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Abstract

Let G be a finite abelian group. By OI(G), we mean the smallest integer ¢ such that every
subset A = G of cardinality ¢ contains a non-empty subset whose sum is zero. In this article, we
shall prove that for all primes p>4.67 x 10%, we have 0/(Z,®Z,) = p + 0l(Z,) — 1 and
hence we have O/(Z,®Z,)<p— 1+ [+/2p+5logp]. This, in particular, proves that a
conjecture of Erdds (stated below) is true for the group Z, ®Z, for all primes p>4.67 x 103,
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite abelian group (written additively). Then G = Z,,, ®Z,, ® --- ® Z,,
with 1 <nj|my|---|n,, where n, = exp(G) = n is the exponent of G and where r is the
rank of G. When n; = n, = --- = n, = n, then we denote the group 7, &7, ® --- &7,

r times

by Z,,.

Definition 1. By O/(G) we denote the smallest positive integer ¢ such that every
subset of G of cardinality ¢ contains a non-empty subset whose sum is the identity
element of G.
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This constant, OI/(G), is called Olson’s constant. Indeed, O/(G) is the analog of
D(G) (Davenport Constant) with no repetitions of elements of G. The name of this
constant was proposed in 1994, during a seminar held at Universidad Central de
Venezuela (Caracas), (see [12]) as a tribute to Olson and his work on this subject.

One of the first results on this constant is due to Szemerédi [16], who proved a
conjecture of Erdos and Heilbronn [8], namely that there exists a constant ¢ such that
OIl(G)< cy/n where |G| = n.

Conjecture 1 (Erdés and Graham [7)). If G is an abelian group of order n, then
Ol(G)<V2n.

First, let us note that 0](Zi)>n + 0Il(Z,) — 1. For, let {a1,az, ..., apiz,)-1} be a
subset of Z, such that it contains no non-empty subset whose sum is zero (by
definition of OI/(Z,)). Consider the following subset:

S={(1,0),(1,1),...,(1,n = 2),(0,a1), (0,a2), ..., (0,a01z,)-1)}
Then |S| =n+ OI(Z,) — 2 and clearly, S contains no non-empty subset whose sum
is zero in Z2. Therefore, OI(Z2)>|S| = n+ 0l(Z,) — 2.

Throughout this paper, let p always denote a prime. First Olson [13,14] showed
that O/(G)<3+/n (here n = |G|) and that O/(Z,) <2,/p. Best known result is due to
Hamidoune and Zémor [11] and they show that O/(Z,)<[/2p + 5logp | and that
Ol(G)<[V2n+ y(n)], where n = |G| and y(n) = O(n'/* log n). More recently, Julio
C. Subocz G [12] proved that Ol(Z}) =n+1 and Ol(Z5) =2n+1 for n=3. In
addition, he had supplied a table with the values of O/(G) for all abelian groups G

with orders <55.
In this paper, our main result is as follows.

Theorem 1.1. For any prime number p>4.67 x 10°*, we have
0l(Z;) = p+ 0I(Z,) — 1

and hence 01(112,) <p-—1+4[+2p+5logp]. Inparticular, Conjecture 1 is true for the
group G = Z,®Z, for all primes p>4.67 x 10%*.

Conjecture 2. For any integer n=3, and k=2 we have
ol(Zy) =n+0l(Zy™") — 1.

By a result of [10, Corollary 7.4] we know that OZ(Z’;) = D(Z’;) =k(p—1)+1
provided that £>2p + 1. Hence, Conjecture 2 holds for the case that k=2p + 1.
Before we discuss further, we shall introduce notations once for all. By a sequence
S in G of length /, we mean a multi-set of G with cardinality (counting multiplicities)
1. We also denote this cardinality by |S|. For convenience, we write any sequence S in
G of length / as S = ]_[f:1 gi- Also, v,y(S) denotes the number of times g appears in S.

Let a(S) = 252191* We denote any subsequence 7 of S by T'|S. Also, if T is a
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subsequence of S, then the deleted sequence ST~! is the sequence obtained by
removing from S the elements in 7. Let Supp(.S) be the set that consists of all distinct

elements in S. We say that the sequence S = Hi:l giin G is

® a zero sequence, if ¢(S) = 0in G. (We do not regard the empty sequence as a zero
sequence).
® a zero-free sequence, if none of its subsequences is a zero sequence.

For every 1 <k</, define

> (S) ={gi + g+ - +gi: 1<in<-- <ix<l}
k

and define
D (S) ={gn + 9 + - +gi: 1<ii < <is<L1<s<}.

Clearly, 3(8) = Uy Z4(S).

If S= H’HOZ% (ai, b;) is a sequence in Z;, then =(S) = Hp+0[
(respectively, m,(S) = H” +ouz lb,~) is the sequence in Z, where the elements g;
(respectively, b;) are 51mply the first (respectively, second) co-ordinates of S. We call

71 (S) (respectively, 7,(S)) as the first (respectively, second) co-ordinate sequence of
S. One can write 7;(S) in the following form:

my . m my 2 2 2
n](S) = xl 1x22...xr ylyz...yuZlZz...ZU7

where x1,X2, ..., X, V1,2, ..., Yu, 21, 22, ..., Zp are pairwise distinct elements in Z,,
rou,v=0, my,my,...,m.>=3 are integers and m;+my+ - +m+2u+v=
p+ OIl(Z,) — 1. Throughout this article, we shall freely use these constants r,u,v
without mentioning.

Also, for any subsequence R|x;(S), we define the following;

h = h(R) =max {vy(R): geZ,}.
In other words, /1 denotes the maximum number of times that an element appears in
R. In order to follow the same notation, we write subsets also in the product form as
we write for sequences and zero-sum subsets correspond to zero subsequences.
2. Preliminaries

In this section, we shall work-out some preliminaries for our main result.

Theorem 2.1 (Dias da Silva and Hamidoune [6], Alon et al. [2]). If 4 is a non-empty
subset of 7, and if 1<k<|A|, then

> ()

k

>min{p, k(|4] — k) + 1}.
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Theorem 2.2 (Dias da Silva and Hamidoune [6]). Let p>3 be a prime. Let k =
[VAp =T+ Land | = [k/2]. Let S be a subset of Z,, of cardinality k. Then ) _,(S) = Z,

Theorem 2.3 (Cauchy—Davenport Inequality, [4,5]). If 41, A>, ..., A; are non-empty
subsets of Z,, then

/
Ay + Ay + - +Al>min{p,z |4;| — 1+ 1}.
i=1

The following technical theorem is very crucial for our main result.

Theorem 2.4. Let
S = (ai, b a,,b;'))
i=1
be a subset of cardinality ny + --- +m =p+ 0Il(Z,) — 1 in Zz and ay,ay, ...,q; are

pairwise distinct. Let W = H, ,a;’ be a zero subsequence of m(S), where 0<w;<n;

foreachi=1,2,... L If1+ Zizlwi(ni — w;)=p, then S contains a zero-sum subset.

Proof. Since S is a subset of le,, for every ie{l,2,...,1}, we have bgi), ...,b,g? are

pairwise distinct in Z,. Set B; = {bY),bg), ...,bﬁf;)} for every i =1,2,...,1. Then it
suffices to prove that

€Y (B)+> (B)+-+ > (B

Wi W) wy

By Theorem 2.1, we see that for each i, we have

> (Bi)|=min{p, wi(n; — w;) + 1}. (1)

w;i
>min{p, —1—0—1}‘

Therefore by (1), the left-hand side is at least
= min{p, (wi(ng —w))+ 1)+ -+ (w(m—w)+1)—1+1}

Therefore, by Theorem 2.3, we have

STBY+Y . B4+ (B)

wi w2 wy

2(31) +

wi

Z(Bl)

wy

=min{p,wi(n, —wi) + - +wi(ny —w;) + 1}

Therefore we have

S B+ +Y (B)=2,=0ed (B)+--+>_ (B).

wi wy wi wy

Thus the theorem follows. [



W.D. Gao et al. | Journal of Combinatorial Theory, Series A 107 (2004) 4967 53

Theorem 2.5. (1) If A,B are finite subsets of G, such that 0e AnB, and
0=a+b,acA,beB implies a=0=b, then |4+ B|>=|A4| + |B| — 1. [15,3]

(2) Let S be a zero-free sequence in G, and let Sy, S, ..., S, be disjoint subsequences
of S. Then

DICIES I

Proof of (2). Set A4;={0}u (> (S;)) for i=1,...,r. Then (41 + A+ -+
A N0} = (S). Tt follows from (1) that |>(S)|=|41 + - +A,| — 1 = |41 + -+
A )+ A = 12|41+ -+ A |+ A =22 Z|A| + Ao+ - + A —r=
Yiml20S)l O

Definition 2. Let G be a finite abelian group. For every integer k> 1, we define
f(G, k)= min{‘Z(S)‘: S is a zero-free subset of G with |S| = k},
and set f(G, k) = oo if there is no subset of G of the above form.

Theorem 2.6 (Gao and Geroldinger [9]). Let n>=4 be an integer. Let S be a zero-free
sequence in Z,. Then there exists an element ge Z,, such that

1 n—k—1 n—k
= — - )
04(S) - <|S| Tk > whenever |S)| (/(ka) + 1>k

Theorem 2.7. Let p be a prime and k be an integer such that 2<k<OI(Z,) — 1. Let S
be a zero-free sequence in Z,, of length |S|=4k(p — k)/(k* + 3) + k. Then there exists
an element ge Z, such that

| Ap—k—1)
U”(S)>k1<|5|_ K+3 )

Proof. Set / = [4]. Then by Theorem 2.1, we have

2
P2 )1k — 1)+ 135 4+3.

. 4k(p—k) —k
Since |S|>= 5 +k=> (f(pzp,k)

+ l)k, the result follows by Theorem 2.6. [

Theorem 2.8. Let p be a prime, and q an integer with2<q<p — 1. Let Q =[], a; be
a sequence in Z,\{0}. If |>_(0)\{0}|<gq, then Q =b*(—b)"" for some 0#beZ,,
where q/2<0<q.

Proof. Clearly, it suffices to prove that a;e{a;, —a,} for every i =2, ...,¢g. Assume
to the contrary that a;#a;, —a; for some ie{2,3, ..., q}. Without loss of generality
we may assume that i = 2. Then the elements 0,a, a;,a; + a, are pairwise distinct.



54 W.D. Gao et al. | Journal of Combinatorial Theory, Series A 107 (2004) 4967

Now by Theorem 2.3, we infer that
D@0} =1({0,@} + {0, @z}t + -+ +{0,a,})\{0}]
= |({O,a1,a2,a1 + az} + {0,(13} + -+ {O,aq})\{0}|
>min{p,4+2(¢g—-2)—(¢g—2)—1} =q+1,

a contradiction. [

Theorem 2.9 (Bovey et al. [3]). Let n, k be two positive integers satisfying n — 2k >1.
Let S be a zero-free sequence in Z,, of length n — k. Then there exists an element a€ Z,
such that v,(S)=n — 2k + 1.

3. Proof of Theorem 1.1

Lemma 3.2. Let p be any odd prime. Let S = HerOl Z)= ( i»bi) be a subset
of le, of cardinality p+ Ol(Z,) — 1. If h(ni(S))>=p, then S contains a zero-sum
subset.

Proof. Without loss of generality, we assume that @ =a, = --- = a,. Since S is
subset of Zﬁ, the sequence by, b, ..., b, runs through every residue classes modulo p.
Hence by + by + -+ + b, = 0in Z,. Thus [[?_, (a;, b;) is a zero-sum subset of S. [

Remark 3.3. (i) From the above lemma, it is enough to assume that (7, (S))<p — 1,
and from now to Theorem 3.9 (except in Lemma 3.7) we always assume that

h(m1(8)) = Ol(Z,).
(i) Let S = HHO] l(ai,bi) be a subset of Z,z, of cardinality p + OI(Z,) — 1. 1f 0

occurs dt least OI/(Z,) times in the sequence Hf:lol(zp)_lai (similarly in

f +10/ b) then by the definition of O/(Z,), S contains a non-empty zero-sum
subset. So, we may always assume that 0 occurs at most O/(Z,) — 1 times both in
el T and Hfilol(z")_] b;. Therefore, if some element a occurs at least O/(Z,)
times in Hf;oj(z”)*l a; or HfLO/(Z”H b;, we always assume that a#0.

Without loss of generality we can assume that 1 is repeated 4 = /i(m;(S)) times.
Thus, by rearranging if necessary, we have

TE](S) — Odffflll’lQ,
where 0</<d — 1,d = 0l(Z,), and Q = [[?-""" a; is a sequence of length p — h + /

with a;€7,\{0, 1}.
It is clear that

D (@0} = ({0,a1} +{0, a2} + -+ +{0,a,5s/})\{0}.
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Therefore, by Theorem 2.3, we have

> (@00} zp -+ 2. @)

Lemma 3.4. Let p>367 be any prime number. Let S = H’Hd 1(atl, ;) be a subset of
Zﬁ. If h = h(m,(S)) satisfies %"gh<p, then S contains a zero-sum subset.

Proof. We distinguish three cases.

Case 1: (/=3). By (2), we have |>_(0)\{0}|=p — h + 3. Therefore, |>_(Q)\{0}| +
Wp—h+2,p—h+3,....p=2}=2p—h+3+(h-3)=p>|2,\{0}] Hence,
OO0 {p—h+2,p—h+3,....,p—2}+#0, ie., there is a non-empty subset
I<={1,2,...,p— h+ ¢} such that

Zaie{p—h+2,p—h+3, wp =2}
iel
Now consider the following sequence:
= 1”‘2,-51 ai H aj,
iel

which is a zero subsequence of 71(.S). Since p — >, _;a;€{2,3,...,h — 2}, we have

<p—;ai>(h—< ;a,>>+1>2h 2) + 1>p.

Therefore, by Theorem 2.4, the result follows.
Case 2: (1</<2). Set t= [==]=£]. By (2), we have |>(Q)\{0}/=p—h+ 1.
Therefore, there is a non-empty subset / ={1,2,...,p — h+ £} such that

Z aie{p—h+1,p—h+2a---»l7_ 1}

iel
Therefore, we have p —>,_;a;€{1,2, ..., h — 1}. Now consider the sequence
W = Otlp_Zielai H a;,
iel

which is a zero subsequence of 7;(S). Since

(d—-1—/—t+h-1)+1>L4

by Theorem 2.4 the result follows.
Case 3: (/ = 0) If |>°(0)\{0}|=p — h + 1, then in a similar way to Case 2, we can
get the result. So, we may assume that |>_(Q)\{0}| = p — 4. Then by Theorem 2.8, it

follows that Q = b*(—b)" " for some beZ,\{0,1}, where 2 <a<p —h. If o =
p—h, then by Theorem 2.9, we have 1"7'»?~" contains a non-empty zero
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subsequence, say, R. Clearly, R =1"p" with 1<m<h—1 and 1<n<p—h. By
setting, ¢t = [ ] and W = R0’, we see that the result follows in similar way to Case
2. So we may assume that a<p — h — 1. Since 2p/3<h<p — 1, either I <p —b<h —
1 or b<h—1.1If p—b<h—1, then 177?b is a zero subsequence of 1”~!»* and by
setting 7 = [451] and W = 177?b0', we can proceed to prove the result similar to
Case 2. If b<h — 1, then 1°(—b) is a zero subsequence of 1"~!(—bY""~*. Setting
t=[51 and W =1°(—b)0', then we prove the result similar to the proof of
Case 2. O

Lemma 3.5. Let p>838 be any prime number and let S = H‘Hd 1(a,, b;) be a subset of
Z; of cardinality p+d — 1. If h = h(n(S)) satisfying 21’<h<2"’ then S contains a
zero-sum subset.

Proof. Recall that d = O/(Z,). We know, by the result in [11], that d<./2p +
5log p. Since p>838, we infer that, p>15(y/2p + 5log p)> 15d. Hence, p>15d + 1.
We distinguish five cases.

Case 1: (£ =5). By (2), we have |>_(Q)\{0}|=p — h+ 5. Therefore, there is a non-
empty subset I<{1,2,...,p — h+ /} such that

Z ae{p—h+3,p—h+4,..,p—3}

iel
Now consider the sequence

W = 11’*2,-51"" H a;,

iel

which is a zero subsequence of x;(S). Since

(p—Za,)(h—( Za,>>+l>3h 3)+ 1=p,

the result follows from Theorem 2.4.
Case 2: (3</<4). Set t =[], By (2), we have [} (Q)\{0}/=p—h+3.
Therefore, there is a non-empty subset 7 <={1,2,...,p — h+ ¢} such that

Z aie{p—h+2,p—h+3,...,p—2}.

iel
Now consider the sequence

W = 0’11’*2,-61“" H a;,

iel
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which is a zero subsequence of x;(S). Since

2(h2)+t(d1/z)>2<2?p2)+w

_Hp=5) (V-1 -5 -1

> >p,
5 4 P

the result follows from Theorem 2.4.

Case 3: (£ =2). If |>°(Q)\{0}|=p — h + 3, then the result follows by Case 2. So,
we may assume that |>(Q)\{0}| = p — &+ 2. By Theorem 2.8, it follows that Q =
B*(—bY’ "7 for some beZ,\{0, 1}, where 222 <a<p —h+2. If a<p —h—2 =
(p —h+2) —4, then W =b*(—b)* is a zero subsequence of Q. Since 4(x — 4) +
dp—h+2—0—-4)+1=4(p—h—6)+1=>4(p/3 —6)+ 1=p, by Theorem 2.4 we
get the result. So we can assume that p—h — 1<a<p—h—+2. Consider the
subsequence 1"7'p7~"=2 of the sequence 1"'p*~!. Since 2p/5<h<2p/3, we infer
that, p—2x34+1=p—5>max{h—1,p— h—2}. It follows from Theorem 2.9
that, 1”~1p?~"=2 contains a zero subsequence of the form 1”4" with 1 <m<h — 1 and
I<n<p—h—-2<o—1. Set t=[43 and W =0'1"p". Now since, m(h—m)+
nlo—n)+tld—-3—-t)+1=zh—1)+@—1)+td-3—-t)+1=zp—1+td-3—
t) + 1>p, once again the result follows from Theorem 2.4.

Case 4: (/ = 1). By (2), we have |>(Q)\{0}|=p — h + 1. Therefore, there is a non-
empty subset I<{l,2,...,p—h+1} such that > ,_,aqe{p—h+1,p—h+
2,...,p — 1}. In this case, the sequence is

p—h+1 p—h+d—1 ptd-1
S=1[ @b) T[] b)) J[ (1,60
i=1 i=p—h+2 i=p—h+d

Now consider the sequence

W = 1”‘2[51"“ H a;,

iel

which is a zero subsequence of 7 (S). Put ¢ =p — >",_,a; and hence ¢ge{1,2, ..., h —
1}. Since a; =1 for all ie{p+d —h,p+d—h+1,...,p+d — 1}, the correspond-
ing second co-ordinates b;’s are pairwise distinct. Let

A" =A{bpra—ibpra-in+1s - bpra-1}-
Then by letting
A=) "bi+> (4)= {Z bi+p:fe Z(A’)},
iel q iel q

and recalling that p>15d 4+ 1 we see that

2
|A|>h>?p>§+ 24 (d-2).
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P
B=A\{by_p+2,bp_h+3,...,bp—h+a—1}, we have |B] 25 + 2.

It follows from Theorem 2.1 that

> (B)

2

>2(§+2—2> +1:%p+1.

Therefore, BN _,(B)#0. That is, there are two distinct elements ¢, ¢; € B such that
¢1 + ¢, € B. By the definition of B, there are two subsequences S| and S; of S such
that the first co-ordinate sequences of S; as well as S, are of the form
172 [T, a;, and such that o(Sy) = (0,c;) and ¢(S) = (0,c2). Set U =

(0,¢1)(0, ¢2) Hf;’f,ﬁzl (0,b;). Since ¢; + ;€ B, we have Y (U)=> (S). But |U| =
d = 0I(Z),), by the definition of OI(Z,), we see that (0,0)e> (U) <= (S).

Case 5: (¢ = 0). If |>°(Q)\{0}|=p — h + 1, then similar to the proof of Case 4, one
can prove the theorem. So, we may assume that |>_(Q)\{0}| = p — h. Therefore, by
Theorem 2.8, we see that Q = b*(—b)’ " for some he Z,\{0, 1}, where 5 <a<p —
h. Thus we get the result in a similar way to the proof of Case 3. [

Lemma 3.6. Let p>5 x 107 be any prime number. Let S = H’i’ifFI (a;, b;) be a subset

of Zf,. If h = h(n(S)) satisfies %<h<%”, then S contains a zero-sum subset.

Proof. We distinguish two cases.

Case 1: (/=721). By (2), we have |>_(Q)\{0}|=p — h + 721. Therefore, there is a
non-empty subset /<{1,2,....,p —h+/} such that >, ,a;e{p —h+36l,p—h+
362, ...,p — 361}. Now consider the sequence

W = 1P*Z,-e/’f H a;
iel
which is a zero subsequence of 7;(S). Since p — >, ,a;€ {361,362, ...,h — 361} and
p>5x 107 we have

<p—z a[> (h— (p—Za,)) + 1=361(h —361) + 1=p.

iel iel
Therefore, by Theorem 2.4, the result follows.
Case 2: (0</<720). If | (Q)\{0}| =p — h + 721, then similar to the proof of Case
1, one can get the result. So, we may assume that |>(Q)\{0}|<p — i+ 720. Let ¢ be
the largest integer such that there are ¢ disjoint subsequences
{er,d1},{cr,db}, ..., {ci,d,} of Q= fjﬁ a; such that ¢;# +d; holds for every
i=1,2,...,t. Let the deleted sequence be

t -1 p—h+(-2t
Q <H C,‘di> = H e;.
i=1

i=1
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By the Cauchy—Davenport theorem (Theorem 2.3), we infer that

t
D 2(@U{0}> 3 1{0,aidici + di}|
i=1
p—h+(-2t
+ Y Hoel—t—(p—h+l—20)+1
i=1

=4t+2p—h+(-2t)—t—(p—h+/-21)+1
=p—h+/+1t+1.

Since | (Q)\{0}|<p — h + 720, we have ¢ 4+ /<720 and hence < 720. Therefore, we
get

p—h+{—=2t=p—h— 1440.

Also, by the maximality of ¢, we derive that

p—h+(-2t

H ei=4g"(—9)"

i=1
for some ge7,\{0}, where m>n>0and m+n=p—h+¢—2t. Sincen=p—h+
{ — 2t —m and m<h<%”, we have

2
n=p—h— 1440—?”%— 1440.

Set w = [4] and form the zero subsequence W = g"(—g)" of m;(S). Since 2w(n —
w)>p, the result follows from Theorem 2.4. [

Lemma 3.7. Let p=>5.2 x 10° be any prime number. Let S = HI;LOI(Z”)*] (ai, b;) be a
subset onZ. If h = h(m (S))<p/360 and r + u+ v<p/12, then S contains a zero-sum
subset.

Proof. Consider the sequence
my—2_nmp—2 -2
W:xll xz x:”r J/IJ/Z"')/uZIZZ"'Zv

which is a subsequence of 7; (.S). Let R be the maximal zero subsequence of W. Then
WR™! is a zero-free sequence. If |[WR™!|>p/4, then by letting k = 361 in Theorem
2.7 we get, h(WR')>p/360, a contradiction on h(W)<p/360. Therefore,
|WR'|<p/4, and |R|>|W|-p/d=p+d—1-2r—u—p/4 Write R=
cll1 céz~--cﬁfc,+1-~-cx, where ¢y, ¢, ...,¢, are pairwise distinct and 2</;<mj;, — 2 for
every i = 1,2, ...,t. Without loss of generality, we may assume that j; =i for i =
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1,2, ...,t. Note that

1_’_2[: l,(m,—l,)}l—i—zr: 2(}7’1 —
i=1 i=1

>1+2(m+my+ - +my) — 41+ 2(L+2+ - +1,+2)— 4t
=14+2(h+b+ - +16)=14+2(R —s+1)
>1+2(p+d—1-2r—u—p/d—(s—1))
>p+p+2d—1—4r—2u—2(r+u+v)—p/2)
>p+p—6(r+u+v)—p/2
=p+p—p/2—p/22p.

Now, by Theorem 2.4 the result follows. [

Lemma 3.8. Let p >6OO be any prime number. Let S = HHO] (a,-, b;) be a subset
ofli. Letk =[Ap =T+ L. If h(m(S)) =k + Landr + u+v=p/12, then S contains
a zero-sum subset.

Proof. Since p>600, we have r+u+v=p/12>k. Without loss of generality, we
may assume that aj,as,...,a; are pairwise distinct. Set /= [k/2] and A4 =
{a1,a2, ...,a;}. By Theorem 2.2, we have > ,(4) = Z,. Since h(m(S)) =k + 1, the
deleted sequence 7;(S)A4~! contains some element a (say) with v,(n;(S)4~")=h —
1 > k. Without loss of generality, we may assume that @y | = ap0 = - = Qgyp_1 =
a. Then the corresponding second co-ordinates by, 1,bxi2, ..., brip—1 are pairwise
distinct in Z,,. Let B = {bg+1,bi+2, ..., bkrn—1} ©Z,. Then again by Theorem 2.2, we
see that ) ,(B) = Z,,.

Let o = la. Since ) ;(A) = Z,, there is a subset /<{l,2, ...,k} such that o+
Yoicsai=0and |I| =1 Let =3, ,;bi. Now since ) ,(B) = Z,, there is a subset
Jo{k+1,k+2,...,k+h—1} such that f+ >"._,b; = 0 and |J| = . Therefore,

I1 (@60 I (a0

iel jeJ

is a zero-sum subset of S. [

Theorem 3.9. Let p=5 x 107 be any prime. Let S = Hp+0[ L) (a,-,bl-) be a subset

of Z; of cardinality p+ Ol(Z,) — 1. Let k = [\/4p — 7]+ 1 be a positive integer. If
h=h(m(S))=k + 1, then S contains a zero-sum subset.

Proof. Proof follows from Lemmas 3.2, 3.4, 3.5, 3.6, 3.7 and 3.8. O

Theorem 3.10. Let M be a given positive integer. Let p= (3M )6/ " be a prime number.
Let SCZﬁ be of cardinality |S| =n such that n=3Mp>/®. Suppose that |S(H +
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X)| <M holds for all subgroups H of order p and all erIZ,. Then S is not a zero-free
subset.

5/6

Note: In the statement of Theorem 3.10, the assumption n>3Mp>/® makes sense

because as p=(3M)%7, we have 3Mp*/S<p? = |7, ®7,).

Proof. Put

SO =T A+9@) =1+ > nx)px),
sesS er(S)

where y is any character of the group Zf,, and the positive integer n(x) stand for the

number of times the element x is represented as a subset sum. If S is a zero-free
subset, then we have

Zf(?)=

Now this sum has a main term coming from the principal character y, and which is
2". We estimate the other terms.

Suppose y#7,. Values of y are of the form exp(2=xij/p), and if y(s) = exp(2=nij/p),
then

[T +7(s)| = 2 cos mj/p.

If |x|<7/2, then cos x<exp(—x?/2) and so assuming |j|<p/2, we get

1+ y(s)|<2exp(—c(j/p)°)

with ¢ = 72 /2.
Each value of j corresponds to a coset of a subgroup of order p. Thus it can occur
for at most M values of s. Write

n=02k—-1)M+gq, 0<qg<2M.
We get the largest possible value of | f(y)| when j takes the values 0,1, —1, ...,k — 1,

—(k — 1) each M times and the remaining ¢ values are split between k and —k. In
this situation the above inequalities yield

| f()I<2" exp(—ct/p?),
where
t=2M(12+ 22+ -+ (k—1)°) + gk>.
A simple calculation gives
n(n* — M?)
12M2
with equality when ¢ = 0. So we get

Zf )=/ () = Y 1/ ()=2"(1 = (P = 1) exp(—ct/p?)).

7#%0

1=
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Since n=3Mp>/°,
2 2
exp(ct/p”)>2p°,

and the above formula gives } f (y)>2""'. By the choice of n, we have n>1 +
(2/log2)logp giving 3. f(7) >p?, a contradiction. Hence the theorem. [

Corollary 3.11. Let M = 10° and a prime number p>4.67 x 103, Let SCZ[% be of
cardinality |S| = (p — 1)/2. Suppose that |S (H + x)|< M holds for all subgroups H
of order p and all erﬁ. Then S contains a zero-sum subset.

Proof. Putting M = 10, p>4.67 x 10** and n = (p — 1)/2 in Theorem 3.10 we get
the result. O

Theorem 3.12. Let p>4.67 x 103 be any prime. Let S = H‘l:lO](Z”)fl(a,-,bi) be a
subset 0fZi of cardinality p + OIl(Z,) — 1. Suppose that |Sn (H + x)| <k holds for all
subgroups H of order p and all er;, where k = [\/Ap =T+ 1. Then S contains a

zero-sum subset.

Proof. Assume to the contrary that S is a zero-sum free set. Then ¢(S) is zero-sum
free set for every automorphism ¢ over ZIZ,. Thus, we can choose a suitable

automorphism ¢ such that the sequence 7;(¢(S)) has minimal possible distinct
elements of Z,. In other words, we can choose an automorphism ¢ such that ¢(S)
has the minimal possible value for # + v+ r. For convenience, we denote ¢(S) still
by S. Set d = OI(Z,). Note that by the choice of p and hypothesis, we have
h(m(S))<p/360. Therefore, if u+ v+ r<p/12, then by Lemma 3.7, we can derive
that S contains a zero-sum subset. So, we can assume that for any automorphism ¢

over ZIZJ, we have
u+v+rzp/l2.

Without loss of generality, we may assume that ai, ay, ..., ap/1241 are distinct. Let
A=Aay,a, ...,ap/1241}, m=3 x 107, and v = 565+

Let 1>0 be the largest integer such that there are tm disjoint subsets I, Iy, ..., Iy,
of {1,2,...,p +d — 1} satisfying that,

(1) || = v forevery j = 1,2, ..., tm.

2 Z,E,/al =0 for every j = 1,2, ...,tm, and

3) Z,E,“Wlbl, Z,EAW:b;, . Z,e,‘wwmb; are pairwise distinct for every w =
0,1,...,t—1.

(If there is no disjoint subsets satisfying (1), (2) and (3) then set t = 0).
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Let
B, = { b Y b, Y b,}
L€ Ly lelymio L€ Lymim
for every w=0,1,...,¢— 1 and n = m/2 = 15 x 10°. By Theorem 2.1, we have
2
m-+4
> (B)[Zn(1Bu] —m) +1 ="
holds for every w=20,1,...,z— 1. Since S is zero-sum free set in le, (by our

assumption), ByBj --- B, is a zero-sum free sequence in Z, of length fm. Therefore,
by Theorem 2.5, we derive that

m2
t 4+4< > (Bo) zn: (B1)

- 4ot

> (Bi1)

n

n

< Z(Bo)‘ + ‘Z(Bl)‘ + ot ’Z(Bt—l)‘

< Z(B()Bl '--B,,I)’ <p.

This implies

4p

< .
m? +4

Let Ty = 11 (S)([T,x @) and 4; = A\Supp([],.x @), where K = i, I Then

p p 4m’p 2p
>d| - |K|> |5 +1 - £ __ 77 S —1).
A1l 14] = K| [{5] + 1 = wme>35 00 1425 b )

Set fi = |A1|. Without loss of generality, we may assume that
Al = {Cll,az, ...,afl}

and hence f >§—’§ + v(m — 1). Hence by Theorem 2.1, we can get |, (4;)| = p which
would imply there exists a subset I of {1,2,...,f} of cardinality v such that
Ziela,» =0in Zp.

Let w;>1 be the largest integer such that there are w; disjoint subsets
J1,J2, ..., Jy, of Tj satisfying the following conditions;

(1) |J;] = v for every [ = 1,2, ..., wy;

(2) qulzafl =0 forevery/=1,2,...,w;, and

() Xienbr, 2oienbi s Xiey, br are pairwise distinet.

Set

B=> b)Y b...> b

leJ, leJ, IEJ“-]



64 W.D. Gao et al. | Journal of Combinatorial Theory, Series A 107 (2004) 4967

By the maximality of ¢, we see that |B|=w;<m — 1. Let T, =T} (]_[,.eLa,-)*1 and
= A\Supp([ 1., @), where L = J;; J;. Then

2
o] > A1] — L= | Ay] - vw >3,
25
Without loss of generality, we may assume that
A2 = {Cll,az, ...,afz}

and hence f,>2p/25.
Let E={1,2,...,p+d— 1}\(KUL). If .7 is a subset of E such that |#| =v and
> esar =0, then by the maximality of w;, we derive that

Zb[GB.

les
Now, for every geZ,, we define

F, _{Zb OcE, |0|= X Za,—g}

jeOo jeo

We claim that

|Fy|<m — 1 holds for every geZ,. (4)
Assume the contrary that |F,|>m. Then there are m subsets L, L,, ..., L, (not
necessary disjoint) of E such that |L; =v/2 with ), ; /=g holds for every

i=1,2,...,m and such that >, ; br, D71 b1, ... e, b are pairwise distinct.
Since

{1,2,. ,fg}\UL

by Theorem 2.1, there is a subset # ={1,2, ..., > }\ U, L; such that | #| = v/2 and
>ty =—g. Hence |FULf=v and 3, , ,a =0 for every i=12,....m
Therefore, by the maximality of wy, we have >, ;b + >, ; b€ B holds for every
i=1,2,...,m. Since |Fy|>m, we see that >, by + >, by (forall [=1,2,....m)
are pairwise distinct. Therefore, |B|>m which is a contradiction. This proves (4).

Now, let S, =[[;cx(ai,b;), then Th =m;(S:). Set t, = |T»|. Without loss of
generality, we may assume that 7, = Hzt'2:1 a;. From (4), we derive that

o(R): RSy, |R| =24 <(m—1)p. (5)
{ 3|

For any automorphism ¢ over Zﬁ, we write ¢(S>) = [[22,(a;,b;) (here we still
write the elements of ¢(Sy) by (a,b). Write Tp=x"" .xlj/ with
kizky, =2k 21, ki +ky+ - +k, =t, and x1,x3, ..., x, are pairwise distinct.
We distinguish two cases.

Case 1: (There is an automorphism ¢ over 22 so that k| >

2
v/>38

35)- In this case,

k1>10°. Denote ¢(S,) still by S>. First we shall prove that there is an element ge Z,
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such that

Kyl =m, (6)

where Ky = {> ;.o b;: O={1,2, ..o}, |O| =3, > c0a =g}
We shall re-write S, as follows;

/
H xuyl : xlay](cl>))

Let g = o'(xﬁoon x§—599) =600x1 +xp + --- + x£7599'

Since S5 is a subset of ZIZ), for every ie{1,2,...,/}, we have y(l'j,ygi), ) ,y}(o are

pairwise distinct in Z,. Set M; = {ygi),yg’j, ...,yf(?} for every i =1,2,...,7. Since
¢ = |Supp(T2)|>|A42|>2p/25>F — 599, by Theorem 2.1, we have

[Ky| > Z (M) +Z (M>) + -+ +Z (M%s«)g) = Z (M)
600 1 1 600
= 600(k; — 600) + 1
> 600 (— - 600) 1
300 +1>m
and this proves (6).
Now one can choose m subsets Ji,Jo,...,J,, (not necessary disjoint) of
{1,2,...;n} such that 37, ; b, >, by, ..., 35 5 by are pairwise distinct with || =
= |Ju| =v/4 and Zjejlaj = =24 =g
Let U = Hz 1 al(HjeJI U udy aj)il' Then
[Supp(U)[Z |Aa] = [J1 0 - U]
S22 _m
25 4
3p
> 8
Therefore, using Theorem 2.1, we arrive at
> (U)=12, (7)

v/4

Let z; be an arbitrary element of Z,, then we can write z; = g + g1 for some g, €Z,,.
By (7), there exists ;= {1,2, ..., L }\(U, /i) such that [k] = v/4 and ", a; = g1.
Therefore, we get z1 = >, @i+ >0y @ =+ =3, @i+ >, @ and such that
the sums of their corresponding second  co-ordinates ) ;.. b+
Dienbis s Dic bi T2 e, bi are pairwise distinct. Therefore, in this case we get
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|F.,|=m. As z; is arbitrary, we have |F.

{o(R): RIS:, [RI=3}|zmp,

=m for every ze Z, and hence, we get

which contradicts (5). Hence in this case, S cannot be a zero-sum free set.

Case 2: (For every automorphism ¢ over ZIZ, we always have kj <35 = 10°).
Clearly, |S;|=|E|=p+d—-1—-|KUL|Zp+d—1—|K|—|L|. By (3), we know
that [p/12] + 1 — vmt>2p/25 4+ v(m — 1). Therefore, we have

)4 2p p
< — - _ < .
|K| + |L|<vmt + v(m 1)<[12]—|—1 25\300+1
Hence,
V4 p—1
Slzpt+d—1————-1>2—.
S21=p 300 2

Since p>4.67 x 103 and conditions of Corollary 3.11 are satisfied, we see that S,
and therefore S cannot be a zero-sum free set. Hence the theorem. [O

Proof of Theorem 1.1. Let p>4.67 x 103 be any prime number. Let S be a subset of
Zﬁ of cardinality p — 1 4+ OI(Z,). Set k = [\/4p — 7] + 1. If there is an automorphism

¢ over Zﬁ such that the first co-ordinate sequence of ¢(S) contains some element at
least k + 1 times, then the main theorem follows from Theorem 3.9. Otherwise,
S~ (H + x)|<k holds for all subgroups H of order p and all erIZ,. Then by
Theorem 3.12, S contains a zero subsequence. [
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