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Abstract

For any integer n>3, by ¢g(Z, ® Z,) we denote the smallest positive integer ¢ such that every
subset of cardinality ¢ of the group Z,@® Z, contains a subset of cardinality » whose sum is
zero. Kemnitz (Extremalprobleme fiir Gitterpunkte, Ph.D. Thesis, Technische Universitit
Braunschweig, 1982) proved that ¢(Z,®Z,) =2p — 1 for p =3,5,7. In this paper, as our
main result, we prove that ¢(Z, ®Z,) = 2p — 1 for all primes p>67.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a finite abelian group (additively written). From the structure theorem of
finite abelian groups, we know that G=7Z, ®Z,,® --- ®Z,, with 1 <n|ny|---|ng,
where n; = exp(G) = n is the exponent of G and d is the rank of G. When n| =
np, = - = ng = n, we write ij instead of Z,®7,® --- ®7Z, .
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Definition 1. By g(G) we denote the smallest positive integer ¢ such that every subset
S of G of cardinality |S|>¢ contains a subset S’ of cardinality |S’| = exp(G) whose
sum is the identity element of G.

This constant ¢g(G) was first introduced by Harborth [18] for the group G = ij.
Kemnitz [20] proved that

(n— 129" 1 1<g(Z<(n—n" ' +1 for all n>3

and ¢(Z9)=n29"' +1 for even integers n. Therefore, it follows that g(Z,) =n
for all odd integer n. Kemnitz [20] studied this constant when d =2 and
computed for small values of p = 3,5,7 and indeed, he proved that for these primes

9(Z3) =2p— 1.

Also, it is known that g(Zg) =10 and g(Z‘;) = 21 (see [4-5,12,18-20]). Further, it
is known in [9] that g(Z3) = 45 and also in [3], it is known that 112<g(Z5)<114.
More generally, it known from the work of Meshulam [21] that g(Z¢) < (1 + o(1)) %.
We shall conjecture the following.

Conjecture 1. For all integers n=3, we have
2n—1 if nis odd,
9(2;) = o
2n+1 if n is even.

From the following examples, one can see that Conjecture 1 is sharp.

For n is odd, let 4 ={(0,0),(0,1),...,(0,n—2),(1,1),(1,2),...,(1,n— 1)} be a
subset of Z2. Then |4| = 2n — 2 and A4 contains no zero-sum subset of cardinality 7.
Hence, g(Zi)>|A| +1=2n-1; for n is even, let 4= {(0,0),(0,1),...,(0,n—
1),(1,0),(1,2),...,(1,n—1)}. Then |4| = 2n and 4 contains no zero-sum subset of
cardinality n. Hence, g(Z2)>|A4|+ 1 =2n+ 1.

In this article, we shall prove the following theorem.

Theorem 1. Conjecture 1 is true for all primes p=67. That is, for every prime p=67,
we have g(Ziz,) =2p—1.

In the last section, we shall prove that Conjecture 1 is true for n = 4 and we shall
provide an equivalent criterion as well.

Before we discuss further, we shall introduce notations once for all. A sequence in
G is a multi-set in G and throughout we use multiplicative notation. Let S = Hle gi
be a sequence in G. For every geG, let v,(S) (a non-negative integer) denote the
multiplicity of g in S. We call |S| = / the length of S. The length is the cardinality of
S as a multi-set whence

S| = Z vy (.S).

geG
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Leta(S) = Zle gi- We say T is a subsequence of S if 7 is a subset of the multi-set S.
We denote any subsequence T of S by T'|S. Also, if T is a subsequence of S, then
the deleted sequence ST~!, we mean the sequence after removing the elements of T
from S. We say that the sequence S = Hle gi in G is

® a zero-sum sequence, if a(S) =0 in G,

® a square-free sequence, if v,(S) = 0 or 1. In other words, S is a subset of G,

® a zero-sum free sequence, if none of its subsequence is a zero-sum sequence,

® a minimal zero-sum sequence, if it is a zero-sum sequence and its proper
subsequences are all zero-sum free sequences.

For every 1<k</, define

Z (S)=A{g; +9n+ - +gi | I<ii<ir<- - <ix </}
k

and define

S S) ={gi +9n+ - g | 1<Sh<i<-- <</, 1<I</}

Clearly, 3 (S) = Ui:l >k (S)-

If S= H?ﬁfl(ai,b,') is a sequence in Zf,, then T = H?ﬁ;l a; is the sequence in Z,
where the elements a; are simply the first co-ordinates of S. (We call T as the first co-
ordinate sequence.) One can write 7 in the following form:

my m my 2.2 2
T:xllxzz...xr’ylyz...yuZIZZ...Zv’

where X1, ..., X, V1, ..., Vu, 21, ..., Zp, are pairwise distinct elements in Z,, r, u, v=0,
my,my, ...,m, =3 are integers and m; +my + -+ + m, +2u+ v = 2p — 1. Through-
out this article, we shall freely use these constants r,u, v without mentioning.

We shall define the invariant /(.) for the given sequence S as follows:

h = h(S) = max{v,(S) :ge G}

the maximum of the multiplicities of elements occurring in the sequence S.
We shall define a function s(G) which is analogues to g(G) as follows.

Definition 2. By s(G), we denote the smallest positive integer ¢ such that every
sequence S in G of length |S|>7 contains a zero-sum subsequence S’ of length

S = exp(G).

This constant was studied by many authors. In 1961, Erdds, et al. [10] proved that
s(Z,) = 2n — 1. In 1983, the following conjecture was made by Kemnitz [19,20].

Conjecture 2 (Kemnitz [20]). For all n=2, s(Z,®7Z,) = 4n — 3.
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Conjecture 2 is sharp in the following way; Let S = (0,0)"" (0,1)"~" (1,0)""
(1,1)"" be a sequence in Z2. Then |S|=4n—4 and S contains no zero-sum
subsequence of length n. Hence, s(Z2)>|S| + 1 = 4n — 3.

Kemnitz proved this conjecture for primes p =3,5,7 by proving g(Z,®7,) =
2p — 1 for these primes. But for a general prime p, if one knows the value of
9(Z,®7Z,) for all primes, then it is not yet known that s(Z, ®Z,) = 29(Z,®Z,) — 1.
The best known result related to Conjecture 2 (in one direction) is (due to
Gao [14]) 5(Z,®7,)<4n — 2 for every n = p* for any prime power. It should be
mentioned that Ronayi [24] first proved the same result when k = 1. In another
direction, the best result known (due to Gao [15] (more general) and Thangadurai
[26] (for this particular case)) is as follows. If S is a sequence in Z, ® Z, of length
4n — 3 and h(S)>=n/2, then there exists a zero-sum subsequence of S of length n.

Now we shall state a corollary to Theorem 1 related to S(ZIZ)) as follows.

Corollary 1. Let p=67 be any prime number. Let S be any sequence in Z,®Z, of
length 4p — 3. If h(S) <2, then there exists a zero-sum subsequence of length p.

2. Preliminaries

In this section, we shall work-out some preliminaries for our main result.

Theorem 2.1 (Dias De Silva [8], Alon et al. [1-2]). If A is a non-empty subset of Z,
and if 1<k<|A|, then

> (4)

k

> min{p, k(|4] - k) + 1}.

Theorem 2.2 (Gao [13]). Let n=5 and let W be a zero-sum free sequence in Z,.

(D) If|W|=n—1, then W = a""! for some aeZ, with (a,n) = 1.
Q) If|W|=n—2, then W =a"* or W = a"*(2a) for some aeZ, with (a,n) = 1.

Theorem 2.3 (Dias De Silva [8]). Let p>3 be a prime. Set k= |+4p—T]|+1
and set ¢ =[k/2]. Let S be a square-free sequence in Z, of length k. Then

Z/ (S) = Zy.

Theorem 2.4 (Cauchy—Davenport Inequality [6-7]). If 41, A2, ..., A; are non-empty
subsets of Z,, then

3
|A1 + Ay + --- +A/|>mm{p,z |Al| -7+ 1}
i=1
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The following technical lemma is very crucial for our main result and also it
generalizes a Lemma 4.7 in [25].

Lemma 2.5, Let S = Hfﬁ;l(ai,bi) be a square-free sequence of length 2p — 1 in ZI%.
Write

/ n; .
s T T oot
i=1 j=1

where ni,ny, ...,ns =1, {21, x1,X2, ..., X, are pairwise distinct elements of Z,, and
n+n+--+n=2p—1.Let W= Hle xf" be a zero-sum subsequence of the first
co-ordinate sequence T such that |W| = p, where 0<L;<m;and I, + L+ --- + 1, = p.
Suppose that 1+Zf:1 li(nj — l;)=p. Then S contains a zero-sum subsequence of
length p.

Proof. Since S is a square-free sequence in Zi, for every ie{1,2,...,/}, we have

b(li),bgi), ...,bﬁ,’;) are pairwise distinct in Z,. Set B; = {b(li),b(zi), ...,b,(q';)} for every i =
1,2, ...,7. Then it suffices to prove that

0e> (B)+> (B)+ - +> (B
I h l

By Theorem 2.1, we see that for each i, we have

Z (B;)

li

=li(n — ) + 1. (1)

—/—i—l}.

Therefore, by Theorem 2.4, we have

Z (Bi) + - +Z (Br)

11 1/

Zmin{p7

> (B)

h

> (B)

Iy

Therefore, by Eq. (1), LHS of the above inequality is at least
>min{p, (h(n —h) + 1)+ +L(n,—l;) +1) =L+ 1}
:min{p,ll(nl — ll) + -+ l/(n/ — l/) + 1}
:p.

Therefore, we have

STB)+EY B+ + > (B) =12,
I b l
S0eY B+ (B)+ -+ > (B).
b

]1 //

Thus the lemma follows. [
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Lemma 2.6. Let p be any prime number, and let T be a sequence in Z,\{0} of length p.
Set h=h(T). Then ¥ _,(T) = Z,, where Y _,(T) = U_, S,(T).

Proof. Note that one can distribute the elements of 7 into /i nonempty
subsets Ay, A, ...,Ay. By Cauchy-Davenport inequality (Theorem 2.4),
we have

> (T)

<h

Therefore, > _,(T) = 2,. O

>min{p, |4, V{0} + -+ +|4,u{0} —h+ 1} =p.

Theorem 2.7. Let p be any prime number and 2<k<p — 1. Let S be a sequence in Z,
of length 2p — k. Suppose that 0¢3_,(S). Then h(S)=p —k + 1.

Proof. Without loss of generality, we may assume that S = 0"T with |T|=
2p — k — h. Assume to the contrary that A<p — k. Therefore, |T|>=p and T is a
sequence in Z,\{0}. By Lemma 2.6, >~ _,(T) = Z,. Especially, o(T)e > _,(T). That
is, there is a subsequence Q of T such that ¢(Q) = ¢(T) and 1<|Q|<h. Set T} =
TQ ' Then ¢(Ty) =0 and p — h<|T| — h<|T1|<|T| — 1. If | T}| <p, then T;07~ T
is a zero-sum subsequence of S of length p which is a contradiction. Therefore,
|T1|=p. Apply Lemma 2.6 to T}, one can find a subsequence Q; of T; such that
a(Q1) =0 and 1<|Qi|<h, set T» = T1Q;7'. Then o(T2) =0 and p —h<|Ti| —
h<|T»|<|T)| — 1. Continuing the same procedure we finally get a zero-sum
subsequence of S of length p which is again a contradiction. Thus the theorem is
proved. O

3. Proof of Theorem 1

2p—1
i=1

Throughout this section, let p be an odd prime, S = [[;Z] (a;, b;) a sequence in Z;,

T =x" ...x:ﬁry%...yizl ez
be the first co-ordinate sequence with r,u,veNy, my,...,meNx3, x1,...,X,,
Vis ooy Yu, Ziy...,Z20€Z, pairwise distinct, and let h=h(T). In a series of
propositions, we shall prove, under various additional assumptions, that S has a
zero-sum subsequence of length p. Putting everything together we shall obtain a
proof of Theorem 1.

Proposition 3.1. If he{2,p}, then S has a zero-sum subsequence of length p.

Proof. Let #(T) = p. Without loss of generality we can assume that a; =ay = -+ =
a, = 0. Since S is square-free sequence in Zﬁ, the sequence by, by, ..., b, runs through
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every residue classes of modulo p. Hence, by +by+ - +b,=0 in Z,. Thus
[17,(0,5;) is a zero-sum subsequence of length p in S.

Let A(T) = 2. Then every residue classes modulo p can be appearing at most 2
times. Since |S| = 2p — 1 and we have p distinct residue classes modulo p, we see, by
Pigeon hole principle, that p — 1 distinct residue classes modulo p has to appear
exactly 2 times and only one residue class (we can assume it to be 0) has to appear
exactly once. Thus we are in the following situation:

-1 p—1

S = (0, lx,Hly,

1 i=1

bS]

where x;#y; (mod p) forall i =1,2,...,p — 1. We have W = OH,!’:]I i is a zero-sum
subsequence of T of length p. Since

(1-D)+12 - D412 -1+ + 12— 1)+l =p,

p—1 times

by Lemma 2.5, S has a zero-sum subsequence of length p. [

Proposition 3.2. If (le-zl 1L, yi) LT has a zero-sum subsequence of length p and
r+u+v<t5e 3 then S has a zero-sum subsequence of length p.

Proof. By Proposmon 3.1, we can assume that 3</<p — 1. By assumption, we have

R= c/1 ‘cg . c,/ Cra1 is the zero-sum subsequence of length p of
(I x7 1T yi) -T where €1,¢, ..., ¢, are pairwise distinct elements of Z,,, r>1

and 2</;<mj, —2foralli=1,2,...,t. Notethatp = |R| =1+ o+ - + {1+ 5 —
t. Without loss of generality, we may assume that m;, = m; (by renaming the indices,
if necessary). We have to prove that S has a zero-sum subsequence of length p. If we
can prove 1+ 3°0_ Zi(m; — £;) >p, then by Lemma 2.5, it follows that S does have a
zero-sum subsequence of length p. Now, consider

!
L+ > ti(mi — 1) >1+Zz i = 2) = 1420m +my+ - +my) — 4t
i—1

/1+2(/1+2+---+/,+2)—4z>1+2(/1+---+/,)
=14+2p—s+0)=14+2p-2(s—0)=1+2p-2(p+1)/2
=p. O

Proposition 3.3. If, for some xeZ,,
T=0""17"".x or T=0"17"2.2.(p—1),

then S has a zero-sum subsequence of length p.
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Proof. Suppose T =07"'17"!x. Then W = 0°~'1 »~*x is a zero-sum subsequence of
T of length p, whenever x#0,1. Note that (x — 1)(p—x)+ (p—x)x+1=(p —
x)(2x — 1) + 1 =p. Hence, by Lemma 2.5, there exists a zero-sum subsequence of
length p.

If x=0 or 1, it follows from Proposition 3.1 that S contains a zero-sum
subsequence of length p.

Suppose 7 = 07~'1772(2)(p — 1). Then set W = 07~21(p — 1) which is obviously
a zero-sum subsequence of length p and we have p —2+p— 3+ 1>=p. Thus by
Lemma 2.5, we have a zero-sum subsequence of S of length p. O

Proposition 3.4. If p>11 and hZ’%S, then S has a zero-sum subsequence of length p.

Proof. Without loss of generality, we may assume that ay,_; = asypii—p = - =
ayp—1 = a. Therefore, the first co-ordinate sequence T = a" H?ﬁflfh a;.

Claim 1. There is a subset /<{1,2,...,2p — 1 — h} such that (p — [I|)a+ >, ., a; =
0 in Z, and such that p — h+2<|I|<p — 2.

To prove the Claim 1, we may assume that a = 0. Then it suffices to prove that
there is a subset /={1,2,...,2p — 1 — h} such that > ._;a@; =0 and such that p —
h+2<|I|<p —2.

By Proposition 3.1, we may assume that z<p — 1. Let I be the maximal subset of
{1,2,...,2p — 1 — h} such that ) ,_;a; =0 and |I|<p. By Lemma 2.6, one can get
p—h<|II<p. Set J={1,2,....,2p— 1 —h}\I. If I satisfies p — h+ 2<|I|<p — 2,
then nothing to prove. Now, we distinguish cases.

Case 1: |I| = p. Since h<p — 1, we see that [[,_; a; cannot be a minimal zero-sum
sequence. Therefore, there is a subset A=/ such that },_,a; =0and 1 <|4|<p — 1.
But, a;#0fori=1,2,...,2p — 1 — h. Therefore, 2<|A4|<p — 2. Now letting I be the
maximal one of 4 and I\4, and we see that Claim 1 is satisfied.

Case 2: |I| =p—h,p—h+1 or p— 1. We distinguish sub-cases.

Sub-case 1: h=p — 1. Since a; #0 for i=1,2, ...,p, |I| =2or || =p - 1. If |I| = 2,
then |J| =p —2 and [];.; @ is zero-sum free sequence in Z,. By Theorem 2.2, we
see that [[, jcs @ =a’(2a) for some a#0. Without loss of

generality, we may assume that a=1. Now, T =07""17"2(x)(-x) or T =
07-11773(2)(x)(—x) for some xeZ,\{0}. If T=0°""1732)(x)(—x), and if
2<x<p — 3, then we have 1¥(—x) is a zero-sum subsequence of T of length 1 + x.
But, 3<1 + x<p — 2. This satisfies the Claim 1. So, we may assume that x = 1, p — 2
orp—1.Ifx=p—2=-2then T = 07~'1773(2)(2)(—2) and hence, 1774(2)(2) is a
zero-sum subsequence of length p — 2. Now it remains to check the case when x =
1,p— 1. Now we have T = 07"11772(2)(~1). Also, if T =07"'17"2(x)(—x), one
can reduce it to the case 7 = 07~'17~!(—1). But by Proposition 3.3, it follows that S
does have a zero-sum subsequence of length p. So, we do not need to consider these
cases at all.

iel

aj=a’=? or
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If [I|=p—1, we derive that [[,.; ; is a minimal zero-sum sequence. By
Theorem 2.2, we infer that [[,.; @ = a?~2(2a). Without loss of generality, we may
assume that ¢ = 1. Now, T = 07~'1772(2)(x). Similarly to above, it reduces to T =
07=11772(2)(~1) or T = 07~'1771(2), then by Proposition 3.3, S does have a zero-
sum subsequence of length p.

Sub-case 2: h=p —2. We may assume that |I| =2,3 or p — 1. Assume to the
contrary that Claim 1 is not true.

If |I] =2, then |[J|=p—1 and ]
Theorem 2.2, we have [[;_; a; = a?~" which is a contradiction to the assumption
that h =p — 2.

If [I| =3, then |J|=p—2 and [],.; @; is zero-sum free sequence in Z,. By
Theorem 2.2, we have [[;., ¢ = a”*(2a) or [,
may assume that a=1. Now, T =0721732)(x)(y)(-x—y) or T=
072177 2(x)(p)(—=x — p). If T=07"21773(2)(x)(»)(—x — y), one can easily derive
that x,y,—x—ye{l,p—2,p—1}. Since x+y+(—x—y)=0, we infer that
{x,9,—x —y} = {1,1,-2}, {—1,-1,2}, {~1,-2,3} or {—2,—2,4}. Since h=p —
2, we have {x,y,—x—y}={-1,-1,2}, {-1,-2,3} or {-2,-2,4}. But, 1 +1+
(D)4 (=1)=0, =1+ (=2)+1+1+1=0 and -2+ (=2)+1+1+1+1=0,
which is a contradiction on the assumption that Claim 1 is not true.

If T=077217"2(x)(y)(—x — y), since Claim 1 is not true and 4 = p — 2, one can
derive that x,y, —x — ye{2,p — 2,p — 1}. Note that x+ y + (—x — y) = 0, we have
{x,y,—x —y} ={2,2, -4}, {-2,-2,4}, {—1,—1,2} or {—1,—2,3} and similarly to
above, one can derive a contradiction.

If |I| = p — 1, then [[,.; a; is a minimal zero-sum sequence. By Theorem 2.2, we
see that [[,.; a; = a?~%(2a) for some a#0 in Z,. We may assume that a = 1. Now,
T = 07721772(2)(x)(»). Since Claim 1 is not true, x,ye{l,p —2,p — 1}. Since h =
p—2,x,ye{p—2,p—1}. Then {x,y}={-1,-1}, {-2,-2} or {-1,-2}. But
—1+(-D+1+1=0,24+(-2)+1+1+1+1=0,-14+(-2)+1+1+1=0,
a contradiction to the assumption that Claim 1 is not true.

Sub-case 3: l%khgp =3. If I[=p—h, then |J|=p—1 and [[;.; @ is
zero-sum free sequence in Z, By Theorem 2.2, we have [[.; 4= ar!

jes @ 1s zero-sum free sequence in Z,. By

aj = a?~? for some a#0eZ,. We

which is a contradiction on the assumption that hA<p—3. If |I|=p—1,

then [];., a; is a minimal zero-sum sequence in Z, and by Theorem 2.2, we see,

[1c; @ = a”*(2a) which is again a contradiction on h<p —3. If [I| =p —h+1,
then |J| =p—2 and [[;.; ¢ is zero-sum free sequence in Z,. By Theorem 2.2,

f= P2
we have [[;.; aj=a

or [];.; @ = a?7*(2a) for some a#0 in Z,. But h<p -3,
we have [[,.; ¢ =a”3(2a) and h=p—3. We may assume that a=1I.
Now, T =07721773(2)(x)(»)(z)(w). Assume to the contrary that Claim 1 is not
true, then x,y,z,we{l,p—3,p—2,p—1}. Note that h=p—3, we have
x,y,z,we{p —3,p— 2,p — 1}. It easy to check that there is a zero-sum subsequence
of T of length between 5 and 8. (Here, we need to assume p>11.). Thus Claim 1 is
established.
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Now, we can rewrite S as follows;

2p—1—h h
S = H (a[, b,) H(a, C,’)
i=1 i=1
with ¢, ¢, ..., ¢, are pairwise distinct elements in Z,. By Claim 1, we have an index

set 1<{1,2,....,2p — 1 —h} such that p—h+2<|I|<p—2 and >, ;a;+ (p—
[I|)Ja=0(modp). Let b=>",_,bi. Let C={ci,c2,...,cn}=Z, and ¢ =p—|I|.
Since [ satisfies p — h+ 2<|I|<p — 2, it is clear that / satisfying 2</<h — 2. By
Theorem 2.1, we see that

> (©)

/

>min{p,/(h—/+ 1)} zmin{p,2(h -2+ 1)} =p.

Now the theorem follows from Lemma 2.5. O

Proposition 3.5. If p=5r+u+v <’%1 and h <1%3, then S has a zero-sum subsequence
of length p.

Proof. Let

my—2 _mp—2 mp—2
W:xl] x27 ...xr ylyz...yu2122...zv

be a subsequence of T'. Then the length of W is

W =Tl -2 —u—=2p1-2r—us2p 1P oy P
| p p 5 p 5

and

WW) = h(T) —2<p%.

If W does not have a zero-sum subsequence of length p, then by Theorem 2.7,
h(W)zp— (p—1)/2 = (p+ 1)/2 which is a contradiction. Therefore, W contains a
zero-sum subsequence Q of length p. Hence, by Lemma 2.5 the result follows. [

Proposition 3.6. If p=67 and h=| /4p — 7 | + 2, then S has a zero-sum subsequence
of length p.

Proof. Let k= | +4p—7]+ 1. By Proposition 3.4, we may assume that k +
1<h<”%3. We distinguish two cases.

Case 1: T contains at least k distinct elements. Without loss of generality, we may
assume that ay, ay, ..., ay are distinct. Set / = [k/2] and 4 = {ay,as, ...,ar} =Z,. By
Theorem 2.3, we have

S (4) =12, 2)

4
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Since h(T)=k + 1, the deleted sequence TA~! contains some element @ (say) with
vo(TA ") =h — 1>k. Without loss of generality, we may assume that @, = --- =
ap+p—1 = a. Then the corresponding second co-ordinates by, bxi2, ..., bpip—1 are
pairwise distinct in Z,,. Set B = {by1,bx12, ..., bxyn—1} =Z,. Then again by Theorem
2.3, we see that

> (B) =17, (3)

Note that 2p — 1 —h—k>p —2/>0, one can choose a subset J={k + h,k+h+
1,...,2p — 1} such that |J|=p—2/ and ag;#a holds for every jeJ. Set o=

ta+3 ;.7 a. By Eq. (2), there is a subset /< {1,2,...,k} such that a + >, ;a; = 0
and [I| =7/. Set =37, ;bi+> ;b Now by Eq. (3), there is a subset L= {k +
L,k+2,...,k+h—1} such that f +>",.; b; =0 and |L| = /. Therefore,

H(ai, b;) H(a, b;) H(ajv by)

iel leL jeJ

is a zero-sum subsequence of S of length p.
Case 2: T contains at most k — 1 distinct elements. Since by assumption, p =67, we

see that k — 1 <1%1. Also, by assumption, we have h<(p + 3)/2. Therefore, the result
follows from Proposition 3.5. [J

Proposition 3.7. If p=47, r +u+ v}l%l and h<| /4p =T ] + 1, then S has a zero-
sum subsequence of length p.

Proof. First we note that it is enough to assume that r + u + v>=p/3. For, suppose
’%Sr +u+v<f As h(T)<k<p/3,in a similar way to the proof of Proposition 3.5
one can derive that S contains a zero-sum subsequence of length p. So, we may
assume that r +u+v>p/3. Set ¢ = [§]. Write

my my 2 2 2
T:xllxz ...xr’ylyz...yuZIZZ...Zv,

where x1,X2, ..., X, V1,2, ..., Vu, 21, 22, ..., Zp are pairwise distinct elements in Z,,
and my,my, ...,m, =3, r,u,v>=0 are integers satisfying m; +m + --- + m, + 2u +
v=2p—1.Set
iy yi if 1<u,
A= X (1 X —(—wy+2 X Y12y A u<ti<u+r,

X1X2 X V1V2 VuZo—(t—u—r)+1 ** 20 M I>u+T
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and

! mi—1 “ v :

T 11 v 1l 2 if r<u,

i=1 =1 =l

r—(t—u) 1 r 5 v

U= X I X" =1l wvillz if u<t<u+r,

i=1 i=r—(t—u)+1 i=1 i=1

r 5 u v—(t—u—r)

M1y II =z if r>u+r

i=1 i=1 i=1

By the making of U, it is clear that

2p—1—r—u if t<u,
U =< 2p—1—r—t if u<t<u+r,
2p—1—r—t if t>u+r.

Therefore, |U|=p — 1. Also, by Theorem 2.1, we have

> )

>min{p,4(1—4)+ 1} =p=) (4) =7, (4)
4 7

We distinguish cases.

Case 1: r+u+v<p—4. Then one can find a subsequence Q of U such that
X1x2+- X 1¥2---yu|Q|U and such that |Q| = p — 4. By Eq. (4), we see that there is
subsequence R of 4 such that |R| = 4 and RQ is a zero-sum subsequence of length p.
Set W =RQ. Now W = RQ = x"xb...xbyliyl...pfiz with Z|zz;--z,, where
I<li<mi—1foralli=1,2,....,r, 1<f,/3,..../u<2 and f; = 2 holds for at most
4(=|R|) of ie{l,2,...,u}. If m+my+--+m —r+u+1—4>p, then by
Lemma 2.5, we know that S contains a zero-sum subsequence of length p.
Therefore, we may assume that, m; +my+ - +m, +u—r+1—4<p—1. But
my+my+ - +m,=2p—1—2u—v. Therefore,2p — 1 —u—v—r+1—-4<p—1.
Hence, u + v+ r=p — 3, which is a contradiction to the assumption that r 4+ u +
v<p —4.

Case 2: u+v+r=p—3. Set t = [252]. Write

my m my 22 2
T:xlIxzz...xr’ylyz...yuZIZZ...ZU’

where X1, X2, ..., Xp, V1, V2, «ooy Yus Z1, 22, ..., Zp, are pairwise distinct, my, my, ...,m, =3
and r,u,v>=0 are integers satisfying m; +my + - +m, + 2u+v=2p — 1. Set

V1ya e ift 1<u,
A=2S X (1 Xr—(—wy42 X V1y2 Yy A u<t<u+r,
X1X2 X V1V2 VuZom(1mu—r)+1 - 20 A E>u+1



W.D. Gao, R. Thangadurai | Journal of Combinatorial Theory, Series A 107 (2004) 69-86 81

and

mp—1_my—1 —1 .

XTTXSR T X T Y Y Yz 22 2y ift<u,

r—(t—u) | r 5 u v

mi— mi— :
U= 1 X 11 XTI v I = if u<t<u-+r,

i=1 i=r—(t—u)+1 i=1 i=1
mp—2_my—2 ) .

X)X e XTIV 2 VuZ 122 2o (1—umr) if t>u+r.

By the making of U we get
2p—1—r—u if t<u,
U =<2p—1—r—t ifu<t<u+r,
2p—1—r—t if t>u—+r.
Note that 3r + 2u + v<2p — 1 and u + v+ r=p — 4, we derive that r = 3((3r + 2u +

v)— (u+v+r)) — u/2<’%3 —u/2. Therefore, we always have |U|=p—1. By
Theorem 2.1, we have

> ()

3

>min{p,3(1-3)+ 1} =p=> (4) =12, (5)
3

Since u + v+ r = p — 3, one can find a subsequence Q of U such that
X1X2 X V1y2 v QU

and |Q| = p — 3. By Eq. (5), there is subsequence R of 4 such that |[R| = 3 and RQ is

a zero-sum subsequence of length p. Set W =RQ. Now W =RQ=
xhixl o xbyliyl oy 7 with Z| 21252, where 1<l,<m; — 1 forall i =1,2, ...,
1<fi, /2, ..., fu<2 and f; = 2 holds for at most 3(= |R|) of ie{l,2,...,u}. If m; +
my+ - +m—r+u+1—3=p by Lemma 2.5, we see that S contains a zero-sum
subsequence of length p. Therefore, we may assume that, m; +my + - +m, —r +
u+1-3<p-—1. But my +my+ --- +m, =2p — 1 —2u —v. Therefore, 2p — 1 —
u—v—r+1—-3<p—1. Hence, u+v+r=p—2 which is a contradiction to the
assumption.

Case 3: u+v+r=p. Write T =0™1"™...(p —1)"" where m;>1 and mq +
<o 4+m,_; =2p—1. Since, 0+ 1+ --+(p—1)=0 and mo+m; + --- +m,_; —
p+1=p, by Lemma 2.5, S contains a zero-sum subsequence of length p.

Case4:u+v+r=p—2. Sett= 1%3. Define 4 and U in a similar way to Case 2.

Then |A4| = . By Theorem 2.1, we have

> ()

2

>min{p,2(1—2)+ 1} =p=> (4) =17, (6)
2

By the making of U, we get
2p—1—r—u if t<u,
U =< 2p—1—r—t if u<t<u+r,
2p—1—r—t if t>u+r.
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If r<is- 2 , then |U|=p — 2. Then one can find a subsequence Q of U such that
X1x2+- X y1¥2---yu|Q|U and |Q| = p — 2. By Eq. (6), there is subsequence R of 4 such
that |R| = 2 and RQ is a zero-sum subsequence of length p. Now RQ =
xl'x2 -xh y1 y2 . i{*"Z with Z | zyzy---z,, where 1 </i<m; — 1 for all i=1,2, ...,
1<, /2, .. f,,<2 and f; =2 holds for at most 2(= |R|) of ie{l,...,u}. If m; +
my+ - +m—r+u+1—2>=p by Lemma 2.5, S contains a zero-sum subsequence
of length p. Therefore, we may assume that, m; +my + - +m, —r+u+1-—
2<p—1. But my+my+ --- +m, =2p—1—2u—v. Therefore, 2p —1 —u—v—
r+1—-2<p—1. Hence, u+v+r=p—1, which is a contradiction to the
assumption.

Now we assume that r>1il Since 3r+2u+v<2p—landu+v+r=p—2,r—
v= (3r+2u+v) —2(r+u+v)<2p—1—2(p —2) = 3. Therefore, v>r—3>”+1

3—” . So,

p—5
25 %
Set Ay = {zi, 22, ...,2y}. By Theorem 2.1,
> (4o) = Z,. (8)
3
Note that r +u<p —3<p+1=(m — 1)+ (m—1)+ -+ + (m — 1) + u, one can
find a subsequence Q of ¥/ ~'x}2 ... x" 1y p, ... p, such that

m lm L, N
X1X2 X1y QR TG gy

and

10l =

By Eq. (8), there is subsequence R of A4 such that |R| =3 and RQ is a zero-sum
subsequence. Now, RQ = xl‘ xlz2 xﬁ'y1y2~~-yuZ with Z | z1z3+--z,, where 1 <[;<m; —
lforalli=1,2,...r. S1ncem1 +my+ - +m—r+u+1=2p—-1-2u—v—r+
u+1=2p—(u+v+r)=2p—(p—2)>p, by Lemma 2.5, S contains a zero-sum
subsequence of length p. This completes the proof of Case 4.

Case 5: u+v+r=p— 1. In this case we have r>1, and we can assume that

{xl,xz, ey Xy V15,25 o5 Vuy 21,22, ...,ZU} = Zp\{a},
for some aeZ,. Without loss of generality, we may assume that a = 0. Therefore,
{X1, X2, ., X0 Y1, V2, s Vus 21, 22, ooy 2oy = Z,\{0}. 9)

We distinguish sub-cases.
Sub-case 1: r=5. Since 3r+2u+v<2p—land u+v+r=p—1,r—v=_3r+
2u+v)—2(r+u+v)<2p—1-2(p—1) = 1. Therefore, v=r — 1 >4. Set

A={1,y2, s Vus 21,22, .y 2o} and B ={x,x2, ..., X }.
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Then by Cauchy—Davenport’s inequality (Theorem 2.4) and Theorem 2.1, we see
that

2 D+ (B)

u+v—1

= min{p, (u+v)+2r—-3 -1}

=min{p,p — 1 +r—4} =p.
Therefore, there are subsequences A4 | 4 and By | B such that |4g|=u + v — 1,|By|=2
and o(x1x;---x,BypAdp) = 0. (here ¢ means the sum). Set Q = x;x,---x,ByAy. Then
|Ol=r+2+u+v—1=p, and

/
Q—xlxz x)’l yz 'y,)fuzv

where Z|zjzy---z,, 1<L;<2<m;—1 and ;=2 holds for exactly 2 of i,
0<f1, /2, ..., fu<1 and at most one of f; = 0. Since m; +my + -~ +m, —r+u+1—
l=2p—1—v—u—r=p, by Lemma 2.5, S contains a zero-sum subsequence of
length p.

Sub-case 2: r <4 and max{m;} > 6. Without loss of generality, we may assume that
m; =6.

Let 4= {y1,y2, .--»Vu, 21,22, ..., Zo}. By Theorem 2.1, we have ) . ,(4) = Z,.
Set 0 = x‘l‘xzx_;o-'x,,. Then there is a subsequence R of y;y,-+-y,z122-+-z, such that
|IR| =u+v—2 and c(QR) = 0. Set W = QR. Then W = x{xpx;3---x,R. Note that
dm —4)+m -0+ -4+ m -1 4+u—-2+122m —-2+m—1+4+ - +m, —
l+u—l=m+m+m+-4+m)+u—r—-2=m+2p—-1-2u—0v)+u—
r—2=m; +p—2>p. Now the theorem follows from Lemma 2.5.

Sub-case 3: r<4 and max{m;}<5. Since Z,®7Z, is the union of its p+1
subgroups each of order p, there exists a subgroup H of Z,®Z, such that |[H| =p
and

(ai,bi) — (a;,b7) e H

holds for at least %>Zp—5 pairs. Therefore, by choosing suitable

automorphism to act on S, we may assume that
H=1{(0,9)|9e2,}
and
ai = 4;
holds for at least 2p — 4 pair of 1 <i<j<2p — 1. But by assumption, we see that r<4

and max{m;} <5 implies that the number of the pairs of 1<i<j<2p — 1 which
satisfying

a; = Clj
is at most

my(my —1)  my(my — 1) my(m, — 1)
2 2 et 2

+u<lOr+u<40 +u<2p —4,
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as u<p— 1. This contradiction shows that we can act on S with suitable
automorphism and reduce it to the above cases. Thus the proof of the theorem is
complete. [

Proof of Theorem 1. Let S be a square-free sequence in Z,® Z, of length 2p — 1. Let
T be the first co-ordinate sequence of S. Set k = [\/4p — 7] + 1. If h(T) >k + 1, then
the theorem follows from Proposition 3.6. If A(T)<k and u+v+r<1%1, then it
follows from Proposition 3.5. So, let A(T)<k and u+ v+ r>1’%1 and the theorem
follows from Proposition 3.7. [

Proof of Corollary 1. Let S be a sequence in Z,®Z, of length 4p — 3. By our
assumption, i(S)<2. Hence, by Pigeon hole principle, we see that S has a square-
free subsequence R of length at least 2p — 1. Hence, by Theorem 1, R does has a
zero-sum subsequence of length p and so does S. [

4. Concluding remarks

In this section, we shall prove an equivalent criterion for Conjecture 1 when 7 is
even and using that we verify Conjecture 1 for n = 4.

Theorem 4.1. Let n>=4 be any even integer. Then the following two conditions are
equivalent:

(1) g(zn®zn) =2n+1
(2) Every square-free zero-sum sequence in Z,® Z,, of length 2n+ 1 has a zero-sum
subsequence of length n.

Proof. Clearly, (1) implies (2). Assuming (2) we want to prove (1). Let S = Hfﬂl a;

2n+1

be any square-free sequence in Z,% of length 2n+ 1. Set a =) ;"] a;, and consider

the shifted sequence R = H?ffl(ai —a). Clearly, R is a square-free sequence of

length 2n + 1. Moreover, we see that

2n+1 2n+1

o(R) = (a—a)=)_ a,-—(2n+1)a:2’i:+1 a—a=0.
i=1 i=1

i=1

Therefore, by the assumption (2), R contains a zero-sum subsequence H;l:l (aj, — a)
of length n. Hence, ]—L’?:l a; is a zero-sum subsequence of S of length n. This
completes the proof. [

Theorem 4.2. ¢(Z,s®7Z4) =9.
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Proof. We know that g(Z,® Z4)>9. So, it is enough to prove the upper bound. Let
S be a square-free sequence in Z4@ Z4 of length 9. By Theorem 4.1, it is enough to
assume that S is a zero-sum sequence.

First we assume that 0, the zero element of Z4 ® Z4 does not appearing in S. Then
either there exists an element x together with —x appearing in S or the three distinct
elements of order 2 appearing in S.

In the first case, we get a zero-sum subsequence 7 = Sx~! (—x)f1 of length 7. But
T cannot be minimal zero-sum sequence as its length is 2n — 1 = D(Z4®7Z4) =7
(here D(Z,®Z,) is the Davenport’s constant for the group Z, @ Z, which is defined
as the smallest positive integer ¢ such that any sequence in Z,, @ Z,, of length at least ¢
has a zero-sum subsequence) because any minimal zero-sum sequence of length 7 in
74,@ 74 contains an element which is appearing at least 3 times. (see for instance,
Proposition 4.2 in [17]). Hence, T has a zero-sum subsequence of length <7. Since
every element of 7 is non-zero, T has a zero-sum subsequence R of length at least 2.
By taking R or TR™', we can as well assume that the length of R is 2 or 3 or 4. If
|R| = 3, then |TR™'| = 4 and we are done. Otherwise, i.e, if |R| = 2, then we have
Rx(—x) is a zero-sum subsequence of length 4 of S.

In the second case, that is, if all the three (2,0),(0,2),(2,2) elements of
order 2 are appearing in S, then 7" = S(0, 2)71 (2, 0)71 (2, 2)71 and does not contain a
zero-sum subsequence of length 2. This means for some xeZs®Z4 and v, (T) =1
implies v_,(7) = 0. That is, all the other elements of order 4 is appearing in T
without their respective inverses. So, (3,2) or (1,2) appears in S. Without loss of
generality we may assume that (3,2) appears in S (otherwise, we consider —S instead
of S). Then we can assume that (3,0) does not appear because otherwise
(2,0),(0,2),(3,2),(3,0) forms a zero-sum subsequence of length 4. Hence, (1,0)
has to appear in T as its inverse (3,0) does not appear in 7. But, (3,2) 4+ (1,0) =
(0,2) which would imply (2,2),(2,0),(3,2),(1,0) is a zero-sum subsequence of
length 4.

So, it remains to consider the case that 0 appears in S. Set 7' = S0~!, then T is a
zero-sum subsequence of length 8. Since D(Z4@®7Z4) =7, (well-known Davenport
Constant for the group (Z4@7Z4)) T contains a proper zero-sum subsequence R.
Then, TR™! is also a zero-sum subsequence. Let W be the smaller (in length) one of
R and TR™'. Then, |W|=2,3,4. We may assume that |W|=2. Suppose W =
x(—x). Let ye TW=!. Set Ty = Tx~'y~!. Clearly, T} is not zero-sum. Again by using
Proposition 4.2 in [17], we obtain that T)(—o(7})) contains a proper zero-sum
subsequence. Hence, 7} contains a proper zero-sum subsequence W,. Then, |W;| =
2,3,4,5. We may assume that |W;| =2,5. If |W;| = 5, then TW['(0) is a zero-sum
subsequence of S of length 4 and we are done. If || = 2 then WW] is a zero-sum
subsequence of length 4. Thus the theorem follows. [

Remark. In the similar spirit as Theorem 4.1, when n is odd, we can give an
equivalent condition for Conjecture 1 as follows. Every zero-sum sequence S of length
2n which has a square-free subsequence of length 2n — 1 has a zero-sum subsequence of
length n. We omit the proof of this fact.
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