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Abstract. Let p be any odd prime number. Létbe any positive integer such that
2<k< [”T“] + 1. LetS = (a1, a, - .. , az,—) be any sequence i, such that there
is no subsequence of lengthof S whose sum is zero ii,. Then we prove that we can
arrange the sequengeas follows:

/ 4 /
S=(a,a,...,a,b,b,... baj,a,... ,azp_k_u_v)
——— ———
u times v times

whereu > v, u +v > 2p — 2k + 2 anda — b generate&,,. This extends a resultin [13]
to all primesp andk satisfying(p +1)/44+3 < k < (p+1)/3+ 1. Also, we prove that
if ¢ denotes the number of distinct residue classes mogalppearing in the sequence
SinZ,oflength2p —k (2 <k <[(p +1)/4] + 1), andg > 2+/2/k — 2, then there
exists a subsequence $bf length p whose sum is zero if,,.
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1. Introduction

Let n be any positive integer. Le§ = (a1,a2,...,ar) be a sequence (possibly with
repetition) in the cyclic group of order(denoted byZ, ) of length?. We call a subsequence
T = (b1, b2, ..., b,) of Sto be zero-sum subsequencéif+ bo +--- + b, =0inZ,.

In 1961, Erds—Ginzburg—Ziv proved the following theorem (which we call the EGZ
theorem).

EGZ Theorem [8]. Given a sequence S in,&f length2n — 1, one can extract a zero-sum
subsequence of lengthin Z, .

The EGZ theorem is tight in the following sense. If

§=(0,0,...,0,1,1,....,1)

n—1 times n—1 times

is a sequence ifl, of length 2 — 2, thenS does not have a zero-sum subsequence of
lengthn.
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Many authors studied the characterization of the above extremal example. In particular,
Yuster and Peterson [18] and independently Bialostocki and Dierker [1] proved that any
sequence in Z, of length 2« — 2 having no zero-sum subsequence of lemg¥ill be of
the form

S=(,a,...,a,b,b,...,b),

n—1 times n—1 times

wherea # b € Zj,.

Also, Flores and Ordaz [9] proved the following result of this nature. Supfdsany
sequence itZ, of length 22 — 3 such thatS has no zero-sum subsequence of length
Thenthere exists, b € Z, suchthafZ, is generated by — a anda appearing: — 1 times
in S and one of the following conditions hold: ())appearing exactly — 2 times; (ii) b
appearing exactly — 3 times inS and also, 8 — a appearing exactly once i1

In 1996, Gao [13] proved the generalization of the above two results as follows.

Theorem [13]. Let n be any positive integer. Let k¥ be any positive integer such that
2<k< [”%;1] + 2. LetS = (a1, a2, ... ,az,—x) be any sequence i, such that there

is no subsequence of lengthof S whose sum is zero i,,. Then we can re-arrange the
sequence as follows

U / /
S=(a,a,...,a,b,b,... ,bay,ay, ... a5, _;_,_,)

u times v times
whereu > v,u + v > 2n — 2k + 2 anda — b generateZ,,,.

One of our main theorems in this article is to extend the above result to all psimes
and integet for the range"’TJrl +3<k=< PT“ + 1. This extension is meaningful for
all large primesp. Also, we shall study the problem of how many distinct residue classes
modulo p occur in those sequences of length 2 k in Z, having a zero-sum subse-
quence of lengthp in it. Before we state our main theorems, we shall fix up notations as
follows.

For every integer k k < ¢, define

k

and > (S) = Uizl > «(S). For any subsequence = (b1, bo,...,b,) Of S, we let
o(T) =Y ;_1bi. We denoteST ~! by the deleted sequendewhich is obtained from

S by deleting the elements df. Also, if S = (a,aq,...,a, b1, b2, ...), then we write
e e’
r times
S = (a", b1, by,...). For anyb € Z,, we denote by + S the sequencéb + a1, b +
az, ... ,b+ay). Foreveryx € Z,, definex to be the least positive inverse image under

the natural homomorphism from the additive group of integemto Z,,. For example,
0=n.If A C Z,, then we denote the cardinality afby |A|. If A is a sequence i, , we
denote the length of by |A| (same notation as the cardinality). For ang Z,,, we define
v, (S) by the number of timeg appears irf. Also, we defing: = h(S) = max,ez, vg(S).

Gao [13] introduced the following definition.
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DEFINITION 1.1

LetS = (a1, a2, ... ,ap) andT = (b1, by, ... , by) be two sequences i, of length?.
We say thats is equivalent td” (written asS ~ T) if there exist an integer coprime ton,
an elemenk € Z,, and a permutation of {1, 2, ... , £} such that;; = c(by) — x) for
everyi = 1,2, ..., n.Clearly,~ is an equivalence relation; andsif~ 7', then O ", (S)
ifandonlyifOe ) (7).

In this article, we shall prove theorems 3.1 and 3.2.

Theorem 3.1. Let p be any odd prime number. Letbe any positive integer such that

2 <k < ”T’Ll] + 1. LetS = (a1, a2, ...,a2,—x) be any sequence iA, such that
0¢ ZP(S). Then
S~ (041", aj, ap, ... A, g_yy)

whereu > vandu +v > 2p — 2k + 2.

Using the information in Theorem 3.1, we consider the following problem of variant of
EGZ theorem as follows. Before we state our theorem, we recall the following definition
which was introduced in [3] and state the known results.

DEFINITION 1.2

Letn, k be positive integers, ¥ k < n. Denote byf (n, k) the least positive integerfor
which the following holds: IfS = (a1, a2, ... , a,) is a sequence of elementsaf, the
cyclic group of order, of lengthg such that the number of distingt’s is equal tak, then
there arer indicesiy, io, ... , i, belonging tof1, 2, ... , g} such thaty;, +a;, + - - - +a;,
=0.

Theorem. We have
1. f(n,k) <2n—1forallnandforalll <k < n (By EGZ theorehm

n, if nis odd
fn,n) = { n+1, if niseven

fn,k)y=n+2,foralln >5andl1+n/2 <k <n-—1][5,10]
f(n,3+1)=n+3foralln e 2N[12].

fn, k) =2n— ((k—1)/2)2 —1foralln > (k — 1)2 — 4 for an oddk > 5 [19].
fn, k) =2n—k(k —2)/4—1forall n > k(k — 2) — 4 for an everk > 6 [19].
fn,2)=2n—-1, f(n,3) =2n—2and f(n,4) = 2n — 3forall n [3].

f(n, k) <2n—k+1forall 2 <k <n[16].

f(p, k) <2p—3k+11forall 5 <k < (p +15/3 [17].

[10].

© ©® N o T s D

Other than these results many authors (for instance [11], [3] and [2]) consider some
lower bounds forf (n, k) for variousk.
In this article, we shall prove the following result.

Theorem 3.2. Let p be any odd prime number. Létbe any positive integer such that
2<k< [”T’Ll] + 1. Thenf(p,£) <2p —kforall £ > 2/2V/k — 2.
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2. Preliminaries
We shall start this section with a well-known fundamental inequality of subsets as follows.

Cauchy-Davenport inequalif§, 7]. Let p be any prime number. Lety, Ao, ... , A, be
non-empty subsets @,. Then
t
A1+ Ao+ -+ A, > min{p, |A,~|—t+1}.
i=1

Theorem 2.1 [4]. Let n and k be any positive integers such that n — 2k > 1. If § =
(a1, az, ... ,an—k) is a sequence ifl,, such tha ¢ > (S), then there exists # 0 € Z,
which appear at least — 2k + 1timesinS.

The following Theorem is crucial for the proof of Theorem 3.1.

Theorem 2.2. Let p be any prime number arl< k < p — 2. LetS be a sequence i,
of lengthp + k. 1f0 & 3° ,(S), theni(S) > k + 1.

Proof. Whenk = 1, the result follows from the Pigeon hole principle. So, we can assume
thatk > 2. If possible, we assume thatS) < k. Then, we can distribute the elements of
SintoaunionAd; L A>U--- L Ag, SO that in eacht;, an element occurs only once. By the
Cauchy—Davenport theorem, we see that

k k
ZA,- > min{p,Z|Ai| —k+1}
i=1 i=1

=min{p,p+k—k+1=p+1 =p.

Therefore,A1 + A2 + --- + Ay = Z,. In particular,o (S) € Y, (S). Without loss of
generality we shall assume thatS) = a1 + a2 + - - - + ax. Then we havey.1 + ar42 +

-+ 4ap4+r = 0which implies Oe ZP(S) as|S| = p+k. This contradicts the assumption
that O¢ ZP(S). Thereforef(S) > k + 1. O

Theorem 2.3 [14]. Let n be any positive integer. Let 1 < k[%l] and letS be a
sequence iz, of lengthn — k such thald ¢ > (S). Then

S~ (L e xo, L xke1)
with Y 57 < 26 — 2,

Lemma2.4. Let p be any odd prime antl < k < [”T*l] LetS = (1P~ xq1, xo, ...,

x;_1) be asequence i, \ {0} of lengthp — k such thafy "*_1 %; < 2k —2. Then for any

1
x € Zpsatistyingp —2k+1< x <p—-2k+1+ Zf;ll Xi, there exists a subsequence

T of S suchthaliT| > p — 2k + 1witho (T) = x.
Proof. Letx € Z, suchthap —2k+1< ¥ < p—2k+1+ Y3 . lfx = p—2k+1,
thenx = Z{’:_le+1 1 and we are done; otherwise, we have
k-1
p—2%+2<X <p-2k+1+) X <p-1
i=1

Therefore, wehave £ x —(p —2k+1) < Zf;ll X;.
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Claim. For any positive integek, if S = (x1, x2, ... , x;) be a sequence i, \ {0} such
that|s'| = k andY ¥_, % < 2k, then, for every € Z, satisfying 1< ¥ < Y, 7,
eitherx € Y () orx+1e > (5).

If the claim is proven, then, we get, eithar— (p — 2k + 1) or x — (p —
2k +1) +1in > ((x1,x2,...,x¢-1)). That is, eitherx = 1+1+4.--+1+4y or

————
p—2k+1
x=1+1+.--+1+ywherey € > ((x1,x2,...,xr—1)). S0, to end the proof of this
N —— ——’
p—2k

lemma, it is enough to prove this claim.

Whenk = 1, 2, the claim is trivially true. So, we ldt > 3. Assume the result is true
for k — 1 and we shall prove fok. If necessary by renaming the indices, without loss of
generality, we can assume th#t= (x1, x2, ..., x;) withx1 < x2 < --- < X;. Suppose
X1 =1 Then,we have; = xp = --- = x;_1 = 1. AsY¥_, &7 < 2, we see that
X; < 2k — (k — 1) = k + 1. Therefore, we see that

Z(S/)— {1’2’7~xk+k—l}7 Ifﬁ§k7
w2 k=N, i =k+1

which clearly implies the claim. Thus, now, we can assume that Z;—7 < x. If
X < X + Zf‘;lz X;, then by induction, either orx + 1in > ((x1, x2, . .. , Xk—2, X)),
and we are through; otherwise, we havg,+ Y'-? 57 < ¥ < Y., . Therefore,
we have
k
k—2 <X)—Xk1+) % <x—x1 <X+
1

|
N

k=2
Xi.

i=1

Il
N

Therefore, by the induction hypothesis, we see that eitherx;_; or x — xx—1 + 1in
> ((x1, x2, ..., xk—2, xx)) and hence, we have eitheor x + 1in > (5. ]

3. Proof of Theorems 3.1 and 3.2

Proof of Theoren®.1. LetS be asequenceif, oflength2»—kwhere2< k < [”T“]Jrl.
Given that O¢ > »(S). Without loss of generality we can assume that O (if necessary, by
translating by an element) appears maximum number of; Sayies inS. By Theorem 2.2,
itisclearthatt > p—k+1. Therefore§ = (0“, ay, az, ... , app—k—u) Wherea; € Z,\{0}.
Let Sy = (a1, a2, ... ,a2p—k—y) be a subsequence 8f Sincex > p — k + 1, we have
2p—k—u<2p—k—p+k—1=p—1.Thatis,|S1| < p— 1. Let|S1| = p —m for
some positive integen. Note thatp — m + u = 2p — k which impliesu + k — p = m.
AsO ¢ > ,(S), we haveu < p — 1. Thereforem = u+k—p <p—-1+k—p
=k—1.

If 0 ¢ > (S1), then by Theorem 2.1, we know that there exists an elemenk,\ {0}
such thatv,(S1) > p — 2m + 1. Therefore,S = (0", a", b1, ba, ..., b2p_k—u—y) and
2p —k—u—v <m—1 < k — 2 which implies » — 2k +2 < u + v and we
are done.

Thus, we can assume thate0) (S1). Let W be the maximal zero-sum subsequence
of Sy of length w. Moreover, since 0Z ZP(S) and Sy is a sequence iZ,\{0} and
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u>p—k+1,we have
2<w<p—-u-1— 2<w=<k-2 Q)

Alsonotethatt +u+w > k+p—k+1+w>p+ 1 Pul =k+u+w-—p.
Therefore,  — k —u — w = p — £. By the definition of W, we have Og > (S;W 1)
and|SiW—t = p — £. Let T = S;W~L. Also, by the inequality (1), we see that=
k+ut+w—p<k+u+p—-u—-1—-p=k—-1< [%].Therefore, by Theorem 2.3,
we see that

-1
T ~ (1p_24+l, X1, X2,...,x¢—1) and Z)T, <20 -2
i=1

Thus, the given sequende= 0 S, = 0“T W is equivalent to the following sequence:

S ~ (O“’ l[)_2£+1’ X1, X2, o v vy xﬁ*la 31,325« + Zw)

where all thex; # 0 satisfying)"‘_1 % < 2¢ — 2 andW ~ (21,22, ... , zu) is the
maximal zero-sum subsequenceSef

Without loss of generality, we shall replace’ by ‘=" above. Also, we denote the
number of 1's appearing in the sequen¢es xa, ..., x;—1) and(z1, z2, ... , 2w) Dy r
andt respectively. Pub = p — 20 + 1+ r +¢.

To end the proof of this theorem, it is enough to prove thatv > 2p — 2k + 2.

If2 < z; <p—2¢+1forsome satisfying 1<i < w,thenasthereare—2¢ + 1
number of 1's inT, we can writez; = o(L1) whereL; = (1%) with [Ly| > 2. If
p—20+2<7% < p-2+1+Y'"] % holds for some 1< i < w, then by
Lemma 2.4, there exists a subsequehg¢ef T such that;; = o(L1) and|L1| > 2. By
letting Wy = L1Wzi_1, we see that (W1) = 0 and|W1| > w + 1 which contradicts the
maximality of W. Hence

-1
p—lzz_in—2€+2+Z)Ti foreachz; # 1. 2)
i=1
SinceY ‘] % < 2¢ — 2, we have
-1
20-2<) X+ ®3)

i=1
Therefore, by the inequalities (2) and (3), we get
p—1>7z >p—r foreachz; # 1. 4)

By rearranging the indices and renaming them, if necessary, we can assume that for O
q < w, we have

zi #1 forl<i<qg and z;=1 forg+1<i=<w. (5)
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Casei (w =2

In this case, by the definition d¥, we havez; + z2 = 0. Therefore, there are two cases,
namely,z1 = 1 andz = —1 orz; # 1 and hence> # —1. Whenzy # 1, by the
inequality (4), we havep — 2 > 71 > p — r and in particular, we have > 2. Since

2 <r < p—2¢+1,we have a zero-sum subsequefice (z1, 17~1) which has length
> 2 which is a contradiction to the maximality . Thus,z; = 1 andzz = —1. In
thiscasepy > 2p —k —u — € +r. Thereforey +v =u+2p—k—u—L+r >
2p—k—(k—-—1)+r=2p—2k+1+r > 2p—2k+ 3. We are done in this case.

Caseii (w > 3)

SinceW is a zero-sum sequenege# 0. So, we have k ¢ < w. Wheng = 1, from the
inequality (4), we get

p=1>7z1 >p—r (6)
Wheng = 2, we have
2p—2>TW 4+ =22p—2r>2p—20(—1)>2p—2(k -2
=2p—2k+4

Sincek < [”TH] + 1, itis clear thatp > 3k — 4 and hence

2p—2>714+72>p =p—-2>71+722—p>p—2+2
Therefore, it follows that
p—2>71+z2 >p—20+2.

If z1+z2 < p—20+1+ Zf;ll x;, thenzi + zo = o(L2) for some subsequence
Ly of T with [Lo| > p — 2¢ + 1 (by Lemma 2.4). If we leWy = L2szlzz_1, then
o(Wo) =0and|Wz| = |La|+w—-2>p—-2+1+w—-2=w+p—20+1D) >w
(ast < k—1 < (p + 1)/3) which contradicts the maximality a¥. Therefore, we have
it 22> Y\Zf % + p — 2¢+ 2. Thus, by the inequality (3), we have
p-2>utm =p-r (7)
Now, we shall assume that> 3. Leta = min{q, w — 2}. Then we claim the following.

Claiml. Forg > 3andforevery =1,2,...,a,we have
N s
p—s= (Z E) —(s—l)p=ZZi zp—r
i=1 i=1

By inequalities (4) and (7), the Claim 1 is true foe= 1 and 2. Now, we shall assume
that claim 1 is true fos — 1 and we prove fos. By the inequality (4) and induction
hypothesis, we have

s s—1
P—SZ(22_1')—(5—1)17=<ZZ_1'>—(5—2)P+Z_s -p
i=1 i=1

>p—r—r=p—2r>p—20+2>p—2k+4>0.
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Hence,

N
p—20+2< ) z.
i=1

If Y7 1z <p—20+1+ Zf;ll x;, then by Lemma 2.4, there exists a subsequénc
T with |L3| > p—2¢+1suchthad i_; z; = o(La). lfweletWs = LaWz 'z, ... 25,
then we get(W3) = 0. Sincew <k —2,£ <k — 1andp > 3k — 1, we have

Wa3l=w+|L3g|-s>w+p—-20+1—(w—2)
>w+p—-2k+4+1—-k+4=w+p—GBk—9) > w.

This contradicts the fact th& is the maximal zero-sum subsequencespfTherefore,
we have

s =1
p—sZZZiEP—ZE—i—Z-i-ZX_i
i=1 i=1

and by the inequality (3), we get Claim 1.
Clam2. g < w — 2.

Assume, on the contrary that> w — 1. Theng = w — 1 0org = w. If ¢ = w — 1, then
wehavep — (w—2) > z1+z22+ -+ 2w—2 =p—r,p—1>7Z4p_1 > p—rand
zw = 1. Therefore,

2p>2p—w+2=> z1+z22+ - +2w-2 + Zw-1 + Zw
>2p—2r+1>p

which is a contradiction te (W) = 0. Henceg # w — 1.
Ifg=w,thenp—(w—-2)> z1+22+ - F+zw2=p—r, p—1> 72y 1, Zu =
p — r. Therefore,

3p>3p-—w=>z1+z2+ -+ w2 + Zu_1 + Zw
>3p—3r>3p—3k—-2>3p—3k+6=2p+p—3k+6>2p,

(asr < ¢—1<k—2andp > 3k — 4) which is also a contradiction to(W) = 0. Hence
g # w. Thus Claim 2 is true.

From Claims 1 and 2, we see thataries from 1 tog. Since we have —s > p —r
which impliesr > s. In particular, when = ¢, we get

qg<r. 8

But by the definition of;, we haveg = w — ¢ which implies thatw = g + ¢. Therefore,
by the inequality (8), we have+t > g +t = w. Thus

u+v=u+p—-2+1+r+t>u+p-2+1+w
=2p—k—(L—-1)>2p—2k+2,

as desired. O
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Proof of Theoren8.2. LetS be a given sequence i, of length 2» — k. Suppose the
number of distinct residue classes appearing iis g > 2v/2vk — 2. If possible, we
assume that & ZP(S). Then by Theorem 3.1 = 0“TW (notations as in the proof
of Theorem 3.1). Now, we shall count the number of distinct residue classes madulo
appearing irf" and inW separately.

We recall thatT = (177241 x,xp, ..., xe_1) with Y\C1% < 2¢ — 2 andr =
v1((x1, X2, ... ,x¢—1)). Also, W = (z1, 22, ... ,2¢4, 1, 1, ..., 1) wherez; # 1. Note that
e e’
w—q times

by Claim 2 of Theorem 3.1, we haved ¢ < w — 2 and by (6) and (8) we have < r
andr > 2.

Let g1 (respectivelyg,) denote the number of distinct residue classes mogalppear-
ingin T (respectively, ifW). Thus, including 0, the total number of distinct residue classes
modulo p appearing inSis g = g1+ g2 +1— 1 = g1 + g2 because the residue 1 is
calculated twice irg1 andgz. So, to end the proof of this theorem, it is enough to estimate
g =81+ &.

Sincer;1 X; < 2¢ — 2 andr number of 1’s appearing ix;)s, we have
142+ +g1<20-2—-(r—1)
241 <M —4-20r—1)<4—4-2=2(-23).

Therefore, sincé < k — 1, we have

g+ <2k—4) = g1=V2Vk-4<V2vk-2 )

Now, note that—z; = p—z;. Therefore by Claim 1 of Theorem 3.1, we @le—_zi <r.
Thus,

1+24 - +g<r=g <Vor.

Sincer < ¢ —1 <k — 2, we have

g2 <2k —4=~2Vk-2. (10)
Thus, from the inequalities (9) and (10) and counting 0, we have

g1+ g2 <V2Vk -2+ V2Vk—2=2V2Vk - 2,
a contradiction. Hence the theorem. O

We shall end this section with the following open problems.

Open Problem.Let n andk be two positive integers such that< n — 2. Determine the
constant defined by

h(n, k) = min{h(S) | |S| = n + k},

whereS runs over all sequences#, of lengthn + k such that 0z ), (S).
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Itis provedin[1] and [18] thak(n, n —2) = n — 1 and proved in [9] thai(n, n — 3) =
n — 1. Theorem 2.2 shows thatp, k) > k+ 1forall1 < k < p — 2. The main result in
[13] implies thath(n, k) > k+ 1 wheneven —[(n+1)/4] — 1 < k < n — 2. Itis natural
to ask ifi(n, k) > k + 1 for every positive integer and every such that 1< k <n — 2.
However, the answer is ‘no’ in general. Recently, in [15] we provided a counter example
for k satisfyingp < k < n/p — 2. We conjectured the following.

Conjecturd15]. Letn > 1 be any positive integer and Igtbe the smallest prime divisor
of n. Letk be an integer such that> (n/p) — 1. Thenh(n, k) > k + 1.

In [15], it is proved that Conjecture 1 is true for= p* for any primep. Also, it is not
known whether Conjecture 1 is true for< p/3.
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