)+n} \pmod{p^2}.$$

Proof. Ernvall and Metsänkylä [4] proved the following results. For all $n \in \{4, 6, \dots, p-3\}$, we have

$$\frac{B_{p-1+n}}{p-1+n} - \frac{B_n}{n} \equiv -\frac{1}{2}p\sum_{a=1}^{p-1} a^n q_a^2 \pmod{p^2},\tag{4}$$

where $q_a = (a^{p-1} - 1)/p$ is the Fermat quotient of a. Also, in the same paper, they proved that for all $n \in \{4, 6, \dots, p-3\}$,

$$B_{1,\omega^{n-1}} \equiv \frac{B_n}{n} - \frac{n-1}{2} p \sum_{a=1}^{p-1} a^n q_a^2 \pmod{p^2}.$$
 (5)

Therefore, from the Eqs. (4) and (5), we get

$$\begin{split} B_{1,\omega^{n-1}} &\equiv \frac{B_n}{n} - \frac{n-1}{2} 2 \left(\frac{B_n}{n} - \frac{B_{p-1+n}}{p-1+n} \right) \pmod{p^2}. \\ &\equiv (n-1) \frac{B_{n+p-1}}{n+p-1} - (n-2) \frac{B_n}{n} \pmod{p^2} \\ &\equiv \frac{B_{(n-1)(p-1)+n}}{(n-1)(p-1)+n} \pmod{p^2}, \end{split}$$

since $n \ge 4$, we can apply Theorem 2.2 to get the last congruence. \square

Corollary 4.1.1. Let p be any irregular prime. Let n be any even integer such that $n \in \{4, 6, \dots, p-3\}$. Then

$$B_{1,\omega^{n-1}} \equiv \frac{B_n}{n} \pmod{p}.$$

Proof. The result follows from Theorem 4.1 and Kummer congruence. \Box

Also it is known that $B_{1,\omega} \equiv \frac{B_2}{2} \pmod{p}$. Since $u_n = \pm 1$ for all n = 2, 4, 6, 8, 10, we can assume that $n \ge 12$ for the rest of the article. Also, we denote the number of even integers n's such that $2 \le n \le p - 3$ and $p|B_n$ by I(p). This number I(p) is called the *index of irregularity*. Because of Corollary 4.1.1 and from the formula of h^- , we see that

$$\operatorname{ord}_p(h^-) = \operatorname{ord}_p\left(\prod_{i=11, j \text{ odd}}^{p-4} B_{1,\omega^j}\right)$$

and we have $\operatorname{ord}_p(h^-) \geqslant I(p)$. If one proves $B_{1,\omega^j} \not\equiv 0 \pmod{p^2}$ for all $j = 1, 3, \dots$, p-4, then we have $\operatorname{ord}_p(h^-) = I(p)$. Here $\operatorname{ord}_p(a)$ is the exponent of p in the canonical decomposition of a.

Theorem 4.2. Let n be any even integer such that $n \in [2, p-3]$. We have

$$B_{1,\omega^{n-1}} \not\equiv 0 \pmod{p^2} \Rightarrow B_n \not\equiv 0 \pmod{p^2}.$$

Proof. Let n be any even integer such that $12 \le n \le p-3$. Assume that $B_{1,\omega^{n-1}} \not\equiv 0 \pmod{p^2}$. We have to prove $B_n \not\equiv 0 \pmod{p^2}$. By Theorem 4.1, we know that

$$B_{1,\omega^{n-1}} \equiv \frac{B_{(n-1)(p-1)+n}}{(n-1)(p-1)+n} \pmod{p^2}.$$

Therefore, by the assumption, we have $p^2 \nmid \frac{B_{(n-1)(p-1)+n}}{(n-1)(p-1)+n}$. Therefore, by Theorem 2.4, we get the result. \square

Also, note that $p^3 \nmid B_{np} \Leftrightarrow \operatorname{ord}_p(L_p(1,\omega^n)) \leq 1$ where L_p is the *p*-adic L-function (See [11, p. 162]). Thus, to prove Conjecture 0, $p^3 \nmid B_{np}$ and $p^2 \nmid B_n$ for every even integer $n \in [2, p-3]$, it is enough to prove

$$B_{1,\omega^{n-1}} \not\equiv 0 \pmod{p^2}$$

for all even integer $n \in [2, p-3]$.

These hypotheses play very crucial role in the arithmetic of cyclotomic fields including Fermat last theorem. Also, Bernoulli numbers have numerous applications. For instance, as referee pointed out, in [10], they use these numbers to obtain tight estimations on some apriori infeasible calculation.

Acknowledgments

I am grateful to Professor M. Ram Murty for introducing me to this area of Mathematics. I am also thankful to the referee for his/her useful suggestions.

References

- [1] J.C. Adams, Tables of the values of the first 62 numbers of Bernoulli, J. Reine Angew. Math. 85 (1878) 269–272.
- [2] J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, M.A. Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001) 89–96.
- [3] L. Carlitz, Note on irregular primes, Proc. Amer. Math. Soc. 5 (1954) 329-331.
- [4] R. Ernvall, T. Metsänkylä, Cyclotomic invariants for primes between 125 000 and 150 000, Math. Comp. 56 (194) (1991) 851–858.

- [5] http://www.dms.umontreal.ca/andrew/Binomial/bernoulli.html
- [6] W. Johnson, Irregular prime divisors of the Bernoulli numbers, Math. Comp. 28 (126) (1974) 653–657.
- [7] T. Metsänkylä, Distribution of irregular prime numbers, J. Reine Angew. Math. 282 (1976) 126-130.
- [8] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York, Heidelberg, 1979.
- [9] Z.H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (2000) 193–223.
- [10] B. Tsaban, Bernoulli numbers and the probability of a birthday surprise, Discrete Appl. Math. 127 (2003) 657–663.
- [11] L.C. Washington, Introduction to Cyclotomic Fields, in: Graduate Text in Mathematics, Vol. 83, Springer, New York, 1997.