

Available online at www.sciencedirect.com

Journal of Combinatorial Theory

Series A

Journal of Combinatorial Theory, Series A 107 (2004) 69-86

http://www.elsevier.com/locate/jcta

A variant of Kemnitz Conjecture

W.D. Gao^a and R. Thangadurai^{b,*}

^a Department of Computer Science and Technology, University of Petroleum, Shuiku Road, Changping, Beijing 102200, China

^b School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India

Received 18 July 2003

Abstract

For any integer $n \ge 3$, by $g(\mathbb{Z}_n \oplus \mathbb{Z}_n)$ we denote the smallest positive integer t such that every subset of cardinality t of the group $\mathbb{Z}_n \oplus \mathbb{Z}_n$ contains a subset of cardinality n whose sum is zero. Kemnitz (Extremalprobleme für Gitterpunkte, Ph.D. Thesis, Technische Universität Braunschweig, 1982) proved that $g(\mathbb{Z}_p \oplus \mathbb{Z}_p) = 2p - 1$ for p = 3, 5, 7. In this paper, as our main result, we prove that $g(\mathbb{Z}_p \oplus \mathbb{Z}_p) = 2p - 1$ for all primes $p \ge 67$. © 2004 Elsevier Inc. All rights reserved.

MSC: primary 11B75; secondary 20K99

Keywords: Zero-sum; Subset-sum; Finite abelian groups

1. Introduction

Let G be a finite abelian group (additively written). From the structure theorem of finite abelian groups, we know that $G \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_d}$ with $1 < n_1 | n_2 | \cdots | n_d$, where $n_d = \exp(G) := n$ is the exponent of G and G is the rank of G. When G instead of G inste

*Corresponding author. Fax: +91-532-266-7576.

E-mail address: thanga@mri.ernet.in (R. Thangadurai).

0097-3165/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2004.03.009

Definition 1. By g(G) we denote the smallest positive integer t such that every subset S of G of cardinality $|S| \ge t$ contains a subset S' of cardinality $|S'| = \exp(G)$ whose sum is the identity element of G.

This constant g(G) was first introduced by Harborth [18] for the group $G = \mathbb{Z}_n^d$. Kemnitz [20] proved that

$$(n-1)2^{d-1} + 1 \le g(\mathbb{Z}_n^d) \le (n-1)n^{d-1} + 1$$
 for all $n \ge 3$

and $g(\mathbb{Z}_n^d) \ge n2^{d-1} + 1$ for even integers n. Therefore, it follows that $g(\mathbb{Z}_n) = n$ for all odd integer n. Kemnitz [20] studied this constant when d = 2 and computed for small values of p = 3, 5, 7 and indeed, he proved that for these primes $g(\mathbb{Z}_p^2) = 2p - 1$.

Also, it is known that $g(\mathbb{Z}_3^3)=10$ and $g(\mathbb{Z}_3^4)=21$ (see [4–5,12,18–20]). Further, it is known in [9] that $g(\mathbb{Z}_3^5)=45$ and also in [3], it is known that $112 \leqslant g(\mathbb{Z}_3^6) \leqslant 114$. More generally, it known from the work of Meshulam [21] that $g(\mathbb{Z}_3^d) \leqslant (1+o(1)) \frac{3^d}{d}$. We shall conjecture the following.

Conjecture 1. For all integers $n \ge 3$, we have

$$g(\mathbb{Z}_n^2) = \begin{cases} 2n-1 & \text{if } n \text{ is odd,} \\ 2n+1 & \text{if } n \text{ is even.} \end{cases}$$

From the following examples, one can see that Conjecture 1 is sharp.

For *n* is odd, let $A = \{(0,0), (0,1), ..., (0,n-2), (1,1), (1,2), ..., (1,n-1)\}$ be a subset of \mathbb{Z}_n^2 . Then |A| = 2n-2 and *A* contains no zero-sum subset of cardinality *n*. Hence, $g(\mathbb{Z}_n^2) \ge |A| + 1 = 2n-1$; for *n* is even, let $A = \{(0,0), (0,1), ..., (0,n-1), (1,0), (1,2), ..., (1,n-1)\}$. Then |A| = 2n and *A* contains no zero-sum subset of cardinality *n*. Hence, $g(\mathbb{Z}_n^2) \ge |A| + 1 = 2n + 1$.

In this article, we shall prove the following theorem.

Theorem 1. Conjecture 1 is true for all primes $p \ge 67$. That is, for every prime $p \ge 67$, we have $g(\mathbb{Z}_p^2) = 2p - 1$.

In the last section, we shall prove that Conjecture 1 is true for n = 4 and we shall provide an equivalent criterion as well.

Before we discuss further, we shall introduce notations once for all. A sequence in G is a multi-set in G and throughout we use multiplicative notation. Let $S = \prod_{i=1}^{\ell} g_i$ be a sequence in G. For every $g \in G$, let $v_g(S)$ (a non-negative integer) denote the multiplicity of g in S. We call $|S| = \ell$ the length of S. The length is the cardinality of S as a multi-set whence

$$|S| = \sum_{g \in G} v_g(S).$$

Let $\sigma(S) = \sum_{i=1}^{\ell} g_i$. We say T is a subsequence of S if T is a subset of the multi-set S. We denote any subsequence T of S by $T \mid S$. Also, if T is a subsequence of S, then the deleted sequence ST^{-1} , we mean the sequence after removing the elements of T from S. We say that the sequence $S = \prod_{i=1}^{\ell} g_i$ in G is

- a zero-sum sequence, if $\sigma(S) = 0$ in G,
- a square-free sequence, if $v_q(S) = 0$ or 1. In other words, S is a subset of G,
- a zero-sum free sequence, if none of its subsequence is a zero-sum sequence,
- a *minimal zero-sum sequence*, if it is a zero-sum sequence and its proper subsequences are all zero-sum free sequences.

For every $1 \le k \le \ell$, define

$$\sum_{k} (S) = \{ g_{i_1} + g_{i_2} + \dots + g_{i_k} \mid 1 \leq i_1 < i_2 < \dots < i_k \leq \ell \}$$

and define

$$\sum (S) = \{g_{i_1} + g_{i_2} + \dots + g_{i_l} \mid 1 \leq i_1 < i_2 < \dots < i_l \leq \ell, 1 \leq \ell \leq \ell \}.$$

Clearly,
$$\sum (S) = \bigcup_{k=1}^{\ell} \sum_{k} (S)$$
.

If $S = \prod_{i=1}^{2p-1} (a_i, b_i)$ is a sequence in \mathbb{Z}_p^2 , then $T = \prod_{i=1}^{2p-1} a_i$ is the sequence in \mathbb{Z}_p where the elements a_i are simply the first co-ordinates of S. (We call T as the first co-ordinate sequence.) One can write T in the following form:

$$T = x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r} y_1^2 y_2^2 \cdots y_n^2 z_1 z_2 \cdots z_v,$$

where $x_1, ..., x_r, y_1, ..., y_u, z_1, ..., z_v$ are pairwise distinct elements in \mathbb{Z}_p , r, u, $v \ge 0$, $m_1, m_2, ..., m_r \ge 3$ are integers and $m_1 + m_2 + \cdots + m_r + 2u + v = 2p - 1$. Throughout this article, we shall freely use these constants r, u, v without mentioning.

We shall define the invariant h(.) for the given sequence S as follows:

$$h = h(S) := \max\{v_g(S) : g \in G\}$$

the maximum of the multiplicities of elements occurring in the sequence S. We shall define a function s(G) which is analogues to g(G) as follows.

Definition 2. By s(G), we denote the smallest positive integer t such that every sequence S in G of length $|S| \ge t$ contains a zero-sum subsequence S' of length $|S'| = \exp(G)$.

This constant was studied by many authors. In 1961, Erdős, et al. [10] proved that $s(\mathbb{Z}_n) = 2n - 1$. In 1983, the following conjecture was made by Kemnitz [19,20].

Conjecture 2 (Kemnitz [20]). For all $n \ge 2$, $s(\mathbb{Z}_n \oplus \mathbb{Z}_n) = 4n - 3$.

Conjecture 2 is sharp in the following way; Let $S = (0,0)^{n-1} (0,1)^{n-1} (1,0)^{n-1} (1,1)^{n-1}$ be a sequence in \mathbb{Z}_n^2 . Then |S| = 4n - 4 and S contains no zero-sum subsequence of length n. Hence, $s(\mathbb{Z}_n^2) \ge |S| + 1 = 4n - 3$.

Kemnitz proved this conjecture for primes p=3,5,7 by proving $g(\mathbb{Z}_p\oplus\mathbb{Z}_p)=2p-1$ for these primes. But for a general prime p, if one knows the value of $g(\mathbb{Z}_p\oplus\mathbb{Z}_p)$ for all primes, then it is not yet known that $s(\mathbb{Z}_p\oplus\mathbb{Z}_p)=2g(\mathbb{Z}_p\oplus\mathbb{Z}_p)-1$. The best known result related to Conjecture 2 (in one direction) is (due to Gao [14]) $s(\mathbb{Z}_n\oplus\mathbb{Z}_n)\leqslant 4n-2$ for every $n=p^k$ for any prime power. It should be mentioned that Ronayi [24] first proved the same result when k=1. In another direction, the best result known (due to Gao [15] (more general) and Thangadurai [26] (for this particular case)) is as follows. If S is a sequence in $\mathbb{Z}_n\oplus\mathbb{Z}_n$ of length 4n-3 and $h(S)\geqslant n/2$, then there exists a zero-sum subsequence of S of length n.

Now we shall state a corollary to Theorem 1 related to $s(\mathbb{Z}_p^2)$ as follows.

Corollary 1. Let $p \ge 67$ be any prime number. Let S be any sequence in $\mathbb{Z}_p \oplus \mathbb{Z}_p$ of length 4p-3. If $h(S) \le 2$, then there exists a zero-sum subsequence of length p.

2. Preliminaries

In this section, we shall work-out some preliminaries for our main result.

Theorem 2.1 (Dias De Silva [8], Alon et al. [1–2]). *If* A *is a non-empty subset of* \mathbb{Z}_p *and if* $1 \le k \le |A|$, *then*

$$\left|\sum_{k}(A)\right| \geqslant \min\{p, k(|A|-k)+1\}.$$

Theorem 2.2 (Gao [13]). Let $n \ge 5$ and let W be a zero-sum free sequence in \mathbb{Z}_n .

- (1) If |W| = n 1, then $W = a^{n-1}$ for some $a \in \mathbb{Z}_n$ with (a, n) = 1.
- (2) If |W| = n 2, then $W = a^{n-2}$ or $W = a^{n-3}(2a)$ for some $a \in \mathbb{Z}_n$ with (a, n) = 1.

Theorem 2.3 (Dias De Silva [8]). Let p>3 be a prime. Set $k=\lfloor \sqrt{4p-7}\rfloor+1$ and set $\ell=\lfloor k/2\rfloor$. Let S be a square-free sequence in \mathbb{Z}_p of length k. Then $\sum_{\ell} (S) = \mathbb{Z}_p$.

Theorem 2.4 (Cauchy–Davenport Inequality [6–7]). *If* $A_1, A_2, ..., A_\ell$ *are non-empty subsets of* \mathbb{Z}_p , *then*

$$|A_1 + A_2 + \dots + A_{\ell}| \ge \min \left\{ p, \sum_{i=1}^{\ell} |A_i| - \ell + 1 \right\}.$$

The following technical lemma is very crucial for our main result and also it generalizes a Lemma 4.7 in [25].

Lemma 2.5. Let $S = \prod_{i=1}^{2p-1} (a_i, b_i)$ be a square-free sequence of length 2p-1 in \mathbb{Z}_p^2 . Write

$$S = \prod_{i=1}^{\ell} \prod_{j=1}^{n_i} (x_i, b_j^{(i)}),$$

where $n_1, n_2, \ldots, n_\ell \geqslant 1$, $\ell \geqslant 1$, x_1, x_2, \ldots, x_ℓ are pairwise distinct elements of \mathbb{Z}_p , and $n_1 + n_2 + \cdots + n_\ell = 2p - 1$. Let $W = \prod_{i=1}^\ell x_i^{l_i}$ be a zero-sum subsequence of the first co-ordinate sequence T such that |W| = p, where $0 \leqslant l_i \leqslant n_i$ and $l_1 + l_2 + \cdots + l_\ell = p$. Suppose that $1 + \sum_{i=1}^\ell l_i (n_i - l_i) \geqslant p$. Then S contains a zero-sum subsequence of length p.

Proof. Since *S* is a square-free sequence in \mathbb{Z}_p^2 , for every $i \in \{1, 2, ..., \ell\}$, we have $b_1^{(i)}, b_2^{(i)}, ..., b_{n_i}^{(i)}$ are pairwise distinct in \mathbb{Z}_p . Set $B_i = \{b_1^{(i)}, b_2^{(i)}, ..., b_{n_i}^{(i)}\}$ for every $i = 1, 2, ..., \ell$. Then it suffices to prove that

$$0 \in \sum_{l_1} (B_1) + \sum_{l_2} (B_2) + \dots + \sum_{l_\ell} (B_\ell).$$

By Theorem 2.1, we see that for each i, we have

$$\left| \sum_{l_i} (B_i) \right| \geqslant l_i (n_i - l_i) + 1. \tag{1}$$

Therefore, by Theorem 2.4, we have

$$\left|\sum_{l_1} (B_1) + \dots + \sum_{l_\ell} (B_\ell)\right| \geqslant \min \left\{ p, \left|\sum_{l_1} (B_1)\right| + \dots + \left|\sum_{l_\ell} (B_\ell)\right| - \ell + 1 \right\}.$$

Therefore, by Eq. (1), LHS of the above inequality is at least

Therefore, we have

$$\sum_{l_1} (B_1) + \sum_{l_2} (B_2) + \dots + \sum_{l_{\ell}} (B_{\ell}) = \mathbb{Z}_p$$

$$\Rightarrow 0 \in \sum_{l_1} (B_1) + \sum_{l_2} (B_2) + \dots + \sum_{l_{\ell}} (B_{\ell}).$$

Thus the lemma follows. \Box

Lemma 2.6. Let p be any prime number, and let T be a sequence in $\mathbb{Z}_p \setminus \{0\}$ of length p. Set h = h(T). Then $\sum_{\leq h} (T) = \mathbb{Z}_p$, where $\sum_{\leq h} (T) = \bigcup_{r=1}^h \sum_r (T)$.

Proof. Note that one can distribute the elements of T into h nonempty subsets A_1, A_2, \ldots, A_h . By Cauchy–Davenport inequality (Theorem 2.4), we have

$$\left| \sum_{\leq h} (T) \right| \geqslant \min\{p, |A_1 \cup \{0\}| + \dots + |A_h \cup \{0\}| - h + 1\} = p.$$

Therefore, $\sum_{\leqslant h}(T) = \mathbb{Z}_p$. \square

Theorem 2.7. Let p be any prime number and $2 \le k \le p-1$. Let S be a sequence in \mathbb{Z}_p of length 2p-k. Suppose that $0 \notin \sum_p (S)$. Then $h(S) \ge p-k+1$.

Proof. Without loss of generality, we may assume that $S=0^hT$ with |T|=2p-k-h. Assume to the contrary that $h\leqslant p-k$. Therefore, $|T|\geqslant p$ and T is a sequence in $\mathbb{Z}_p\backslash\{0\}$. By Lemma 2.6, $\sum_{\leqslant h}(T)=\mathbb{Z}_p$. Especially, $\sigma(T)\in\sum_{\leqslant h}(T)$. That is, there is a subsequence Q of T such that $\sigma(Q)=\sigma(T)$ and $1\leqslant |Q|\leqslant h$. Set $T_1=TQ^{-1}$. Then $\sigma(T_1)=0$ and $p-h\leqslant |T|-h\leqslant |T_1|\leqslant |T|-1$. If $|T_1|\leqslant p$, then $T_10^{p-|T_1|}$ is a zero-sum subsequence of S of length p which is a contradiction. Therefore, $|T_1|\geqslant p$. Apply Lemma 2.6 to T_1 , one can find a subsequence Q_1 of T_1 such that $\sigma(Q_1)=0$ and $1\leqslant |Q_1|\leqslant h$, set $T_2=T_1Q_1^{-1}$. Then $\sigma(T_2)=0$ and $p-h\leqslant |T_1|-h\leqslant |T_2|\leqslant |T_1|-1$. Continuing the same procedure we finally get a zero-sum subsequence of S of length p which is again a contradiction. Thus the theorem is proved. \square

3. Proof of Theorem 1

Throughout this section, let p be an odd prime, $S = \prod_{i=1}^{2p-1} (a_i, b_i)$ a sequence in \mathbb{Z}_p^2 ,

$$T = x_1^{m_1} \cdots x_r^{m_r} y_1^2 \cdots y_u^2 z_1 \cdots z_v$$

be the first co-ordinate sequence with $r, u, v \in \mathbb{N}_0$, $m_1, \ldots, m_r \in \mathbb{N}_{\geqslant 3}$, x_1, \ldots, x_r , $y_1, \ldots, y_u, z_1, \ldots, z_v \in \mathbb{Z}_p$ pairwise distinct, and let h = h(T). In a series of propositions, we shall prove, under various additional assumptions, that S has a zero-sum subsequence of length p. Putting everything together we shall obtain a proof of Theorem 1.

Proposition 3.1. If $h \in \{2, p\}$, then S has a zero-sum subsequence of length p.

Proof. Let h(T) = p. Without loss of generality we can assume that $a_1 = a_2 = \cdots = a_p = 0$. Since S is square-free sequence in \mathbb{Z}_p^2 , the sequence b_1, b_2, \ldots, b_p runs through

every residue classes of modulo p. Hence, $b_1 + b_2 + \cdots + b_p = 0$ in \mathbb{Z}_p . Thus $\prod_{i=1}^p (0,b_i)$ is a zero-sum subsequence of length p in S.

Let h(T) = 2. Then every residue classes modulo p can be appearing at most 2 times. Since |S| = 2p - 1 and we have p distinct residue classes modulo p, we see, by Pigeon hole principle, that p - 1 distinct residue classes modulo p has to appear exactly 2 times and only one residue class (we can assume it to be 0) has to appear exactly once. Thus we are in the following situation:

$$S = (0, z) \prod_{i=1}^{p-1} (i, x_i) \prod_{i=1}^{p-1} (i, y_i),$$

where $x_i \not\equiv y_i \pmod{p}$ for all i = 1, 2, ..., p - 1. We have $W = 0 \prod_{i=1}^{p-1} i$ is a zero-sum subsequence of T of length p. Since

$$1(1-1) + \underbrace{1(2-1) + 1(2-1) + \dots + 1(2-1)}_{p-1 \text{ times}} + 1 = p,$$

by Lemma 2.5, S has a zero-sum subsequence of length p. \Box

Proposition 3.2. If $\left(\prod_{i=1}^r x_i^2 \prod_{i=1}^u y_i\right)^{-1} \cdot T$ has a zero-sum subsequence of length p and $r+u+v \leq \frac{p+3}{2}$, then S has a zero-sum subsequence of length p.

Proof. By Proposition 3.1, we can assume that $3 \le h \le p-1$. By assumption, we have $R = c_1^{\ell_1} c_2^{\ell_2} \cdots c_t^{\ell_t} c_{t+1} \cdots c_s$ is the zero-sum subsequence of length p of $\left(\prod_{i=1}^r x_i^2 \prod_{i=1}^u y_i\right)^{-1} \cdot T$ where c_1, c_2, \ldots, c_s are pairwise distinct elements of \mathbb{Z}_p , $t \ge 1$ and $2 \le \ell_i \le m_{j_i} - 2$ for all $i = 1, 2, \ldots, t$. Note that $p = |R| = \ell_1 + \ell_2 + \cdots + \ell_t + s - t$. Without loss of generality, we may assume that $m_{j_i} = m_i$ (by renaming the indices, if necessary). We have to prove that S has a zero-sum subsequence of length p. If we can prove $1 + \sum_{i=1}^t \ell_i (m_i - \ell_i) \ge p$, then by Lemma 2.5, it follows that S does have a zero-sum subsequence of length p. Now, consider

$$1 + \sum_{i=1}^{t} \ell_i(m_i - \ell_i) \ge 1 + \sum_{i=1}^{t} 2(m_i - 2) = 1 + 2(m_1 + m_2 + \dots + m_t) - 4t$$

$$\ge 1 + 2(\ell_1 + 2 + \dots + \ell_t + 2) - 4t \ge 1 + 2(\ell_1 + \dots + \ell_t)$$

$$= 1 + 2(p - s + t) = 1 + 2p - 2(s - t) \ge 1 + 2p - 2(p + 1)/2$$

$$= p. \qquad \Box$$

Proposition 3.3. *If, for some* $x \in \mathbb{Z}_p$,

$$T = 0^{p-1} \cdot 1^{p-1} \cdot x$$
 or $T = 0^{p-1} \cdot 1^{p-2} \cdot 2 \cdot (p-1)$,

then S has a zero-sum subsequence of length p.

Proof. Suppose $T = 0^{p-1}1^{p-1}x$. Then $W = 0^{x-1}1^{p-x}x$ is a zero-sum subsequence of T of length p, whenever $x \ne 0, 1$. Note that $(x-1)(p-x) + (p-x)x + 1 = (p-x)(2x-1) + 1 \ge p$. Hence, by Lemma 2.5, there exists a zero-sum subsequence of length p.

If x = 0 or 1, it follows from Proposition 3.1 that S contains a zero-sum subsequence of length p.

Suppose $T = 0^{p-1}1^{p-2}(2)(p-1)$. Then set $W = 0^{p-2}1(p-1)$ which is obviously a zero-sum subsequence of length p and we have $p-2+p-3+1 \ge p$. Thus by Lemma 2.5, we have a zero-sum subsequence of S of length p. \square

Proposition 3.4. If $p \ge 11$ and $h \ge \frac{p+5}{2}$, then S has a zero-sum subsequence of length p.

Proof. Without loss of generality, we may assume that $a_{2p-h} = a_{2p+1-h} = \cdots = a_{2p-1} = a$. Therefore, the first co-ordinate sequence $T = a^h \prod_{i=1}^{2p-1-h} a_i$.

Claim 1. There is a subset $I \subset \{1, 2, ..., 2p - 1 - h\}$ such that $(p - |I|)a + \sum_{i \in I} a_i = 0$ in \mathbb{Z}_p and such that $p - h + 2 \leq |I| \leq p - 2$.

To prove the Claim 1, we may assume that a = 0. Then it suffices to prove that there is a subset $I \subset \{1, 2, ..., 2p - 1 - h\}$ such that $\sum_{i \in I} a_i = 0$ and such that $p - h + 2 \le |I| \le p - 2$.

By Proposition 3.1, we may assume that $h \le p-1$. Let I be the maximal subset of $\{1,2,\ldots,2p-1-h\}$ such that $\sum_{i\in I}a_i=0$ and $|I|\le p$. By Lemma 2.6, one can get $p-h\le |I|\le p$. Set $J=\{1,2,\ldots,2p-1-h\}\setminus I$. If I satisfies $p-h+2\le |I|\le p-2$, then nothing to prove. Now, we distinguish cases.

Case 1: |I| = p. Since $h \le p - 1$, we see that $\prod_{i \in I} a_i$ cannot be a minimal zero-sum sequence. Therefore, there is a subset $A \subset I$ such that $\sum_{i \in A} a_i = 0$ and $1 \le |A| \le p - 1$. But, $a_i \ne 0$ for i = 1, 2, ..., 2p - 1 - h. Therefore, $2 \le |A| \le p - 2$. Now letting I be the maximal one of A and $I \setminus A$, and we see that Claim 1 is satisfied.

Case 2: |I| = p - h, p - h + 1 or p - 1. We distinguish sub-cases.

Sub-case 1: h=p-1. Since $a_i\neq 0$ for $i=1,2,\ldots,p, |I|=2$ or |I|=p-1. If |I|=2, then |J|=p-2 and $\prod_{j\in J}a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we see that $\prod_{j\in J}a_j=a^{p-2}$ or $\prod_{j\in J}a_j=a^{p-3}(2a)$ for some $a\neq 0$. Without loss of generality, we may assume that a=1. Now, $T=0^{p-1}1^{p-2}(x)(-x)$ or $T=0^{p-1}1^{p-3}(2)(x)(-x)$ for some $x\in \mathbb{Z}_p\setminus\{0\}$. If $T=0^{p-1}1^{p-3}(2)(x)(-x)$, and if $2\leqslant x\leqslant p-3$, then we have $1^x(-x)$ is a zero-sum subsequence of T of length 1+x. But, $3\leqslant 1+x\leqslant p-2$. This satisfies the Claim 1. So, we may assume that x=1,p-2 or p-1. If x=p-2=-2, then $T=0^{p-1}1^{p-3}(2)(2)(-2)$ and hence, $1^{p-4}(2)(2)$ is a zero-sum subsequence of length p-2. Now it remains to check the case when x=1,p-1. Now we have $T=0^{p-1}1^{p-2}(2)(-1)$. Also, if $T=0^{p-1}1^{p-2}(x)(-x)$, one can reduce it to the case $T=0^{p-1}1^{p-1}(-1)$. But by Proposition 3.3, it follows that S does have a zero-sum subsequence of length p. So, we do not need to consider these cases at all.

If |I| = p - 1, we derive that $\prod_{i \in I} a_i$ is a minimal zero-sum sequence. By Theorem 2.2, we infer that $\prod_{i \in I} a_i = a^{p-2}(2a)$. Without loss of generality, we may assume that a = 1. Now, $T = 0^{p-1}1^{p-2}(2)(x)$. Similarly to above, it reduces to $T = 0^{p-1}1^{p-2}(2)(-1)$ or $T = 0^{p-1}1^{p-1}(2)$, then by Proposition 3.3, S does have a zero-sum subsequence of length p.

Sub-case 2: h = p - 2. We may assume that |I| = 2, 3 or p - 1. Assume to the contrary that Claim 1 is not true.

If |I| = 2, then |J| = p - 1 and $\prod_{j \in J} a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we have $\prod_{j \in J} a_j = a^{p-1}$ which is a contradiction to the assumption that h = p - 2.

If |I|=3, then |J|=p-2 and $\prod_{j\in J}a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we have $\prod_{j\in J}a_j=a^{p-3}(2a)$ or $\prod_{j\in J}a_j=a^{p-2}$ for some $a\neq 0\in \mathbb{Z}_p$. We may assume that a=1. Now, $T=0^{p-2}1^{p-3}(2)(x)(y)(-x-y)$ or $T=0^{p-2}1^{p-2}(x)(y)(-x-y)$. If $T=0^{p-2}1^{p-3}(2)(x)(y)(-x-y)$, one can easily derive that $x,y,-x-y\in\{1,p-2,p-1\}$. Since x+y+(-x-y)=0, we infer that $\{x,y,-x-y\}=\{1,1,-2\},\{-1,-1,2\},\{-1,-2,3\}$ or $\{-2,-2,4\}$. Since h=p-2, we have $\{x,y,-x-y\}=\{-1,-1,2\},\{-1,-2,3\}$ or $\{-2,-2,4\}$. But, 1+1+(-1)+(-1)=0, -1+(-2)+1+1+1=0 and -2+(-2)+1+1+1=0, which is a contradiction on the assumption that Claim 1 is not true.

If $T = 0^{p-2}1^{p-2}(x)(y)(-x-y)$, since Claim 1 is not true and h = p-2, one can derive that $x, y, -x - y \in \{2, p-2, p-1\}$. Note that x + y + (-x - y) = 0, we have $\{x, y, -x - y\} = \{2, 2, -4\}, \{-2, -2, 4\}, \{-1, -1, 2\}$ or $\{-1, -2, 3\}$ and similarly to above, one can derive a contradiction.

If |I| = p - 1, then $\prod_{i \in I} a_i$ is a minimal zero-sum sequence. By Theorem 2.2, we see that $\prod_{i \in I} a_i = a^{p-2}(2a)$ for some $a \neq 0$ in \mathbb{Z}_p . We may assume that a = 1. Now, $T = 0^{p-2}1^{p-2}(2)(x)(y)$. Since Claim 1 is not true, $x, y \in \{1, p - 2, p - 1\}$. Since $h = p - 2, x, y \in \{p - 2, p - 1\}$. Then $\{x, y\} = \{-1, -1\}$, $\{-2, -2\}$ or $\{-1, -2\}$. But -1 + (-1) + 1 + 1 = 0, -2 + (-2) + 1 + 1 + 1 + 1 = 0, -1 + (-2) + 1 + 1 + 1 = 0, a contradiction to the assumption that Claim 1 is not true.

Sub-case 3: $\frac{p+5}{2} \leqslant h \leqslant p-3$. If |I|=p-h, then |J|=p-1 and $\prod_{j\in J} a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we have $\prod_{j\in J} a_j = a^{p-1}$ which is a contradiction on the assumption that $h \leqslant p-3$. If |I|=p-1, then $\prod_{j\in J} a_j$ is a minimal zero-sum sequence in \mathbb{Z}_p and by Theorem 2.2, we see, $\prod_{j\in J} a_j = a^{p-2}(2a)$ which is again a contradiction on $h \leqslant p-3$. If |I|=p-h+1, then |J|=p-2 and $\prod_{j\in J} a_j$ is zero-sum free sequence in \mathbb{Z}_p . By Theorem 2.2, we have $\prod_{j\in J} a_j = a^{p-2}$ or $\prod_{j\in J} a_j = a^{p-3}(2a)$ for some $a\neq 0$ in \mathbb{Z}_p . But $h \leqslant p-3$, we have $\prod_{j\in J} a_j = a^{p-3}(2a)$ and h=p-3. We may assume that a=1. Now, $T=0^{p-3}1^{p-3}(2)(x)(y)(z)(w)$. Assume to the contrary that Claim 1 is not true, then $x,y,z,w\in\{1,p-3,p-2,p-1\}$. Note that h=p-3, we have $x,y,z,w\in\{p-3,p-2,p-1\}$. It easy to check that there is a zero-sum subsequence of T of length between 5 and 8. (Here, we need to assume $p\geqslant 11$.). Thus Claim 1 is established.

Now, we can rewrite S as follows;

$$S = \prod_{i=1}^{2p-1-h} (a_i, b_i) \prod_{i=1}^{h} (a, c_i)$$

with $c_1, c_2, ..., c_h$ are pairwise distinct elements in \mathbb{Z}_p . By Claim 1, we have an index set $I \subset \{1, 2, ..., 2p-1-h\}$ such that $p-h+2 \leqslant |I| \leqslant p-2$ and $\sum_{i \in I} a_i + (p-|I|)a \equiv 0 \pmod{p}$. Let $b = \sum_{i \in I} b_i$. Let $C = \{c_1, c_2, ..., c_h\} \subset \mathbb{Z}_p$ and $\ell = p-|I|$. Since I satisfies $p-h+2 \leqslant |I| \leqslant p-2$, it is clear that ℓ satisfying $2 \leqslant \ell \leqslant h-2$. By Theorem 2.1, we see that

$$\left| \sum_{\ell} (C) \right| \ge \min\{ p, \ell(h - \ell + 1) \} \ge \min\{ p, 2(h - 2 + 1) \} \ge p.$$

Now the theorem follows from Lemma 2.5. \Box

Proposition 3.5. If $p \ge 5$, $r + u + v \le \frac{p-1}{4}$ and $h \le \frac{p+3}{2}$, then S has a zero-sum subsequence of length p.

Proof. Let

$$W = x_1^{m_1 - 2} x_2^{m_2 - 2} \cdots x_r^{m_r - 2} y_1 y_2 \cdots y_u z_1 z_2 \cdots z_v$$

be a subsequence of T. Then the length of W is

$$|W| = |T| - 2r - u = 2p - 1 - 2r - u \ge 2p - 1 - \frac{p-1}{2} = 2p - 1 - \frac{p-1}{2}$$

and

$$h(W) = h(T) - 2 \le \frac{p-1}{2}$$
.

If W does not have a zero-sum subsequence of length p, then by Theorem 2.7, $h(W) \ge p - (p-1)/2 = (p+1)/2$ which is a contradiction. Therefore, W contains a zero-sum subsequence Q of length p. Hence, by Lemma 2.5 the result follows. \square

Proposition 3.6. If $p \ge 67$ and $h \ge \lfloor \sqrt{4p-7} \rfloor + 2$, then S has a zero-sum subsequence of length p.

Proof. Let $k = \lfloor \sqrt{4p-7} \rfloor + 1$. By Proposition 3.4, we may assume that $k + 1 \le h \le \frac{p+3}{2}$. We distinguish two cases.

Case 1: T contains at least k distinct elements. Without loss of generality, we may assume that $a_1, a_2, ..., a_k$ are distinct. Set $\ell = [k/2]$ and $A = \{a_1, a_2, ..., a_k\} \subset \mathbb{Z}_p$. By Theorem 2.3, we have

$$\sum_{\ell} (A) = \mathbb{Z}_p. \tag{2}$$

Since $h(T) \geqslant k+1$, the deleted sequence TA^{-1} contains some element a (say) with $v_a(TA^{-1}) \geqslant h-1 \geqslant k$. Without loss of generality, we may assume that $a_{k+1} = \cdots = a_{k+h-1} = a$. Then the corresponding second co-ordinates $b_{k+1}, b_{k+2}, \ldots, b_{k+h-1}$ are pairwise distinct in \mathbb{Z}_p . Set $B = \{b_{k+1}, b_{k+2}, \ldots, b_{k+h-1}\} \subset \mathbb{Z}_p$. Then again by Theorem 2.3, we see that

$$\sum_{L}(B) = \mathbb{Z}_{p}. \tag{3}$$

Note that $2p-1-h-k>p-2\ell>0$, one can choose a subset $J\subset\{k+h,k+h+1,\ldots,2p-1\}$ such that $|J|=p-2\ell$ and $a_j\neq a$ holds for every $j\in J$. Set $\alpha=\ell a+\sum_{j\in J}a_j$. By Eq. (2), there is a subset $I\subset\{1,2,\ldots,k\}$ such that $\alpha+\sum_{i\in I}a_i=0$ and $|I|=\ell$. Set $\beta=\sum_{i\in I}b_i+\sum_{j\in J}b_j$. Now by Eq. (3), there is a subset $L\subset\{k+1,k+2,\ldots,k+h-1\}$ such that $\beta+\sum_{l\in L}b_l=0$ and $|L|=\ell$. Therefore,

$$\prod_{i \in I} (a_i, b_i) \prod_{l \in L} (a, b_i) \prod_{j \in J} (a_j, b_j)$$

is a zero-sum subsequence of S of length p.

Case 2: T contains at most k-1 distinct elements. Since by assumption, $p \ge 67$, we see that $k-1 \le \frac{p-1}{4}$. Also, by assumption, we have $h \le (p+3)/2$. Therefore, the result follows from Proposition 3.5. \square

Proposition 3.7. If $p \ge 47$, $r + u + v \ge \frac{p-1}{4}$ and $h \le \lfloor \sqrt{4p-7} \rfloor + 1$, then S has a zero-sum subsequence of length p.

Proof. First we note that it is enough to assume that $r + u + v \ge p/3$. For, suppose $\frac{p-3}{4} \le r + u + v < \frac{p}{3}$. As $h(T) \le k \le p/3$, in a similar way to the proof of Proposition 3.5 one can derive that S contains a zero-sum subsequence of length p. So, we may assume that $r + u + v \ge p/3$. Set $t = [\frac{p}{3}]$. Write

$$T = x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r} y_1^2 y_2^2 \cdots y_u^2 z_1 z_2 \cdots z_v,$$

where $x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_u, z_1, z_2, \ldots, z_v$ are pairwise distinct elements in \mathbb{Z}_p , and $m_1, m_2, \ldots, m_r \geqslant 3$, $r, u, v \geqslant 0$ are integers satisfying $m_1 + m_2 + \cdots + m_r + 2u + v = 2p - 1$. Set

$$A = \begin{cases} y_1 y_2 \cdots y_t & \text{if} \quad t \leq u, \\ x_{r-(t-u)+1} x_{r-(t-u)+2} \cdots x_r y_1 y_2 \cdots y_u & \text{if} \quad u < t \leq u+r, \\ x_1 x_2 \cdots x_r y_1 y_2 \cdots y_u z_{v-(t-u-r)+1} \cdots z_v & \text{if} \quad t > u+r \end{cases}$$

and

$$U = \begin{cases} \prod_{i=1}^{r} x_i^{m_i-1} \prod_{i=1}^{u} y_i \prod_{i=1}^{v} z_i & \text{if} \quad t \leq u, \\ \prod_{i=1}^{r-(t-u)} x_i^{m_i-1} \prod_{i=r-(t-u)+1}^{r} x_i^{m_i-2} \prod_{i=1}^{u} y_i \prod_{i=1}^{v} z_i & \text{if} \quad u < t \leq u+r, \\ \prod_{i=1}^{r} x_i^{m_i-2} \prod_{i=1}^{u} y_i \prod_{i=1}^{v-(t-u-r)} z_i & \text{if} \quad t > u+r. \end{cases}$$

By the making of U, it is clear that

$$|U| = \begin{cases} 2p - 1 - r - u & \text{if } t \le u, \\ 2p - 1 - r - t & \text{if } u < t \le u + r, \\ 2p - 1 - r - t & \text{if } t > u + r. \end{cases}$$

Therefore, $|U| \ge p - 1$. Also, by Theorem 2.1, we have

$$\left|\sum_{4} (A)\right| \geqslant \min\{p, 4(t-4)+1\} = p \Rightarrow \sum_{4} (A) = \mathbb{Z}_p. \tag{4}$$

We distinguish cases.

Case 1: $r+u+v\leqslant p-4$. Then one can find a subsequence Q of U such that $x_1x_2\cdots x_ry_1y_2\cdots y_u|Q|U$ and such that |Q|=p-4. By Eq. (4), we see that there is subsequence R of A such that |R|=4 and RQ is a zero-sum subsequence of length p. Set W=RQ. Now $W=RQ=x_1^{l_1}x_2^{l_2}\cdots x_r^{l_r}y_1^{f_1}y_2^{f_2}\cdots y_u^{f_u}Z$ with $Z\mid z_1z_2\cdots z_v$, where $1\leqslant l_i\leqslant m_i-1$ for all $i=1,2,\ldots,r,\ 1\leqslant f_1,f_2,\ldots,f_u\leqslant 2$ and $f_i=2$ holds for at most 4(=|R|) of $i\in\{1,2,\ldots,u\}$. If $m_1+m_2+\cdots+m_r-r+u+1-4\geqslant p$, then by Lemma 2.5, we know that S contains a zero-sum subsequence of length p. Therefore, we may assume that, $m_1+m_2+\cdots+m_r+u-r+1-4\leqslant p-1$. But $m_1+m_2+\cdots+m_r=2p-1-2u-v$. Therefore, $2p-1-u-v-r+1-4\leqslant p-1$. Hence, $u+v+r\geqslant p-3$, which is a contradiction to the assumption that $r+u+v\leqslant p-4$.

Case 2:
$$u + v + r = p - 3$$
. Set $t = \left[\frac{p+12}{3}\right]$. Write

$$T = x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r} y_1^2 y_2^2 \cdots y_u^2 z_1 z_2 \cdots z_v,$$

where $x_1, x_2, ..., x_r, y_1, y_2, ..., y_u, z_1, z_2, ..., z_v$ are pairwise distinct, $m_1, m_2, ..., m_r \ge 3$ and $r, u, v \ge 0$ are integers satisfying $m_1 + m_2 + \cdots + m_r + 2u + v = 2p - 1$. Set

$$A = \begin{cases} y_1 y_2 \cdots y_t & \text{if } t \leq u, \\ x_{r-(t-u)+1} x_{r-(t-u)+2} \cdots x_r y_1 y_2 \cdots y_u & \text{if } u < t \leq u+r, \\ x_1 x_2 \cdots x_r y_1 y_2 \cdots y_u z_{v-(t-u-r)+1} \cdots z_v & \text{if } t > u+r \end{cases}$$

and

$$U = \begin{cases} x_1^{m_1 - 1} x_2^{m_2 - 1} \cdots x_r^{m_r - 1} y_1 y_2 \cdots y_u z_1 z_2 \cdots z_v & \text{if } t \leq u, \\ \prod\limits_{i = 1}^{r - (t - u)} x_i^{m_i - 1} \prod\limits_{i = r - (t - u) + 1}^{r} x_i^{m_i - 2} \prod\limits_{i = 1}^{u} y_i \prod\limits_{i = 1}^{v} z_i & \text{if } u < t \leq u + r, \\ x_1^{m_1 - 2} x_2^{m_2 - 2} \cdots x_r^{m_r - 2} y_1 y_2 \cdots y_u z_1 z_2 \cdots z_{v - (t - u - r)} & \text{if } t > u + r. \end{cases}$$

By the making of U we get

$$|U| = \begin{cases} 2p - 1 - r - u & \text{if } t \leq u, \\ 2p - 1 - r - t & \text{if } u < t \leq u + r, \\ 2p - 1 - r - t & \text{if } t > u + r. \end{cases}$$

Note that $3r + 2u + v \le 2p - 1$ and $u + v + r \ge p - 4$, we derive that $r = \frac{1}{2}((3r + 2u + v) - (u + v + r)) - u/2 \le \frac{p+3}{2} - u/2$. Therefore, we always have $|U| \ge p - 1$. By Theorem 2.1, we have

$$\left|\sum_{3} (A)\right| \geqslant \min\{p, 3(t-3)+1\} = p \Rightarrow \sum_{3} (A) = \mathbb{Z}_p.$$
 (5)

Since u + v + r = p - 3, one can find a subsequence Q of U such that

$$x_1x_2\cdots x_ry_1y_2\cdots y_u|Q|U$$

and |Q|=p-3. By Eq. (5), there is subsequence R of A such that |R|=3 and RQ is a zero-sum subsequence of length p. Set W=RQ. Now $W=RQ=x_1^{l_1}x_2^{l_2}\cdots x_r^{l_r}y_1^{f_1}y_2^{f_2}\cdots y_u^{f_u}Z$ with $Z\mid z_1z_2\cdots z_v$, where $1\leqslant l_i\leqslant m_i-1$ for all $i=1,2,\ldots,r$, $1\leqslant f_1,f_2,\ldots,f_u\leqslant 2$ and $f_i=2$ holds for at most 3(=|R|) of $i\in\{1,2,\ldots,u\}$. If $m_1+m_2+\cdots+m_r-r+u+1-3\geqslant p$, by Lemma 2.5, we see that S contains a zero-sum subsequence of length p. Therefore, we may assume that, $m_1+m_2+\cdots+m_r-r+u+1-3\leqslant p-1$. But $m_1+m_2+\cdots+m_r=2p-1-2u-v$. Therefore, $2p-1-u-v-r+1-3\leqslant p-1$. Hence, $u+v+r\geqslant p-2$ which is a contradiction to the assumption.

Case 3: u + v + r = p. Write $T = 0^{m_0} 1^{m_1} \cdots (p-1)^{m_{p-1}}$, where $m_i \ge 1$ and $m_0 + \cdots + m_{p-1} = 2p-1$. Since, $0 + 1 + \cdots + (p-1) = 0$ and $m_0 + m_1 + \cdots + m_{p-1} - p + 1 = p$, by Lemma 2.5, S contains a zero-sum subsequence of length p.

Case 4: u + v + r = p - 2. Set $t = \frac{p+3}{2}$. Define A and U in a similar way to Case 2. Then |A| = t. By Theorem 2.1, we have

$$\left|\sum_{2}(A)\right| \geqslant \min\{p, 2(t-2)+1\} = p \Rightarrow \sum_{2}(A) = \mathbb{Z}_{p}.$$

$$\tag{6}$$

By the making of U, we get

$$|U| = \begin{cases} 2p - 1 - r - u & \text{if } t \leq u, \\ 2p - 1 - r - t & \text{if } u < t \leq u + r, \\ 2p - 1 - r - t & \text{if } t > u + r. \end{cases}$$

If $r \leqslant \frac{p-1}{2}$, then $|U| \geqslant p-2$. Then one can find a subsequence Q of U such that $x_1x_2\cdots x_ry_1y_2\cdots y_u|Q|U$ and |Q|=p-2. By Eq. (6), there is subsequence R of A such that |R|=2 and RQ is a zero-sum subsequence of length p. Now $RQ=x_1^{l_1}x_2^{l_2}\cdots x_r^{l_r}y_1^{f_1}y_2^{f_2}\cdots y_u^{f_u}Z$ with $Z\mid z_1z_2\cdots z_v$, where $1\leqslant l_i\leqslant m_i-1$ for all $i=1,2,\ldots,r$, $1\leqslant f_1,f_2,\ldots,f_u\leqslant 2$ and $f_i=2$ holds for at most 2(=|R|) of $i\in\{1,\ldots,u\}$. If $m_1+m_2+\cdots+m_r-r+u+1-2\geqslant p$, by Lemma 2.5, S contains a zero-sum subsequence of length p. Therefore, we may assume that, $m_1+m_2+\cdots+m_r-r+u+1-2\leqslant p-1$. But $m_1+m_2+\cdots+m_r=2p-1-2u-v$. Therefore, $2p-1-u-v-r+1-2\leqslant p-1$. Hence, $u+v+r\geqslant p-1$, which is a contradiction to the assumption.

Now we assume that $r \ge \frac{p+1}{2}$. Since $3r + 2u + v \le 2p - 1$ and u + v + r = p - 2, $r - v = (3r + 2u + v) - 2(r + u + v) \le 2p - 1 - 2(p - 2) = 3$. Therefore, $v \ge r - 3 \ge \frac{p+1}{2} - 3 = \frac{p-5}{2}$. So,

$$v \geqslant \frac{p-5}{2} \tag{7}$$

Set $A_0 = \{z_1, z_2, ..., z_v\}$. By Theorem 2.1,

$$\sum_{3} (A_0) = \mathbb{Z}_p. \tag{8}$$

Note that r + u , one can find a subsequence <math>Q of $x_1^{m_1 - 1} x_2^{m_2 - 1} \cdots x_r^{m_r - 1} y_1 y_2 \cdots y_u$ such that

$$x_1x_2\cdots x_ry_1y_2\cdots y_u|Q|x_1^{m_1-1}x_2^{m_2-1}\cdots x_r^{m_r-1}y_1y_2\cdots y_u$$

and

$$|Q| = p - 3$$
.

By Eq. (8), there is subsequence R of A such that |R|=3 and RQ is a zero-sum subsequence. Now, $RQ=x_1^{l_1}x_2^{l_2}\cdots x_r^{l_r}y_1y_2\cdots y_uZ$ with $Z\mid z_1z_2\cdots z_v$, where $1\leqslant l_i\leqslant m_i-1$ for all $i=1,2,\ldots,r$. Since $m_1+m_2+\cdots+m_r-r+u+1=2p-1-2u-v-r+u+1=2p-(u+v+r)=2p-(p-2)>p$, by Lemma 2.5, S contains a zero-sum subsequence of length p. This completes the proof of Case 4.

Case 5: u + v + r = p - 1. In this case we have $r \ge 1$, and we can assume that

$$\{x_1, x_2, \dots, x_r, y_1, y_2, \dots, y_u, z_1, z_2, \dots, z_v\} = \mathbb{Z}_p \setminus \{a\},\$$

for some $a \in \mathbb{Z}_p$. Without loss of generality, we may assume that a = 0. Therefore,

$$\{x_1, x_2, \dots, x_r, y_1, y_2, \dots, y_u, z_1, z_2, \dots, z_v\} = \mathbb{Z}_p \setminus \{0\}.$$
(9)

We distinguish sub-cases.

Sub-case 1: $r \ge 5$. Since $3r + 2u + v \le 2p - 1$ and u + v + r = p - 1, $r - v = (3r + 2u + v) - 2(r + u + v) \le 2p - 1 - 2(p - 1) = 1$. Therefore, $v \ge r - 1 \ge 4$. Set

$$A = \{y_1, y_2, \dots, y_u, z_1, z_2, \dots, z_v\}$$
 and $B = \{x_1, x_2, \dots, x_r\}$.

Then by Cauchy—Davenport's inequality (Theorem 2.4) and Theorem 2.1, we see that

$$\left| \sum_{u+v-1} (A) + \sum_{v} (B) \right| \ge \min\{p, (u+v) + 2r - 3 - 1\}$$

$$= \min\{p, p-1 + r - 4\} = p.$$

Therefore, there are subsequences $A_0 \mid A$ and $B_0 \mid B$ such that $|A_0| = u + v - 1, |B_0| = 2$ and $\sigma(x_1x_2\cdots x_rB_0A_0) = 0$. (here σ means the sum). Set $Q = x_1x_2\cdots x_rB_0A_0$. Then |Q| = r + 2 + u + v - 1 = p, and

$$Q = x_1^{l_1} x_2^{l_2} \cdots x_r^{l_r} y_1^{f_1} y_2^{f_2} \cdots y_n^{f_n} Z,$$

where $Z|z_1z_2\cdots z_v$, $1\leqslant l_i\leqslant 2\leqslant m_i-1$ and $l_i=2$ holds for exactly 2 of i, $0\leqslant f_1,f_2,\ldots,f_u\leqslant 1$ and at most one of $f_i=0$. Since $m_1+m_2+\cdots+m_r-r+u+1-1=2p-1-v-u-r=p$, by Lemma 2.5, S contains a zero-sum subsequence of length p.

Sub-case 2: $r \le 4$ and $\max\{m_i\} \ge 6$. Without loss of generality, we may assume that $m_1 \ge 6$.

Let $A = \{y_1, y_2, \dots, y_u, z_1, z_2, \dots, z_v\}$. By Theorem 2.1, we have $\sum_{u+v-2} (A) = \mathbb{Z}_p$. Set $Q = x_1^4 x_2 x_3 \cdots x_r$. Then there is a subsequence R of $y_1 y_2 \cdots y_u z_1 z_2 \cdots z_v$ such that |R| = u + v - 2 and $\sigma(QR) = 0$. Set W = QR. Then $W = x_1^4 x_2 x_3 \cdots x_r R$. Note that $4(m_1 - 4) + (m_2 - 1) + \cdots + (m_r - 1) + u - 2 + 1 \geqslant 2m_1 - 2 + m_2 - 1 + \cdots + m_r - 1 + u - 1 = m_1 + (m_1 + m_2 + \cdots + m_r) + u - r - 2 = m_1 + (2p - 1 - 2u - v) + u - r - 2 = m_1 + p - 2 > p$. Now the theorem follows from Lemma 2.5.

Sub-case 3: $r \le 4$ and $\max\{m_i\} \le 5$. Since $\mathbb{Z}_p \oplus \mathbb{Z}_p$ is the union of its p+1 subgroups each of order p, there exists a subgroup H of $\mathbb{Z}_p \oplus \mathbb{Z}_p$ such that |H| = p and

$$(a_i,b_i)-(a_j,b_j)\!\in\! H$$

holds for at least $\frac{(2p-1)(2p-2)}{2(p+1)} > 2p-5$ pairs. Therefore, by choosing suitable automorphism to act on S, we may assume that

$$H = \{(0,g) \mid g \in \mathbb{Z}_p\}$$

and

$$a_i = a_i$$

holds for at least 2p-4 pair of $1 \le i < j \le 2p-1$. But by assumption, we see that $r \le 4$ and $\max\{m_i\} \le 5$ implies that the number of the pairs of $1 \le i < j \le 2p-1$ which satisfying

$$a_i = a_i$$

is at most

$$\frac{m_1(m_1-1)}{2} + \frac{m_2(m_2-1)}{2} + \cdots + \frac{m_r(m_r-1)}{2} + u \leq 10r + u \leq 40 + u < 2p - 4,$$

as u < p-1. This contradiction shows that we can act on S with suitable automorphism and reduce it to the above cases. Thus the proof of the theorem is complete. \square

Proof of Theorem 1. Let S be a square-free sequence in $\mathbb{Z}_p \oplus \mathbb{Z}_p$ of length 2p-1. Let T be the first co-ordinate sequence of S. Set $k = \lceil \sqrt{4p-7} \rceil + 1$. If $h(T) \geqslant k+1$, then the theorem follows from Proposition 3.6. If $h(T) \leqslant k$ and $u+v+r \leqslant \frac{p-1}{4}$, then it follows from Proposition 3.5. So, let $h(T) \leqslant k$ and $u+v+r > \frac{p-1}{4}$ and the theorem follows from Proposition 3.7. \square

Proof of Corollary 1. Let S be a sequence in $\mathbb{Z}_p \oplus \mathbb{Z}_p$ of length 4p-3. By our assumption, $h(S) \leq 2$. Hence, by Pigeon hole principle, we see that S has a square-free subsequence R of length at least 2p-1. Hence, by Theorem 1, R does has a zero-sum subsequence of length p and so does S. \square

4. Concluding remarks

In this section, we shall prove an equivalent criterion for Conjecture 1 when n is even and using that we verify Conjecture 1 for n = 4.

Theorem 4.1. Let $n \ge 4$ be any even integer. Then the following two conditions are equivalent:

- (1) $g(\mathbb{Z}_n \oplus \mathbb{Z}_n) = 2n + 1$.
- (2) Every square-free zero-sum sequence in $\mathbb{Z}_n \oplus \mathbb{Z}_n$ of length 2n + 1 has a zero-sum subsequence of length n.

Proof. Clearly, (1) implies (2). Assuming (2) we want to prove (1). Let $S = \prod_{i=1}^{2n+1} a_i$ be any square-free sequence in \mathbb{Z}_n^2 of length 2n+1. Set $a = \sum_{i=1}^{2n+1} a_i$, and consider the shifted sequence $R = \prod_{i=1}^{2n+1} (a_i - a)$. Clearly, R is a square-free sequence of length 2n+1. Moreover, we see that

$$\sigma(R) = \sum_{i=1}^{2n+1} (a_i - a) = \sum_{i=1}^{2n+1} a_i - (2n+1)a = \sum_{i=1}^{2n+1} a_i - a = 0.$$

Therefore, by the assumption (2), R contains a zero-sum subsequence $\prod_{j=1}^{n} (a_{i_j} - a)$ of length n. Hence, $\prod_{j=1}^{n} a_{i_j}$ is a zero-sum subsequence of S of length n. This completes the proof. \square

Theorem 4.2. $g(\mathbb{Z}_4 \oplus \mathbb{Z}_4) = 9$.

Proof. We know that $g(\mathbb{Z}_4 \oplus \mathbb{Z}_4) \ge 9$. So, it is enough to prove the upper bound. Let S be a square-free sequence in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ of length 9. By Theorem 4.1, it is enough to assume that S is a zero-sum sequence.

First we assume that 0, the zero element of $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ does not appearing in S. Then either there exists an element x together with -x appearing in S or the three distinct elements of order 2 appearing in S.

In the first case, we get a zero-sum subsequence $T = Sx^{-1}(-x)^{-1}$ of length 7. But T cannot be minimal zero-sum sequence as its length is $2n-1=D(\mathbb{Z}_4\oplus\mathbb{Z}_4)=7$ (here $D(\mathbb{Z}_n\oplus\mathbb{Z}_n)$ is the Davenport's constant for the group $\mathbb{Z}_n\oplus\mathbb{Z}_n$ which is defined as the smallest positive integer t such that any sequence in $\mathbb{Z}_n\oplus\mathbb{Z}_n$ of length at least t has a zero-sum subsequence) because any minimal zero-sum sequence of length 7 in $\mathbb{Z}_4\oplus\mathbb{Z}_4$ contains an element which is appearing at least 3 times. (see for instance, Proposition 4.2 in [17]). Hence, T has a zero-sum subsequence of length <7. Since every element of T is non-zero, T has a zero-sum subsequence R of length at least 2. By taking R or TR^{-1} , we can as well assume that the length of R is 2 or 3 or 4. If |R| = 3, then $|TR^{-1}| = 4$ and we are done. Otherwise, i.e, if |R| = 2, then we have Rx(-x) is a zero-sum subsequence of length 4 of S.

In the second case, that is, if all the three (2,0), (0,2), (2,2) elements of order 2 are appearing in S, then $T = S(0,2)^{-1}(2,0)^{-1}(2,2)^{-1}$ and does not contain a zero-sum subsequence of length 2. This means for some $x \in \mathbb{Z}_4 \oplus \mathbb{Z}_4$ and $v_x(T) = 1$ implies $v_{-x}(T) = 0$. That is, all the other elements of order 4 is appearing in T without their respective inverses. So, (3,2) or (1,2) appears in S. Without loss of generality we may assume that (3,2) appears in S (otherwise, we consider -S instead of S). Then we can assume that (3,0) does not appear because otherwise (2,0), (0,2), (3,2), (3,0) forms a zero-sum subsequence of length 4. Hence, (1,0) has to appear in T as its inverse (3,0) does not appear in T. But, (3,2) + (1,0) = (0,2) which would imply (2,2), (2,0), (3,2), (1,0) is a zero-sum subsequence of length 4.

So, it remains to consider the case that 0 appears in S. Set $T=S0^{-1}$, then T is a zero-sum subsequence of length 8. Since $D(\mathbb{Z}_4 \oplus \mathbb{Z}_4) = 7$, (well-known Davenport Constant for the group $(\mathbb{Z}_4 \oplus \mathbb{Z}_4)$) T contains a proper zero-sum subsequence R. Then, TR^{-1} is also a zero-sum subsequence. Let W be the smaller (in length) one of R and TR^{-1} . Then, |W| = 2, 3, 4. We may assume that |W| = 2. Suppose W = x(-x). Let $y \in TW^{-1}$. Set $T_1 = Tx^{-1}y^{-1}$. Clearly, T_1 is not zero-sum. Again by using Proposition 4.2 in [17], we obtain that $T_1(-\sigma(T_1))$ contains a proper zero-sum subsequence. Hence, T_1 contains a proper zero-sum subsequence W_1 . Then, $|W_1| = 2, 3, 4, 5$. We may assume that $|W_1| = 2, 5$. If $|W_1| = 5$, then $TW_1^{-1}(0)$ is a zero-sum subsequence of S of length 4 and we are done. If $|W_1| = 2$ then WW_1 is a zero-sum subsequence of length 4. Thus the theorem follows. \square

Remark. In the similar spirit as Theorem 4.1, when n is odd, we can give an equivalent condition for Conjecture 1 as follows. Every zero-sum sequence S of length 2n which has a square-free subsequence of length 2n - 1 has a zero-sum subsequence of length n. We omit the proof of this fact.

Acknowledgments

W.D. Gao supported by NSFC with Grant No. 19971058 and 10271080. We thank the referee/s for his/her useful suggestions to improve the presentation of the paper.

References

- [1] N. Alon, M.B. Nathanson, I.Z. Ruzsa, Adding distinct congruence classes modulo a prime, *Amer.* Math. Monthly 102 (3) (1995) 250–255.
- [2] N. Alon, M.B. Nathanson, I.Z. Ruzsa, Polynomial methods and restricted sums of congruence classes, J. Number Theory 56 (2) (1996) 404–417.
- [3] J. Bierbrauer, Y. Edel, Bounds on affine caps, J. Combin. Des. 10 (2) (2002) 111-115.
- [4] J.L. Brenner, Problem 6298, Amer. Math. Monthly 89 (1982) 279-280.
- [5] T.C. Brown, J.P. Buhler, A density version of a geometric Ramsey theorem, J. Combin. Theory Ser. A 32 (1) (1982) 20–34.
- [6] A.L. Cauchy, Recherches sur les nombers, J. Ecole Polytech. cashier 16 9 (1813) 99-123.
- [7] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935) 30–32.
- [8] J.A. Dias De Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc. 26 (2) (1994) 140–146.
- [9] Y. Edel, S. Ferret, I. Landjev, L. Storme, The classification of the largest caps in AG(5, 3), J. Combin. Theory Ser. A 99 (1) (2002) 95–110.
- [10] P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961) 41–43.
- [12] P. Frankl, R.L. Graham, V. Rödl, On subsets of abelian groups with no three term arithmetic progression, J. Combin. Theory Ser. A 45 (1) (1987) 157–161.
- [13] W.D. Gao, An addition theorem for finite cyclic groups, Discrete Math. 163 (1–3) (1997) 257–265.
- [14] W.D. Gao, A note on a zero—sum problem, J. Combin. Theory Ser. A 95 (2) (2001) 387–389.
- [15] W.D. Gao, On zero—sum subsequences of restricted size—II, Discrete Math. 271 (1-3) (2003) 51-59.
- [17] W.D. Gao, A. Geroldinger, On zero—sum sequences in $\mathbb{Z}_n \oplus \mathbb{Z}_n$, Integers 3 (A8) (2003) 45 (electronic).
- [18] H. Harborth, Ein Extremalproblem Für Gitterpunkte, J. Reine Angew. Math. 262/263 (1973) 356–360.
- [19] A. Kemnitz, Extremalprobleme für Gitterpunkte, Ph.D. Thesis, Technische Universität Braunschweig, 1982.
- [20] A. Kemnitz, On a lattice point problem, Ars Combinatorica 16b (1983) 151-160.
- [21] R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progression, J. Combin. Theory Ser. A 71 (1) (1995) 168–172.
- [24] L. Rónyai, On a conjecture of Kemnitz, Combinatorica 20 (4) (2000) 569-573.
- [25] B. Sury, R. Thangadurai, Gao's conjecture on zero—sum sequences, Proceedings of Indian Academic Sciences (Math. Sci.), Vol. 112, No. 3, 2002, pp. 399–414.
- [26] R. Thangadurai, On a conjecture of Kemnitz, C. R. Math. Acad. Sci. Soc. R. Can. 23 (2) (2001) 39–45.