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Abstract

Let G be a finite abelian group. By OlðGÞ; we mean the smallest integer t such that every

subset ACG of cardinality t contains a non-empty subset whose sum is zero. In this article, we

shall prove that for all primes p44:67� 1034; we have OlðZp"ZpÞ ¼ p þ OlðZpÞ � 1 and
hence we have OlðZp"ZpÞpp � 1þ J

ffiffiffiffiffi
2p

p
þ 5 log pn: This, in particular, proves that a

conjecture of Erdo+s (stated below) is true for the group Zp"Zp for all primes p44:67� 1034:
r 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite abelian group (written additively). Then G ¼ Zn1"Zn2"?"Znr

with 1on1jn2j?jnr; where nr ¼ expðGÞ :¼ n is the exponent of G and where r is the

rank of G:When n1 ¼ n2 ¼ ? ¼ nr ¼ n; then we denote the group Zn"Zn"?"Zn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
r times

by Zr
n:

Definition 1. By OlðGÞ we denote the smallest positive integer t such that every
subset of G of cardinality t contains a non-empty subset whose sum is the identity
element of G:
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This constant, OlðGÞ; is called Olson’s constant. Indeed, OlðGÞ is the analog of
DðGÞ (Davenport Constant) with no repetitions of elements of G: The name of this
constant was proposed in 1994, during a seminar held at Universidad Central de

Venezuela (Caracas), (see [12]) as a tribute to Olson and his work on this subject.
One of the first results on this constant is due to Szemerédi [16], who proved a

conjecture of Erdo+s and Heilbronn [8], namely that there exists a constant c such that

OlðGÞpc
ffiffiffi
n

p
where jGj ¼ n:

Conjecture 1 (Erdo+s and Graham [7]). If G is an abelian group of order n; then

OlðGÞp
ffiffiffiffiffi
2n

p
:

First, let us note that OlðZ2nÞXn þ OlðZnÞ � 1: For, let fa1; a2;y; aOlðZnÞ�1g be a
subset of Zn such that it contains no non-empty subset whose sum is zero (by
definition of OlðZnÞ). Consider the following subset:

S ¼ fð1; 0Þ; ð1; 1Þ;y; ð1; n � 2Þ; ð0; a1Þ; ð0; a2Þ;y; ð0; aOlðZnÞ�1Þg

Then jSj ¼ n þ OlðZnÞ � 2 and clearly, S contains no non-empty subset whose sum

is zero in Z2n: Therefore, OlðZ2nÞ4jSj ¼ n þ OlðZnÞ � 2:
Throughout this paper, let p always denote a prime. First Olson [13,14] showed

that OlðGÞp3
ffiffiffi
n

p
(here n ¼ jGj) and that OlðZpÞp2

ffiffiffi
p

p
: Best known result is due to

Hamidoune and Zémor [11] and they show that OlðZpÞpJ
ffiffiffiffiffi
2p

p
þ 5 log pn and that

OlðGÞpJ
ffiffiffiffiffi
2n

p
þ gðnÞn; where n ¼ jGj and gðnÞ ¼ Oðn1=3 log nÞ:More recently, Julio

C. Subocz G [12] proved that OlðZn
2Þ ¼ n þ 1 and OlðZn

3Þ ¼ 2n þ 1 for nX3: In
addition, he had supplied a table with the values of OlðGÞ for all abelian groups G

with orders p55:
In this paper, our main result is as follows.

Theorem 1.1. For any prime number p44:67� 1034; we have

OlðZ2pÞ ¼ p þ OlðZpÞ � 1

and hence OlðZ2pÞpp � 1þ J
ffiffiffiffiffi
2p

p
þ 5 log pn: In particular, Conjecture 1 is true for the

group G ¼ Zp"Zp for all primes p44:67� 1034:

Conjecture 2. For any integer nX3; and kX2 we have

OlðZk
nÞ ¼ n þ OlðZk�1

n Þ � 1:

By a result of [10, Corollary 7.4] we know that OlðZk
pÞ ¼ DðZk

pÞ ¼ kðp � 1Þ þ 1
provided that kX2p þ 1: Hence, Conjecture 2 holds for the case that kX2p þ 1:
Before we discuss further, we shall introduce notations once for all. By a sequence

S in G of length l; we mean a multi-set of G with cardinality (counting multiplicities)
l:We also denote this cardinality by jSj: For convenience, we write any sequence S in

G of length l as S ¼
Ql

i¼1 gi: Also, vgðSÞ denotes the number of times g appears in S:

Let sðSÞ ¼
Pl

i¼1gi: We denote any subsequence T of S by T j S: Also, if T is a
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subsequence of S; then the deleted sequence ST�1 is the sequence obtained by
removing from S the elements in T : Let SuppðSÞ be the set that consists of all distinct
elements in S: We say that the sequence S ¼

Ql
i¼1 gi in G is

* a zero sequence, if sðSÞ ¼ 0 in G: (We do not regard the empty sequence as a zero
sequence).

* a zero-free sequence, if none of its subsequences is a zero sequence.

For every 1pkpl; defineX
k

ðSÞ ¼ fgi1 þ gi2 þ?þ gik : 1pi1o?oikplg

and defineX
ðSÞ ¼ fgi1 þ gi2 þ?þ gis : 1pi1o?oispl; 1psplg:

Clearly,
P

ðSÞ ¼
Sl

k¼1
P

kðSÞ:
If S ¼

QpþOlðZpÞ�1
i¼1 ðai; biÞ is a sequence in Z2p; then p1ðSÞ ¼

QpþOlðZpÞ�1
i¼1 ai

(respectively, p2ðSÞ ¼
QpþOlðZpÞ�1

i¼1 bi) is the sequence in Zp where the elements ai

(respectively, bi) are simply the first (respectively, second) co-ordinates of S:We call
p1ðSÞ (respectively, p2ðSÞ) as the first (respectively, second) co-ordinate sequence of
S: One can write p1ðSÞ in the following form:

p1ðSÞ ¼ xm1

1 xm2

2 ?xmr
r y21y

2
2?y2uz1z2?zv;

where x1; x2;y; xr; y1; y2;y; yu; z1; z2;y; zv are pairwise distinct elements in Zp;

r; u; vX0; m1;m2;y;mrX3 are integers and m1 þ m2 þ?þ mr þ 2u þ v ¼
p þ OlðZpÞ � 1: Throughout this article, we shall freely use these constants r; u; v

without mentioning.
Also, for any subsequence Rjp1ðSÞ; we define the following;

h ¼ hðRÞ :¼ max fvgðRÞ: gAZpg:

In other words, h denotes the maximum number of times that an element appears in
R: In order to follow the same notation, we write subsets also in the product form as
we write for sequences and zero-sum subsets correspond to zero subsequences.

2. Preliminaries

In this section, we shall work-out some preliminaries for our main result.

Theorem 2.1 (Dias da Silva and Hamidoune [6], Alon et al. [2]). If A is a non-empty

subset of Zp and if 1pkpjAj; then

X
k

ðAÞ
�����

�����Xminfp; kðjAj � kÞ þ 1g:
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Theorem 2.2 (Dias da Silva and Hamidoune [6]). Let p43 be a prime. Let k ¼
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 7

p
� þ 1 and l ¼ ½k=2�: Let S be a subset of Zp of cardinality k: Then

P
lðSÞ ¼ Zp

Theorem 2.3 (Cauchy–Davenport Inequality, [4,5]). If A1;A2;y;Al are non-empty

subsets of Zp; then

jA1 þ A2 þ?þ Al jXmin p;
Xl

i¼1
jAij � l þ 1

( )
:

The following technical theorem is very crucial for our main result.

Theorem 2.4. Let

S ¼
Yl

i¼1
ðai; b

ðiÞ
1 Þ?ðai; bðiÞ

ni
Þ

be a subset of cardinality n1 þ?þ nl ¼ p þ OlðZpÞ � 1 in Z2p and a1; a2;y; al are

pairwise distinct. Let W ¼
Ql

i¼1 awi

i be a zero subsequence of p1ðSÞ; where 0pwipni

for each i ¼ 1; 2;y; l: If 1þ
Pl

i¼1wiðni � wiÞXp; then S contains a zero-sum subset.

Proof. Since S is a subset of Z2p; for every iAf1; 2;y; lg; we have b
ðiÞ
1 ;y; b

ðiÞ
ni are

pairwise distinct in Zp: Set Bi ¼ fb
ðiÞ
1 ; b

ðiÞ
2 ;y; b

ðiÞ
ni g for every i ¼ 1; 2;y; l: Then it

suffices to prove that

0A
X
w1

ðB1Þ þ
X
w2

ðB2Þ þ?þ
X

wl

ðBlÞ:

By Theorem 2.1, we see that for each i; we haveX
wi

ðBiÞ
�����

�����Xminfp;wiðni � wiÞ þ 1g: ð1Þ

Therefore, by Theorem 2.3, we haveX
w1

ðB1Þ þ
X
w2

ðB2Þ þ?þ
X

wl

ðBlÞ
�����

�����Xmin p;
X
w1

ðB1Þ
�����

�����þ?þ
X

wl

ðBlÞ
�����

������ l þ 1
( )

:

Therefore by (1), the left-hand side is at least

Xminfp; ðw1ðn1 � w1Þ þ 1Þ þ?þ ðwlðnl � wlÞ þ 1Þ � l þ 1g

¼minfp;w1ðn1 � w1Þ þ?þ wlðnl � wlÞ þ 1g

¼ p:

Therefore we haveX
w1

ðB1Þ þ?þ
X

wl

ðBlÞ ¼ Zp ) 0A
X
w1

ðB1Þ þ?þ
X

wl

ðBlÞ:

Thus the theorem follows. &

ARTICLE IN PRESS
W.D. Gao et al. / Journal of Combinatorial Theory, Series A 107 (2004) 49–6752



Theorem 2.5. (1) If A;B are finite subsets of G; such that 0AA-B; and

0 ¼ a þ b; aAA; bAB implies a ¼ 0 ¼ b; then jA þ BjXjAj þ jBj � 1: [15,3]
(2) Let S be a zero-free sequence in G; and let S1;S2;y;Sr be disjoint subsequences

of S: ThenX
ðSÞ

��� ���XXr

i¼1

X
ðSiÞ

��� ���:
Proof of (2). Set Ai ¼ f0g,ð

P
ðSiÞÞ for i ¼ 1;y; r: Then ðA1 þ A2 þ?þ

ArÞ\f0gC
P

ðSÞ: It follows from (1) that j
P

ðSÞjXjA1 þ?þ Arj � 1 ¼ jðA1 þ?þ
Ar�1Þ þ Arj � 1XjA1 þ?þ Ar�1j þ jArj � 2X?XjA1j þ jA2j þ?þ jArj � r ¼Pr

i¼1j
P

ðSiÞj: &

Definition 2. Let G be a finite abelian group. For every integer kX1; we define

f ðG; kÞ ¼ min
X

ðSÞ
��� ���: S is a zero-free subset of G with jSj ¼ k
n o

;

and set f ðG; kÞ ¼ N if there is no subset of G of the above form.

Theorem 2.6 (Gao and Geroldinger [9]). Let nX4 be an integer. Let S be a zero-free

sequence in Zn: Then there exists an element gAZn such that

vgðSÞX
1

k � 1 jSj � n � k � 1
f ðZn; kÞ

� �
whenever jSjX n � k

f ðZn; kÞ þ 1
� �

k:

Theorem 2.7. Let p be a prime and k be an integer such that 2pkpOlðZpÞ � 1: Let S

be a zero-free sequence in Zp of length jSjX4kðp � kÞ=ðk2 þ 3Þ þ k: Then there exists

an element gAZp such that

vgðSÞX
1

k � 1 jSj � 4ðp � k � 1Þ
k2 þ 3

� �
:

Proof. Set l ¼ ½k
2
�: Then by Theorem 2.1, we have

f ðZp; kÞXlðk � lÞ þ 1Xk2 þ 3
4

:

Since jSjX4kðp�kÞ
k2þ3 þ kX p�k

f ðZp;kÞ þ 1
� �

k; the result follows by Theorem 2.6. &

Theorem 2.8. Let p be a prime, and q an integer with 2pqpp � 1: Let Q ¼
Qq

i¼1 ai be

a sequence in Zp\f0g: If j
P

ðQÞ\f0gjpq; then Q ¼ bað�bÞq�a
for some 0abAZp;

where q=2papq:

Proof. Clearly, it suffices to prove that aiAfa1;�a1g for every i ¼ 2;y; q: Assume
to the contrary that aiaa1;�a1 for some iAf2; 3;y; qg: Without loss of generality
we may assume that i ¼ 2: Then the elements 0; a1; a2; a1 þ a2 are pairwise distinct.
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Now by Theorem 2.3, we infer thatX
ðQÞ\f0g

��� ��� ¼ jðf0; a1g þ f0; a2g þ?þ f0; aqgÞ\f0gj

¼ jðf0; a1; a2; a1 þ a2g þ f0; a3g þ?þ f0; aqgÞ\f0gj

Xminfp; 4þ 2ðq � 2Þ � ðq � 2Þ � 1g ¼ q þ 1;

a contradiction. &

Theorem 2.9 (Bovey et al. [3]). Let n; k be two positive integers satisfying n � 2kX1:
Let S be a zero-free sequence in Zn of length n � k: Then there exists an element aAZn

such that vaðSÞXn � 2k þ 1:

3. Proof of Theorem 1.1

Lemma 3.2. Let p be any odd prime. Let S ¼
QpþOlðZpÞ�1

i¼1 ðai; biÞ be a subset

of Z2p of cardinality p þ OlðZpÞ � 1: If hðp1ðSÞÞXp; then S contains a zero-sum

subset.

Proof. Without loss of generality, we assume that a1 ¼ a2 ¼ ? ¼ ap: Since S is

subset of Z2p; the sequence b1; b2;y; bp runs through every residue classes modulo p:

Hence b1 þ b2 þ?þ bp ¼ 0 in Zp: Thus
Qp

i¼1ðai; biÞ is a zero-sum subset of S: &

Remark 3.3. (i) From the above lemma, it is enough to assume that hðp1ðSÞÞpp � 1;
and from now to Theorem 3.9 (except in Lemma 3.7) we always assume that
hðp1ðSÞÞXOlðZpÞ:
(ii) Let S ¼

QpþOlðZpÞ�1
i¼1 ðai; biÞ be a subset of Z2p of cardinality p þ OlðZpÞ � 1: If 0

occurs at least OlðZpÞ times in the sequence
QpþOlðZpÞ�1

i¼1 ai (similarly inQpþOlðZpÞ�1
i¼1 bi), then by the definition of OlðZpÞ; S contains a non-empty zero-sum

subset. So, we may always assume that 0 occurs at most OlðZpÞ � 1 times both inQpþOlðZpÞ�1
i¼1 ai and

QpþOlðZpÞ�1
i¼1 bi: Therefore, if some element a occurs at least OlðZpÞ

times in
QpþOlðZpÞ�1

i¼1 ai or
QpþOlðZpÞ�1

i¼1 bi; we always assume that aa0:
Without loss of generality we can assume that 1 is repeated h ¼ hðp1ðSÞÞ times.

Thus, by rearranging if necessary, we have

p1ðSÞ ¼ 0d�c�11hQ;

where 0pcpd � 1; d ¼ OlðZpÞ; and Q ¼
Qp�hþc

i¼1 ai is a sequence of length p � h þ c
with aiAZp\f0; 1g:
It is clear thatX

ðQÞ\f0g ¼ ðf0; a1g þ f0; a2g þ?þ f0; ap�hþcgÞ\f0g:
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Therefore, by Theorem 2.3, we haveX
ðQÞ\f0g

��� ���Xp � h þ c: ð2Þ

Lemma 3.4. Let pX367 be any prime number. Let S ¼
Qpþd�1

i¼1 ðai; biÞ be a subset of

Z2p: If h ¼ hðp1ðSÞÞ satisfies 2p
3
phop; then S contains a zero-sum subset.

Proof. We distinguish three cases.
Case 1: (cX3). By (2), we have j

P
ðQÞ\f0gjXp � h þ 3: Therefore, j

P
ðQÞ\f0gj þ

jfp � h þ 2; p � h þ 3;y; p � 2gjXp � h þ 3þ ðh � 3Þ ¼ p4jZp\f0gj: Hence,

ð
P

ðQÞ\f0gÞ-fp � h þ 2; p � h þ 3;y; p � 2ga|; i.e., there is a non-empty subset
ICf1; 2;y; p � h þ cg such thatX

iAI

aiAfp � h þ 2; p � h þ 3;y; p � 2g:

Now consider the following sequence:

W ¼ 1p�
P

iAI
ai
Y
iAI

ai;

which is a zero subsequence of p1ðSÞ: Since p �
P

iAI aiAf2; 3;y; h � 2g; we have

p �
X
iAI

ai

 !
h � p �

X
iAI

ai

 ! !
þ 1X2ðh � 2Þ þ 1Xp:

Therefore, by Theorem 2.4, the result follows.

Case 2: ð1pcp2Þ: Set t ¼ d�1�c
2

� �
: By (2), we have j

P
ðQÞ\f0gjXp � h þ 1:

Therefore, there is a non-empty subset ICf1; 2;y; p � h þ cg such thatX
iAI

aiAfp � h þ 1; p � h þ 2;y; p � 1g:

Therefore, we have p �
P

iAI aiAf1; 2;y; h � 1g: Now consider the sequence

W ¼ 0t1p�
P

iAI
ai
Y
iAI

ai;

which is a zero subsequence of p1ðSÞ: Since

tðd � 1� c� tÞ þ ðh � 1Þ þ 1X 2p

3
þ ðd � 1� cÞ2 � 1

4

X
2p

3
þ ð½

ffiffiffiffiffi
2p

p
� 1� � 3Þ2 � 1
4

Xp;

by Theorem 2.4 the result follows.
Case 3: (c ¼ 0) If j

P
ðQÞ\f0gjXp � h þ 1; then in a similar way to Case 2, we can

get the result. So, we may assume that j
P

ðQÞ\f0gj ¼ p � h: Then by Theorem 2.8, it

follows that Q ¼ bað�bÞp�h�a for some bAZp\f0; 1g; where p�h
2
papp � h: If a ¼

p � h; then by Theorem 2.9, we have 1h�1bp�h contains a non-empty zero
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subsequence, say, R: Clearly, R ¼ 1mbn with 1pmph � 1 and 1pnpp � h: By

setting, t ¼ d�1
2

� �
and W ¼ R0t; we see that the result follows in similar way to Case

2. So we may assume that app � h � 1: Since 2p=3ohpp � 1; either 1pp � bph �
1 or bph � 1: If p � bph � 1; then 1p�bb is a zero subsequence of 1h�1ba and by

setting t ¼ d�1
2

� �
and W ¼ 1p�bb0t; we can proceed to prove the result similar to

Case 2. If bph � 1; then 1bð�bÞ is a zero subsequence of 1h�1ð�bÞp�h�a: Setting

t ¼ ½d�12 � and W ¼ 1bð�bÞ0t; then we prove the result similar to the proof of

Case 2. &

Lemma 3.5. Let p4838 be any prime number and let S ¼
Qpþd�1

i¼1 ðai; biÞ be a subset of

Z2p of cardinality p þ d � 1: If h ¼ hðp1ðSÞÞ satisfying 2p
5
pho2p

3
; then S contains a

zero-sum subset.

Proof. Recall that d ¼ OlðZpÞ: We know, by the result in [11], that dp
ffiffiffiffiffi
2p

p
þ

5 log p: Since p4838; we infer that, p415ð
ffiffiffiffiffi
2p

p
þ 5 log pÞ415d: Hence, pX15d þ 1:

We distinguish five cases.
Case 1: (cX5). By (2), we have j

P
ðQÞ\f0gjXp � h þ 5: Therefore, there is a non-

empty subset ICf1; 2;y; p � h þ cg such thatX
iAI

aiAfp � h þ 3; p � h þ 4;y; p � 3g:

Now consider the sequence

W ¼ 1p�
P

iAI
ai
Y
iAI

ai;

which is a zero subsequence of p1ðSÞ: Since

p �
X
iAI

ai

 !
h � p �

X
iAI

ai

 ! !
þ 1X3ðh � 3Þ þ 1Xp;

the result follows from Theorem 2.4.

Case 2: (3pcp4). Set t ¼ d�1�c
2

� �
: By (2), we have j

P
ðQÞ\f0gjXp � h þ 3:

Therefore, there is a non-empty subset ICf1; 2;y; p � h þ cg such thatX
iAI

aiAfp � h þ 2; p � h þ 3;y; p � 2g:

Now consider the sequence

W ¼ 0t1p�
P

iAI
ai
Y
iAI

ai;
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which is a zero subsequence of p1ðSÞ: Since

2ðh � 2Þ þ tðd � 1� c� tÞX 2
2p

5
� 2

� �
þ ðd � 1� cÞ2 � 1

4

X
4ðp � 5Þ
5

þ ð½
ffiffiffiffiffi
2p

p
� 1� � 5Þ2 � 1
4

Xp;

the result follows from Theorem 2.4.
Case 3: (c ¼ 2). If j

P
ðQÞ\f0gjXp � h þ 3; then the result follows by Case 2. So,

we may assume that j
P

ðQÞ\f0gj ¼ p � h þ 2: By Theorem 2.8, it follows that Q ¼
bað�bÞp�hþ2�a for some bAZp\f0; 1g; where p�hþ2

2
papp � h þ 2: If app � h � 2 ¼

ðp � h þ 2Þ � 4; then W ¼ b4ð�bÞ4 is a zero subsequence of Q: Since 4ða� 4Þ þ
4ðp � h þ 2� a� 4Þ þ 1 ¼ 4ðp � h � 6Þ þ 1X4ðp=3� 6Þ þ 1Xp; by Theorem 2.4 we
get the result. So we can assume that p � h � 1papp � h þ 2: Consider the
subsequence 1h�1bp�h�2 of the sequence 1h�1ba�1: Since 2p=5pho2p=3; we infer
that, p � 2� 3þ 1 ¼ p � 54maxfh � 1; p � h � 2g: It follows from Theorem 2.9

that, 1h�1bp�h�2 contains a zero subsequence of the form 1mbn with 1pmph � 1 and
1pnpp � h � 2pa� 1: Set t ¼ ½d�3

2
� and W ¼ 0t1mbn: Now since, mðh � mÞ þ

nða� nÞ þ tðd � 3� tÞ þ 1Xðh � 1Þ þ ða� 1Þ þ tðd � 3� tÞ þ 1Xp � 1þ tðd � 3�
tÞ þ 14p; once again the result follows from Theorem 2.4.

Case 4: (c ¼ 1). By (2), we have j
P

ðQÞ\f0gjXp � h þ 1: Therefore, there is a non-
empty subset ICf1; 2;y; p � h þ 1g such that

P
iAI aiAfp � h þ 1; p � h þ

2;y; p � 1g: In this case, the sequence is

S ¼
Yp�hþ1

i¼1
ðai; biÞ

Yp�hþd�1

i¼p�hþ2
ð0; biÞ

Ypþd�1

i¼p�hþd

ð1; biÞ:

Now consider the sequence

W ¼ 1p�
P

iAI
ai
Y
iAI

ai;

which is a zero subsequence of p1ðSÞ: Put q ¼ p �
P

iAI ai and hence qAf1; 2;y; h �
1g: Since ai ¼ 1 for all iAfp þ d � h; p þ d � h þ 1;y; p þ d � 1g; the correspond-
ing second co-ordinates bi’s are pairwise distinct. Let

A0 ¼ fbpþd�h; bpþd�hþ1;y; bpþd�1g:

Then by letting

A ¼
X
iAI

bi þ
X

q

ðA0Þ ¼
X
iAI

bi þ b : bA
X

q

ðA0Þ
( )

;

and recalling that pX15d þ 1 we see that

jAjXh4
2p

5
4

p

3
þ 2þ ðd � 2Þ:
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Setting

B ¼ A\fbp�hþ2; bp�hþ3;y; bp�hþd�1g; we have jBjXp

3
þ 2:

It follows from Theorem 2.1 thatX
2

ðBÞ
�����

�����X2 p

3
þ 2� 2

� �
þ 1 ¼ 2p

3
þ 1:

Therefore, B-
P
2ðBÞa|: That is, there are two distinct elements c1; c2AB such that

c1 þ c2AB: By the definition of B; there are two subsequences S1 and S2 of S such
that the first co-ordinate sequences of S1 as well as S2 are of the form

1p�
P

iAI
ai
Q

iAI ai; and such that sðS1Þ ¼ ð0; c1Þ and sðS2Þ ¼ ð0; c2Þ: Set U ¼
ð0; c1Þð0; c2Þ

Qp�hþd�1
i¼p�hþ2 ð0; biÞ: Since c1 þ c2AB; we have

P
ðUÞC

P
ðSÞ: But jU j ¼

d ¼ OlðZpÞ; by the definition of OlðZpÞ; we see that ð0; 0ÞA
P

ðUÞC
P

ðSÞ:
Case 5: (c ¼ 0). If j

P
ðQÞ\f0gjXp � h þ 1; then similar to the proof of Case 4, one

can prove the theorem. So, we may assume that j
P

ðQÞ\f0gj ¼ p � h: Therefore, by

Theorem 2.8, we see that Q ¼ bað�bÞp�h�a for some bAZp\f0; 1g; where p�h
2
papp �

h: Thus we get the result in a similar way to the proof of Case 3. &

Lemma 3.6. Let p45� 107 be any prime number. Let S ¼
Qpþd�1

i¼1 ðai; biÞ be a subset

of Z2p: If h ¼ hðp1ðSÞÞ satisfies p
360

pho2p
5
; then S contains a zero-sum subset.

Proof. We distinguish two cases.
Case 1: (cX721). By (2), we have j

P
ðQÞ\f0gjXp � h þ 721: Therefore, there is a

non-empty subset ICf1; 2;y; p � h þ cg such that
P

iAI aiAfp � h þ 361; p � h þ
362;y; p � 361g: Now consider the sequence

W ¼ 1p�
P

iAI
ai
Y
iAI

ai

which is a zero subsequence of p1ðSÞ: Since p �
P

iAI aiAf361; 362;y; h � 361g and
p45� 107 we have

p �
X
iAI

ai

 !
h � p �

X
iAI

ai

 ! !
þ 1X361ðh � 361Þ þ 1Xp:

Therefore, by Theorem 2.4, the result follows.
Case 2: (0pcp720). If j

P
ðQÞ\f0gjXp � h þ 721; then similar to the proof of Case

1, one can get the result. So, we may assume that j
P

ðQÞ\f0gjpp � h þ 720: Let t be
the largest integer such that there are t disjoint subsequences

fc1; d1g; fc2; d2g;y; fct; dtg of Q ¼
Qp�hþc

i¼1 ai such that cia7di holds for every

i ¼ 1; 2;y; t: Let the deleted sequence be

Q
Yt

i¼1
cidi

 !�1

¼
Yp�hþc�2t

i¼1
ei:
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By the Cauchy–Davenport theorem (Theorem 2.3), we infer that

X
ðQÞ,f0g

��� ���X Xt

i¼1
jf0; ci; di; ci þ digj

þ
Xp�hþc�2t

i¼1
jf0; eigj � t � ðp � h þ c� 2tÞ þ 1

¼ 4t þ 2ðp � h þ c� 2tÞ � t � ðp � h þ c� 2tÞ þ 1

¼ p � h þ cþ t þ 1:

Since j
P

ðQÞ\f0gjpp � h þ 720; we have t þ cp720 and hence tp720: Therefore, we
get

p � h þ c� 2tXp � h � 1440:

Also, by the maximality of t; we derive that

Yp�hþc�2t

i¼1
ei ¼ gmð�gÞn

for some gAZp\f0g; where mXnX0 and m þ n ¼ p � h þ c� 2t: Since n ¼ p � h þ
c� 2t � m and mpho2p

5
; we have

nXp � h � 1440� 2p
5
4

p

5
� 1440:

Set w ¼ n
2

� �
and form the zero subsequence W ¼ gwð�gÞw of p1ðSÞ: Since 2wðn �

wÞ4p; the result follows from Theorem 2.4. &

Lemma 3.7. Let pX5:2� 105 be any prime number. Let S ¼
QpþOlðZpÞ�1

i¼1 ðai; biÞ be a

subset of Z2p: If h ¼ hðp1ðSÞÞop=360 and r þ u þ vpp=12; then S contains a zero-sum

subset.

Proof. Consider the sequence

W ¼ xm1�2
1 xm2�2

2 ?xmr�2
r y1y2?yuz1z2?zv

which is a subsequence of p1ðSÞ: Let R be the maximal zero subsequence ofW : Then

WR�1 is a zero-free sequence. If jWR�1j4p=4; then by letting k ¼ 361 in Theorem
2.7 we get, hðWR�1ÞXp=360; a contradiction on hðWÞop=360: Therefore,

jWR�1jop=4; and jRj4jW j � p=4 ¼ p þ d � 1� 2r � u � p=4: Write R ¼
cl1
1 cl2
2?clt

t ctþ1?cs; where c1; c2;y; cs are pairwise distinct and 2plipmji � 2 for
every i ¼ 1; 2;y; t: Without loss of generality, we may assume that ji ¼ i for i ¼
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1; 2;y; t: Note that

1þ
Xt

i¼1
liðmi � liÞX1þ

Xt

i¼1
2ðmi � 2Þ

X1þ 2ðm1 þ m2 þ?þ mtÞ � 4tX1þ 2ðl1 þ 2þ?þ lt þ 2Þ � 4t

¼ 1þ 2ðl1 þ l2 þ?þ ltÞ ¼ 1þ 2ðjRj � s þ tÞ

X1þ 2ðp þ d � 1� 2r � u � p=4� ðs � tÞÞ

Xp þ p þ 2d � 1� 4r � 2u � 2ðr þ u þ vÞ � p=2Þ

4p þ p � 6ðr þ u þ vÞ � p=2

Xp þ p � p=2� p=2Xp:

Now, by Theorem 2.4 the result follows. &

Lemma 3.8. Let p4600 be any prime number. Let S ¼
QpþOlðZpÞ�1

i¼1 ðai; biÞ be a subset

of Z2p: Let k ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 7

p
� þ 1: If hðp1ðSÞÞXk þ 1 and r þ u þ vXp=12; then S contains

a zero-sum subset.

Proof. Since p4600; we have r þ u þ vXp=124k: Without loss of generality, we
may assume that a1; a2;y; ak are pairwise distinct. Set l ¼ ½k=2� and A ¼
fa1; a2;y; akg: By Theorem 2.2, we have

P
lðAÞ ¼ Zp: Since hðp1ðSÞÞXk þ 1; the

deleted sequence p1ðSÞA�1 contains some element a (say) with vaðp1ðSÞA�1ÞXh �
1Xk: Without loss of generality, we may assume that akþ1 ¼ akþ2 ¼ ? ¼ akþh�1 ¼
a: Then the corresponding second co-ordinates bkþ1; bkþ2;y; bkþh�1 are pairwise
distinct in Zp: Let B ¼ fbkþ1; bkþ2;y; bkþh�1gCZp: Then again by Theorem 2.2, we

see that
P

lðBÞ ¼ Zp:

Let a ¼ la: Since
P

lðAÞ ¼ Zp; there is a subset ICf1; 2;y; kg such that aþP
iAI ai ¼ 0 and jI j ¼ l: Let b ¼

P
iAI bi: Now since

P
lðBÞ ¼ Zp; there is a subset

JCfk þ 1; k þ 2;y; k þ h � 1g such that bþ
P

jAJbj ¼ 0 and jJj ¼ l: Therefore,Y
iAI

ðai; biÞ
Y
jAJ

ða; bjÞ

is a zero-sum subset of S: &

Theorem 3.9. Let pX5� 107 be any prime. Let S ¼
QpþOlðZpÞ�1

i¼1 ðai; biÞ be a subset

of Z2p of cardinality p þ OlðZpÞ � 1: Let k ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 7

p
� þ 1 be a positive integer. If

h ¼ hðp1ðSÞÞXk þ 1; then S contains a zero-sum subset.

Proof. Proof follows from Lemmas 3.2, 3.4, 3.5, 3.6, 3.7 and 3.8. &

Theorem 3.10. Let M be a given positive integer. Let pXð3MÞ6=7 be a prime number.

Let SCZ2p be of cardinality jSj ¼ n such that nX3Mp5=6: Suppose that jS-ðH þ
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xÞjpM holds for all subgroups H of order p and all xAZ2p: Then S is not a zero-free

subset.

Note: In the statement of Theorem 3.10, the assumption nX3Mp5=6 makes sense

because as pXð3MÞ6=7; we have 3Mp5=6pp2 ¼ jZp"Zpj:

Proof. Put

f ðgÞ ¼
Y
sAS

ð1þ gðsÞÞ ¼ 1þ
X

xA
P

ðSÞ

nðxÞgðxÞ;

where g is any character of the group Z2p; and the positive integer nðxÞ stand for the
number of times the element x is represented as a subset sum. If S is a zero-free
subset, then we haveX

g

f ðgÞ ¼ p2:

Now this sum has a main term coming from the principal character g0 and which is
2n: We estimate the other terms.
Suppose gag0: Values of g are of the form expð2pij=pÞ; and if gðsÞ ¼ expð2pij=pÞ;

then

j1þ gðsÞj ¼ 2 cos pj=p:

If jxjop=2; then cos xpexpð�x2=2Þ and so assuming j jjop=2; we get

j1þ gðsÞjp2 expð�cð j=pÞ2Þ

with c ¼ p2=2:
Each value of j corresponds to a coset of a subgroup of order p: Thus it can occur

for at most M values of s: Write

n ¼ ð2k � 1ÞM þ q; 0pqo2M:

We get the largest possible value of j f ðgÞj when j takes the values 0; 1;�1;y; k � 1;
�ðk � 1Þ each M times and the remaining q values are split between k and �k: In
this situation the above inequalities yield

j f ðgÞjp2n expð�ct=p2Þ;
where

t ¼ 2Mð12 þ 22 þ?þ ðk � 1Þ2Þ þ qk2:

A simple calculation gives

tX
nðn2 � M2Þ
12M2

;

with equality when q ¼ 0: So we getX
g

f ðgÞXf ðg0Þ �
X
gag0

j f ðgÞjX2nð1� ðp2 � 1Þ expð�ct=p2ÞÞ:
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Since nX3Mp5=6;

expðct=p2Þ42p2;

and the above formula gives
P

g f ðgÞ42n�1: By the choice of n; we have n41þ
ð2=log 2Þ log p giving

P
g f ðgÞ4p2; a contradiction. Hence the theorem. &

Corollary 3.11. Let M ¼ 105 and a prime number p44:67� 1034: Let SCZ2p be of

cardinality jSj ¼ ðp � 1Þ=2: Suppose that jS-ðH þ xÞjpM holds for all subgroups H

of order p and all xAZ2p: Then S contains a zero-sum subset.

Proof. Putting M ¼ 105; p44:67� 1034 and n ¼ ðp � 1Þ=2 in Theorem 3.10 we get
the result. &

Theorem 3.12. Let p44:67� 1034 be any prime. Let S ¼
QpþOlðZpÞ�1

i¼1 ðai; biÞ be a

subset of Z2p of cardinality p þ OlðZpÞ � 1: Suppose that jS-ðH þ xÞjpk holds for all

subgroups H of order p and all xAZ2p; where k ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 7

p
� þ 1: Then S contains a

zero-sum subset.

Proof. Assume to the contrary that S is a zero-sum free set. Then fðSÞ is zero-sum
free set for every automorphism f over Z2p: Thus, we can choose a suitable

automorphism f such that the sequence p1ðfðSÞÞ has minimal possible distinct
elements of Zp: In other words, we can choose an automorphism f such that fðSÞ
has the minimal possible value for u þ v þ r: For convenience, we denote fðSÞ still
by S: Set d ¼ OlðZpÞ: Note that by the choice of p and hypothesis, we have

hðp1ðSÞÞop=360: Therefore, if u þ v þ rop=12; then by Lemma 3.7, we can derive
that S contains a zero-sum subset. So, we can assume that for any automorphism f
over Z2p; we have

u þ v þ rXp=12:

Without loss of generality, we may assume that a1; a2;y; a½p=12�þ1 are distinct. Let

A ¼ fa1; a2;y; a½p=12�þ1g; m ¼ 3� 107; and n ¼ m
1500

:

Let tX0 be the largest integer such that there are tm disjoint subsets I1; I2;y; Itm

of f1; 2;y; p þ d � 1g satisfying that,

(1) jIjj ¼ n for every j ¼ 1; 2;y; tm:

(2)
P

lAIj
al ¼ 0 for every j ¼ 1; 2;y; tm; and

(3)
P

lAIwmþ1
bl ;

P
lAIwmþ2

bl ;y;
P

lAIwmþm
bl are pairwise distinct for every w ¼

0; 1;y; t � 1:

(If there is no disjoint subsets satisfying (1), (2) and (3) then set t ¼ 0).
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Let

Bw ¼
X

lAIwmþ1

bl ;
X

lAIwmþ2

bl ;y;
X

lAIwmþm

bl

( )

for every w ¼ 0; 1;y; t � 1 and n ¼ m=2 ¼ 15� 106: By Theorem 2.1, we have

X
n

ðBwÞ
�����

�����XnðjBwj � nÞ þ 1 ¼ m2 þ 4
4

holds for every w ¼ 0; 1;y; t � 1: Since S is zero-sum free set in Z2p (by our

assumption), B0B1?Bt�1 is a zero-sum free sequence in Zp of length tm: Therefore,

by Theorem 2.5, we derive that

t
m2 þ 4
4

p
X

n

ðB0Þ
�����

�����þ X
n

ðB1Þ
�����

�����þ?þ
X

n

ðBt�1Þ
�����

�����
p
X

ðB0Þ
��� ���þ X

ðB1Þ
��� ���þ?þ

X
ðBt�1Þ

��� ���
p
X

ðB0B1?Bt�1Þ
��� ���op:

This implies

to
4p

m2 þ 4:

Let T1 ¼ p1ðSÞð
Q

iAK aiÞ�1 and A1 ¼ A\Suppð
Q

iAK aiÞ; where K ¼
Stm

j¼1 Ij: Then

jA1jXjAj � jK jX p

12

h i
þ 1� nmt4

p

12
� 4m2p

1500ðm2 þ 4Þ4
2p

25
þ nðm � 1Þ: ð3Þ

Set f1 ¼ jA1j: Without loss of generality, we may assume that
A1 ¼ fa1; a2;y; af1g

and hence f14
2p
25
þ nðm � 1Þ: Hence by Theorem 2.1, we can get j

P
nðA1Þj ¼ p which

would imply there exists a subset I of f1; 2;y; f1g of cardinality n such thatP
iAI ai ¼ 0 in Zp:

Let w1X1 be the largest integer such that there are w1 disjoint subsets
J1; J2;y; Jw1 of T1 satisfying the following conditions;

ð1Þ0 jJl j ¼ n for every l ¼ 1; 2;y;w1;
ð2Þ0

P
qAJl

aq ¼ 0 for every l ¼ 1; 2;y;w1; and

ð3Þ0
P

lAJ1
bl ;

P
lAJ2

bl ;y;
P

lAJw1
bl are pairwise distinct.

Set

B ¼
X
lAJ1

bl ;
X
lAJ2

bl ;y;
X

lAJw1

bl

8<
:

9=
;:
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By the maximality of t; we see that jBj ¼ w1pm � 1: Let T2 ¼ T1ð
Q

iAL aiÞ�1 and
A2 ¼ A1\Suppð

Q
iAL aiÞ; where L ¼

Sw1
l¼1 Jl : Then

jA2jXjA1j � jLjXjA1j � nw14
2p

25
:

Without loss of generality, we may assume that

A2 ¼ fa1; a2;y; af2g

and hence f242p=25:
Let E ¼ f1; 2;y; p þ d � 1g\ðK,LÞ: If I is a subset of E such that jIj ¼ n andP
lAIal ¼ 0; then by the maximality of w1; we derive thatX

lAI

blAB:

Now, for every gAZp; we define

Fg ¼
X
jAO

bj: OCE; jOj ¼ n
2
;
X
jAO

aj ¼ g

( )
:

We claim that

jFgjpm � 1 holds for every gAZp: ð4Þ

Assume the contrary that jFgjXm: Then there are m subsets L1;L2;y;Lm (not

necessary disjoint) of E such that jLij ¼ n=2 with
P

lALi
al ¼ g holds for every

i ¼ 1; 2;y;m and such that
P

lAL1
bl ;
P

lAL2
bl ;y;

P
lALm

bl are pairwise distinct.

Since

f1; 2;y; f2g
[m
i¼1

Li

- �����X2p25� nm=24
3p

38

����� ;

by Theorem 2.1, there is a subset JCf1; 2;y; f2g\
Sm

i¼1 Li such that jJj ¼ n=2 andP
lAJal ¼ �g: Hence jJ,Lij ¼ n and

P
lAJ,Li

al ¼ 0 for every i ¼ 1; 2;y;m:

Therefore, by the maximality of w1; we have
P

lAJbl þ
P

lALi
blAB holds for every

i ¼ 1; 2;y;m: Since jFgjXm; we see that
P

lAJbl þ
P

lALi
bl (for all l ¼ 1; 2;y;m)

are pairwise distinct. Therefore, jBjXm which is a contradiction. This proves (4).
Now, let S2 ¼

Q
iAEðai; biÞ; then T2 ¼ p1ðS2Þ: Set t2 ¼ jT2j: Without loss of

generality, we may assume that T2 ¼
Qt2

i¼1 ai: From (4), we derive that

sðRÞ: RjS2; jRj ¼ n
2

n o��� ���pðm � 1Þp: ð5Þ

For any automorphism f over Z2p; we write fðS2Þ ¼
Qt2

i¼1ðai; biÞ (here we still
write the elements of fðS2Þ by ðai; biÞ). Write T2 ¼ xk1

1 ?xkc
c with

k1Xk2X?XkcX1; k1 þ k2 þ?þ kc ¼ t2 and x1; x2;y; xc are pairwise distinct.
We distinguish two cases.

Case 1: (There is an automorphism f over Z2p so that k14 m
300

Þ: In this case,
k14105: Denote fðS2Þ still by S2: First we shall prove that there is an element gAZp
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such that

jKgjXm; ð6Þ

where Kg ¼ f
P

jAO bj : OCf1; 2;y; t2g; jOj ¼ n
4
;
P

jAOaj ¼ gg:
We shall re-write S2 as follows;

S2 ¼
Yc
i¼1

ððxi; y
ðiÞ
1 Þ?ðxi; y

ðiÞ
ki
ÞÞ:

Let g ¼ sðx6001 x2?xn
4
�599Þ ¼ 600x1 þ x2 þ?þ xn

4
�599:

Since S2 is a subset of Z
2
p; for every iAf1; 2;y; cg; we have y

ðiÞ
1 ; y

ðiÞ
2 ;y; y

ðiÞ
ki
are

pairwise distinct in Zp: Set Mi ¼ fy
ðiÞ
1 ; y

ðiÞ
2 ;y; y

ðiÞ
ki
g for every i ¼ 1; 2;y; c: Since

c ¼ jSuppðT2ÞjXjA2j42p=25Xn
4
� 599; by Theorem 2.1, we have

jKgjX
X
600

ðM1Þ þ
X
1

ðM2Þ þ?þ
X
1

ðMn
4
�599Þ

�����
�����X X

600

ðM1Þ
�����

�����
X 600ðk1 � 600Þ þ 1

X 600
m

300
� 600

� �
þ 14m

and this proves (6).
Now one can choose m subsets J1; J2;y; Jm (not necessary disjoint) of

f1; 2;y; t2g such that
P

jAJ1
bj;
P

jAJ2
bj ;y;

P
jAJm

bj are pairwise distinct with jJ1j ¼
? ¼ jJmj ¼ n=4 and

P
jAJ1

aj ¼ ? ¼
P

jAJm
aj ¼ g:

Let U ¼
Qt2

i¼1 aið
Q

jAJ1,?,Jm
ajÞ�1: Then

jSuppðUÞjX jA2j � jJ1,?,Jmj

X
2p

25
� mn
4

4
3p

38
:

Therefore, using Theorem 2.1, we arrive atX
n=4

ðUÞ ¼ Zp: ð7Þ

Let z1 be an arbitrary element of Zp; then we can write z1 ¼ g þ g1 for some g1AZp:

By (7), there exists k1Cf1; 2;y; t2g\
Sm

i¼1 Ji

# $
such that jkj ¼ n=4 and

P
iAk1ai ¼ g1:

Therefore, we get z1 ¼
P

iAk1ai þ
P

jAJ1
aj ¼ ? ¼

P
iAk1ai þ

P
jAJm

aj and such that

the sums of their corresponding second co-ordinates
P

iAk1bi þP
jAJ1

bj;y;
P

iAk1bi þ
P

jAJm
bj are pairwise distinct. Therefore, in this case we get
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jFz1 jXm: As z1 is arbitrary, we have jFzjXm for every zAZp and hence, we get

sðRÞ: RjS2; jRj ¼ n
2

n o��� ���Xmp;

which contradicts (5). Hence in this case, S cannot be a zero-sum free set.

Case 2: (For every automorphism f over Z2p we always have k1p m
300

¼ 105).
Clearly, jS2j ¼ jEj ¼ p þ d � 1� jK,LjXp þ d � 1� jK j � jLj: By (3), we know
that ½p=12� þ 1� nmt42p=25þ nðm � 1Þ: Therefore, we have

jK j þ jLjpnmt þ nðm � 1Þo p

12

h i
þ 1� 2p

25
p

p

300
þ 1:

Hence,

jS2jXp þ d � 1� p

300
� 1Xp � 1

2
:

Since p44:67� 1034 and conditions of Corollary 3.11 are satisfied, we see that S2
and therefore S cannot be a zero-sum free set. Hence the theorem. &

Proof of Theorem 1.1. Let p44:67� 1034 be any prime number. Let S be a subset of

Z2p of cardinality p � 1þ OlðZpÞ: Set k ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p � 7

p
� þ 1: If there is an automorphism

f over Z2p such that the first co-ordinate sequence of fðSÞ contains some element at
least k þ 1 times, then the main theorem follows from Theorem 3.9. Otherwise,

jS-ðH þ xÞjpk holds for all subgroups H of order p and all xAZ2p: Then by

Theorem 3.12, S contains a zero subsequence. &
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