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Abstract

If we denote B, to be nth Bernoulli number, then the classical result of Adams (J. Reine
Angew. Math. 85 (1878) 269) says that p’|n and (p — 1)4n, then p’|B, where p is any odd
prime p>3. We conjecture that if (p — 1) n, p’|n and p’*! }n for any odd prime p> 3, then the
exact power of p dividing B, is either / or / 4+ 1. The main purpose of this article is to prove
that this conjecture is equivalent to two other unproven hypotheses involving Bernoulli
numbers and to provide a positive answer to this conjecture for infinitely many n.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The nth Bernoulli number B, in the even suffix notation defined by the recurrence
relation

n+1

+1
S (" >Bn+1io (n>1), By—1.
1

i=1

Thus, we have By = 1, B = —%, By =}, B3 =0, and so on. It is easy to show that

(—1)i7132i>0 and By;y1 =0 for i>1. Let us write B, = u,/v, where u,,v,€Z and
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(4, v,) = 1. The von Staudt—Clausen theorem (see for instance [11, p. 56]) asserts
that v, is square-free and p|v, if and only if (p — 1)|n. Therefore, 6|v, for all positive
integer n>=2.

By p“||[n we mean that p“ divides n but p**! does not divide n.

In 1878, Adams [1] proved the following result regarding the divisibility properties
of u,. More precisely, he proved that if p is a prime such that p||n for integer a>1
and (p — 1) tn, then p“|u,.

Adam’s classical result seems to be almost sharp.

Conjecture 0. Let p>3 be any prime number such that p’||n (here £=1 is an integer)
for some even positive integer n and (p — 1) tn. Then pP||u, implies B<¢ + 1.

Note that when (p,n) = 1, Conjecture 0 is false because if we take p = 37 and
n = 284, we have (37,284) = 1 and 37%|By.

Definition 1. An odd prime p is said to be an irregular prime if p divides one of
numerators of the following Bernoulli numbers; B, By, ..., B,_3. Otherwise, the
prime p is said to be a regular prime.

For example, the first few irregular primes are 37, 59, 67, 101, 103, 131, 149,
157, ... It is known that there are infinitely many irregular primes (see [3,7]). But it is
not known whether or not there are infinitely many regular primes, though
numerical evidence suggests that about 60% of the primes are regular (see for
instance [8, p. 109]).

The following theorem provides a positive answer to Conjecture 0 for infinitely
many n’s.

Theorem 1. Let p>=5 be any prime. Let n be any positive even integer such that p’||n
(for any positive integer £ > 1) and (p — 1) ¥ n. Then Conjecture 0 is true for n whenever
p is a regular prime or p is an irregular prime and p less than 12 millions.

2. Preliminaries

Kummer (see for instance [5]) proved the following congruence property of
Bernoulli numbers (which is now, called Kummer congruence).

Kummer Congruence. If' m and n are positive integers such that n = m(mod p"(p — 1))
and m is non-zero modulo p’(p — 1), then

B, B
lzl d r+1
=, (modp™),

whenever n=m>=r + 1.



R. Thangadurai | Journal of Number Theory 106 (2004) 169-177 171

Now, it is easy to see from Kummer congruence that a prime p is irregular if and
only if p?|B,, for some even integer ne2,p — 3].

Lemma 2.1. Let n be any even positive integer. Let p >3 be any odd prime number such
that p’||n and (p — 1) {n. Then

Uy
s = bu, (mod p),

where b is a non-zero element modulo p and c is the least positive residue of n modulo

P —=1.
Proof. Result easily follows from Kummer congruence. [

Corollary 2.1.1. Assume p, n and ¢ as in Lemma 2.1 together with pfu., then p’||u,.
In particular, we have

(1) if p is regular, then p||B,,,

(i) if p is irregular and p} By, then p||By,.

Proof. The result is clear from Lemma 2.1. O

Theorem 2.2. (Sun [9]). Let p be any odd prime and n be any even integer with
n#0 (modp — 1). Then

Bk(p71)+n B —14n —1\Bn
=k—2 — (k=D =pH=2 ?
kp—1)+n  p—1+n ( A —p )n(mOdp)

for all integer k>1.
Theorem 2.3. (Johnson [6]). Let p be any irreqular prime such that p|B, for some even
integer ne2,p — 3. If

Bn+p71 iﬂ

d2

then, there exists an integer k=2 with k#n (mod p) and (p,k(p — 1) +n) =1 such
that

Bi(p—1)n = 0 (mod p*).

Theorem 2.4. Let p be any odd prime. Let n be any even integer in [2,p — 3] such that

p|By. Then ifp||,f(jkf”_’1‘;jr"n for some integer k=1, then p||B,.

Bk(p—l)—n
k(p—1)+n

Proof. Assume that p|| for some positive integer k>1. We have to prove

Pl|Bn.
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Case (1): (22— Brpt = By (mod p?)). Then by Theorem 2.2, for all integer /> 1, we get

ntp—1 = n
B/(pfl)Jrn BpflJrn B, B, 2
=/ - (-1 —=— d
{p—1)+n p—1+4n ( )n n (mod p7)
In particular, when / = k itself, then we get
Bk(p71)+n B, 2
—_— = d
Kp—1)+n-n (modr)
Since p||k(;"” T we have pl|B,.
Case (ii): (nj;;]” ;;é% (mod p?)). In this case, by Theorem 2.3, there exists an
integer m#n (mod p) and (m(p — 1) +n,p) = 1 such that
B
— 2 mp=U+n_ _ 2
Bn1(p—l)+n =0 (modp ) im:o (modp )
Therefore, by Theorem 2.2, we get
Bm D— n Bn — B
0= Pt = 227l (i — 1)=2 (mod p?),
mp—1)+n n+p—1 n
which implies
Bn — - 1 B)
2 TP (mod p?). (1)

n+p—1" m n
Thus, for every /=2, we get,

Brp—1)4n 3
/p—1)+n n+p-—1

Therefore by Eq. (1), we get

Bip-tyen  _tm—1)—(/—1)mB, _m—/{B,
(p—1)+n" m n

Put / = k in the above, we get

Bk(pfl)Jrn _m_an 2
Kp-Din= m n (mod p?).

Bip—1)1n
k(p—1)+n

congruent to 0 modulo p?. Since n<p — 2, we see that p>{B,. O

By our assumption, we know that p| and hence (m — k)/n and B,/n are not

Theorem 2.5. The following statements are equivalent:

(1) Conjecture 0;
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(i) B,,#0 (modp?) for every even integer ne{2,4, ...,p — 3};
(iii) B,#0 (mod p?) for every even integer ne{2,4, ...,p — 3}.

Proof. First, we shall prove that (i) < (ii).

That is, assume that Conjecture 0 is true. We have to prove that (ii) is also true.
Because of Corollary 2.1.1, it is enough to assume that p is an irregular prime such
that p|B, for some even integer ne[2,p —3]. Since p|B,, we have O0#np =
n (modp — 1). Therefore, by Conjecture 0, we know that p’||B,, implies /<2.
Since p is irregular, we know that p?|B,, and hence p*||B,,. Thus, the statement (ii) is
true.

Assume that statement (ii) is true. We shall prove the conjecture 0 is true.

First, let us observe the following: if p is any irregular prime such that p|B, for
some even integer ne[2,p — 3], then for any integer /=1, we have p’™'|| B, if and
only if p2||B,,,,‘ One way is obvious by letting / = 1. To prove the other implication,
assume that p?||B,,. That is, when / = 1 the result is true. Assume that the result is
true for all m</. We shall prove for 7 + 1. Now, by Kummer congruence and /> 1,
we have

Bupit  Buy/(p-1)smy _ Byp

np/ T T ppltl np’

= (mod p?).
Bnl/
p'2||B,y1. Thus, we have, p?||B,, <p’"!||B,, for every integer />1.

By induction, we know that p’™'||B,, and hence p*} Therefore, we get,

Let n = kp’ be an even positive integer such that p’||n and (p — 1) {n. By Adams’
result, we know that p’|B,. To prove Conjecture 0, it is to prove pP||B, implies
p</+1.Since (p — 1) }n, itis clear that n = k0 (mod p — 1). If k€[2,p — 3], then
by the assumption and by the above observation, we have p’||By, or p’!||By,
depending on p{B; or p|B; (by Corollary 2.1.1). Suppose k>p — 1. Then, k =
r(p — 1) + ¢ for some positive integers r and ¢ with c€[2,p — 3] an even integer.
Therefore, by Kummer congruence, we have

B, Bip-1)+op’ _ B p-1)+ep’ = B;’P// (modpz).
94

kpt — kp’ kp’

We see from the above observation that p? J(%f because statement (ii) is true by our
assumption. Therefore, p#||B, implies f</ + 1. Thus, Conjecture 0 is true.

Now, we shall prove that (ii) < (iii). Assume that statement (ii) is true. That is,

P |%”. Since np = n(p — 1) + n, by Theorem 2.4, we see that statement (iii) is true. For

the other implication, let us assume that statement (iii) is true. In case (i) of Theorem

2.4, we have clearly p| i—;;’. In case (ii) by Eq. (2) we have

BnJ - Bn
Dnp M1 0 (mod p?).
np m n

Since m#n (mod p) (by Theorem 2.3) and pH%, we get the result. [



174 R. Thangadurai | Journal of Number Theory 106 (2004) 169-177

3. Proof of Theorem 1

Let n be any even integer such that p/|[n and (p — 1){n. Let n = p’k where
(p,k) = 1. If p is regular, then by Lemma 2.1, it is clear that p’||B,. Suppose p is an
irregular prime and p is less than 12 millions. In [2], they have verified that

B,#0 (modp?®) for all me{2,4,....p — 3}

is true for all irregular primes upto 12 millions. Therefore, for these primes by
Theorem 2.5, we know that

B, #0 (mod p*) for all me{2,4,....,p — 3}.
This implies, for any integer /> 1,
B,y #0 (mod p’™?) for all me{2,4,...,p — 3}

by the observation in first part of Theorem 2.5. If k<p — 1, then it follows that
pP||B, implies f</ + 1. As (p — 1) }n, it is clear that (p — 1)} k. If k>p — 1, then let
k=r(p—1)+ ¢ where ¢ is an even integer such that ce{2,4,...,p — 3}. Then, by
Kummer congruence, we get

Since ¢<p —1 and by the above observation, we see that p’**{B., and hence
p/*2} B,. This implies </ + 1.

4. Connections with cyclotomic fields

The main reference for this section is [11]. Let p be any odd prime. Let @((,) be the
cyclotomic field generated by {, a primitive pth root of unity. Then Q({, + C;l) is its
maximal real subfield. Let / be the class number of Q({,) and & = h*h~ where h* is

the class number of Q((, + C;l) and s~ is called the relative class number. In fact,

. o
h :2p H _EBI’U)/ y (3)

j=1y odd

where By ,; is the first generalized Bernoulli number attached to w/ (here @/ is any
odd character attached to @({,)) and w is a Teichmiiller character modulo p. Note

that By ,,2 = ’%‘ (mod Z,) where Z, is the ring of p-adic integers. Thus, pB)
has no p-factor in it.
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Proposition 4.1. Let p be any irreqular prime. Let n be any even integer in
{4,6,....,p — 3}. Then,

B(nfl)(pfl)wLn
m=1Dp-1)+

Proof. Ernvall and Metsdnkyld [4] proved the following results. For all
ne{4,6,---,p— 3}, we have

By 1 = (mod p?).

B —1+n Bn 1 o
ﬁ—;z—}pZanqi (mod p?), (4)

where g, = (@’ — 1)/p is the Fermat quotient of a. Also, in the same paper, they
proved that for all ne{4,6,---,p — 3},

B,w,,lz__

Za (mod p?). (5)

Therefore, from the Egs. (4) and (5), we get

Bn n—1 Bn B*lJrn
By 1 = ) [P L 2).
Lo 2 <n p—l—l—n) (mod p7)

B+_] B
=(n—1)—2"1 _ (2" 2
(n )ner_l (n=2)—" (mod p7)

By (p—1)+n
m=—Dp-1)+

since n>4, we can apply Theorem 2.2 to get the last congruence. [l

(mod p?),

Corollary 4.1.1. Let p be any irregular prime. Let n be any even integer such that
ne{4,6,---,p—3}. Then

B,

B -1 = — dp).
1,01 n (mo p)

Proof. The result follows from Theorem 4.1 and Kummer congruence. [J

Also it is known that B, = % (mod p). Since u, = +1 for all n =2,4,6,8, 10,
we can assume that n>12 for the rest of the article. Also, we denote the number of
even integers n’s such that 2<n<p — 3 and p|B, by I(p). This number I(p) is called

the index of irregularity. Because of Corollary 4.1.1 and from the formula of 4™, we

see that
ord,(h™) —ord< H Ble>

i=11,j odd
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and we have ord,(h™)>1(p). If one proves B;,,;#0 (modp?) for all j=1,3, -,
p —4, then we have ord,(h~) = I(p). Here ord,(a) is the exponent of p in the
canonical decomposition of a.

Theorem 4.2. Let n be any even integer such that ne[2,p — 3]|. We have

B 10 (mod p?) = B,#0 (mod p?).

Proof. Let n be any even integer such that 12<n<p—3. Assume that
By ;1 #0 (mod p?). We have to prove B,#0 (modp?). By Theorem 4.1, we
know that

Bu1)p-1)4n
m—1Dp—-1)+n

(n—=1)(p—1)+

Therefore, by the assumption, we have pz}(iw’ﬁ. Therefore, by Theorem 2.4,

Bl’wn—l = (mOdpz).

we get the result. [

Also, note that p*}tB,,<>ord,(L,(1,®"))<1 where L, is the p-adic L-function
(See [11, p. 162]). Thus, to prove Conjecture 0, p3+Bnp and p*}B, for every even
integer ne[2,p — 3], it is enough to prove

By 1 #0 (mod p?)

for all even integer ne[2,p — 3].

These hypotheses play very crucial role in the arithmetic of cyclotomic fields
including Fermat last theorem. Also, Bernoulli numbers have numerous applica-
tions. For instance, as referee pointed out, in [10], they use these numbers to obtain
tight estimations on some apriori infeasible calculation.
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