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Abstract. Let p be any odd prime number. Letk be any positive integer such that
2 ≤ k ≤

[

p+1
3

]

+ 1. LetS = (a1, a2, . . . , a2p−k

) be any sequence inZ
p

such that there
is no subsequence of lengthp of S whose sum is zero inZ

p

. Then we prove that we can
arrange the sequenceS as follows:

S = (a, a, . . . , a

︸ ︷︷ ︸

u times

, b, b, . . . , b

︸ ︷︷ ︸

v times

, a

′

1, a
′

2, . . . , a

′

2p−k−u−v

)

whereu ≥ v, u+ v ≥ 2p − 2k + 2 anda − b generatesZ
p

. This extends a result in [13]
to all primesp andk satisfying(p +1)/4+3 ≤ k ≤ (p +1)/3+1. Also, we prove that
if g denotes the number of distinct residue classes modulop appearing in the sequence
S in Z

p

of length 2p − k (2 ≤ k ≤ [(p + 1)/4] + 1), andg ≥ 2
√

2
√

k − 2, then there
exists a subsequence ofS of lengthp whose sum is zero inZ

p

.
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1. Introduction

Let n be any positive integer. LetS = (a1, a2, . . . , a

`

) be a sequence (possibly with
repetition) in the cyclic group of ordern (denoted byZ

n

) of length`. We call a subsequence
T = (b1, b2, . . . , b

r

) of S to be zero-sum subsequence ifb1 + b2 + · · · + b

r

= 0 in Z

n

.
In 1961, Erd̈os–Ginzburg–Ziv proved the following theorem (which we call the EGZ

theorem).

EGZ Theorem [8]. Given a sequence S in Z

n

of length2n−1,one can extract a zero-sum
subsequence of lengthn in Z

n

.

The EGZ theorem is tight in the following sense. If

S = (0, 0, . . . , 0
︸ ︷︷ ︸

n−1 times

, 1, 1, . . . , 1
︸ ︷︷ ︸

n−1 times

)

is a sequence inZ
n

of length 2n − 2, thenS does not have a zero-sum subsequence of
lengthn.
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Many authors studied the characterization of the above extremal example. In particular,
Yuster and Peterson [18] and independently Bialostocki and Dierker [1] proved that any
sequenceS in Z

n

of length 2n − 2 having no zero-sum subsequence of lengthn will be of
the form

S = (a, a, . . . , a

︸ ︷︷ ︸

n−1 times

, b, b, . . . , b

︸ ︷︷ ︸

n−1 times

),

wherea 6= b ∈ Z

n

.
Also, Flores and Ordaz [9] proved the following result of this nature. SupposeS is any

sequence inZ
n

of length 2n − 3 such thatS has no zero-sum subsequence of lengthn.
Then there existsa, b ∈ Z

n

such thatZ
n

is generated byb−a anda appearingn−1 times
in S and one of the following conditions hold: (i)b appearing exactlyn − 2 times; (ii)b
appearing exactlyn − 3 times inS and also, 2b − a appearing exactly once inS.

In 1996, Gao [13] proved the generalization of the above two results as follows.

Theorem [13]. Let n be any positive integer. Let k be any positive integer such that

2 ≤ k ≤

[

n+1
4

]

+ 2. LetS = (a1, a2, . . . , a2n−k

) be any sequence inZ
n

such that there

is no subsequence of lengthn of S whose sum is zero inZ
n

. Then we can re-arrange the
sequenceS as follows:

S = (a, a, . . . , a

︸ ︷︷ ︸

u times

, b, b, . . . , b

︸ ︷︷ ︸

v times

, a

′

1, a
′

2, . . . , a

′

2n−k−u−v

)

whereu ≥ v, u + v ≥ 2n − 2k + 2 anda − b generatesZ
n

.

One of our main theorems in this article is to extend the above result to all primesp

and integerk for the rangep+1
4 + 3 ≤ k ≤

p+1
3 + 1. This extension is meaningful for

all large primesp. Also, we shall study the problem of how many distinct residue classes
modulop occur in those sequences of length 2p − k in Z

p

having a zero-sum subse-
quence of lengthp in it. Before we state our main theorems, we shall fix up notations as
follows.

For every integer 1≤ k ≤ `, define
∑

k

(S) =

{

a

i1 + a

i2 + · · · + a

i

k

|1 ≤ i1 < i2 < · · · < i

k

≤ `

}

and
∑

(S) = ∪

`

k=1

∑

k

(S). For any subsequenceT = (b1, b2, . . . , b

r

) of S, we let
σ(T ) =

∑

r

i=1 b

i

. We denoteST

−1 by the deleted sequenceR which is obtained from
S by deleting the elements ofT . Also, if S = (a, a, . . . , a

︸ ︷︷ ︸

r times

, b1, b2, . . . ), then we write

S = (a

r

, b1, b2, . . . ). For anyb ∈ Z

n

, we denote byb + S the sequence(b + a1, b +

a2, . . . , b + a

`

). For everyx ∈ Z

n

, definex to be the least positive inverse image under
the natural homomorphism from the additive group of integersZ ontoZ

n

. For example,
0 = n. If A ⊂ Z

n

, then we denote the cardinality ofA by |A|. If A is a sequence inZ
n

, we
denote the length ofA by |A| (same notation as the cardinality). For anyg ∈ Z

n

, we define
v

g

(S) by the number of timesg appears inS. Also, we defineh = h(S) = max
g∈Z

n

v

g

(S).
Gao [13] introduced the following definition.
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DEFINITION 1.1

Let S = (a1, a2, . . . , a

`

) andT = (b1, b2, . . . , b

`

) be two sequences inZ
n

of length`.
We say thatS is equivalent toT (written asS ∼ T ) if there exist an integerc coprime ton,
an elementx ∈ Z

n

, and a permutationπ of {1, 2, . . . , `} such thata
i

= c(b

π(i)

− x) for
everyi = 1, 2, . . . , n. Clearly,∼ is an equivalence relation; and ifS ∼ T , then 0∈

∑

n

(S)

if and only if 0 ∈

∑

n

(T ).

In this article, we shall prove theorems 3.1 and 3.2.

Theorem 3.1. Let p be any odd prime number. Letk be any positive integer such that

2 ≤ k ≤

[

p+1
3

]

+ 1. Let S = (a1, a2, . . . , a2p−k

) be any sequence inZ
p

such that

0 6∈

∑

p

(S). Then

S ∼ (0u

, 1v

, a

′

1, a
′

2, . . . , a

′

2p−k−u−v

),

whereu ≥ v andu + v ≥ 2p − 2k + 2.

Using the information in Theorem 3.1, we consider the following problem of variant of
EGZ theorem as follows. Before we state our theorem, we recall the following definition
which was introduced in [3] and state the known results.

DEFINITION 1.2

Let n, k be positive integers, 1≤ k ≤ n. Denote byf (n, k) the least positive integerg for
which the following holds: IfS = (a1, a2, . . . , a

g

) is a sequence of elements ofZ

n

, the
cyclic group of ordern, of lengthg such that the number of distincta

i

’s is equal tok, then
there aren indicesi1, i2, . . . , i

n

belonging to{1, 2, . . . , g} such thata
i1 + a

i2 + · · · + a

i

n

= 0.

Theorem. We have

1. f (n, k) ≤ 2n − 1 for all n and for all1 ≤ k ≤ n (By EGZ theorem).

2. f (n, n) =

{

n, if n is odd
n + 1, if n is even

[10].

3. f (n, k) = n + 2, for all n ≥ 5 and1 + n/2 < k ≤ n − 1 [5, 10].

4. f

(

n,

n

2 + 1
)

= n + 3 for all n ∈ 2N [12].

5. f (n, k) = 2n − ((k − 1)/2)

2
− 1 for all n ≥ (k − 1)

2
− 4 for an oddk ≥ 5 [19].

6. f (n, k) = 2n − k(k − 2)/4 − 1 for all n ≥ k(k − 2) − 4 for an evenk ≥ 6 [19].

7. f (n, 2) = 2n − 1, f (n, 3) = 2n − 2 andf (n, 4) = 2n − 3 for all n [3].

8. f (n, k) ≤ 2n − k + 1 for all 2 ≤ k ≤ n [16].

9. f (p, k) ≤ 2p − 3k + 11 for all 5 ≤ k ≤ (p + 15)/3 [17].

Other than these results many authors (for instance [11], [3] and [2]) consider some
lower bounds forf (n, k) for variousk.

In this article, we shall prove the following result.

Theorem 3.2. Let p be any odd prime number. Letk be any positive integer such that

2 ≤ k ≤

[

p+1
3

]

+ 1. Thenf (p, `) ≤ 2p − k for all ` ≥ 2
√

2
√

k − 2.
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2. Preliminaries

We shall start this section with a well-known fundamental inequality of subsets as follows.

Cauchy–Davenport inequality[6, 7]. Letp be any prime number. LetA1, A2, . . . , A

t

be
non-empty subsets ofZ

p

. Then

|A1 + A2 + · · · + A

t

| ≥ min

{

p,

t

∑

i=1

|A

i

| − t + 1

}

.

Theorem 2.1 [4]. Let n and k be any positive integers such that n − 2k ≥ 1. If S =

(a1, a2, . . . , a

n−k

) is a sequence inZ
n

such that0 6∈

∑

(S), then there existsa 6= 0 ∈ Z

n

which appear at leastn − 2k + 1 times inS.

The following Theorem is crucial for the proof of Theorem 3.1.

Theorem 2.2. Letp be any prime number and1 ≤ k ≤ p − 2. LetS be a sequence inZ
p

of lengthp + k. If 0 6∈

∑

p

(S), thenh(S) ≥ k + 1.

Proof. Whenk = 1, the result follows from the Pigeon hole principle. So, we can assume
thatk ≥ 2. If possible, we assume thath(S) ≤ k. Then, we can distribute the elements of
S into a unionA1 t A2 t · · · t A

k

, so that in eachA
i

, an element occurs only once. By the
Cauchy–Davenport theorem, we see that

∣

∣

∣

∣

∣

k

∑

i=1

A

i

∣

∣

∣

∣

∣

≥ min

{

p,

k

∑

i=1

|A

i

| − k + 1

}

= min{p, p + k − k + 1 = p + 1} = p.

Therefore,A1 + A2 + · · · + A

k

= Z

p

. In particular,σ(S) ∈

∑

k

(S). Without loss of
generality we shall assume thatσ(S) = a1 + a2 + · · · + a

k

. Then we havea
k+1 + a

k+2 +

· · ·+a

p+k

= 0 which implies 0∈
∑

p

(S) as|S| = p+k. This contradicts the assumption
that 0 6∈

∑

p

(S). Therefore,h(S) ≥ k + 1. 2

Theorem 2.3 [14]. Let n be any positive integer. Let 1 ≤ k ≤

[

n+1
3

]

, and letS be a

sequence inZ
n

of lengthn − k such that0 6∈

∑

(S). Then

S ∼ (1n−2k+1
, x1, x2, . . . , x

k−1)

with
∑

k−1
i=1 x

i

≤ 2k − 2.

Lemma2.4. Letp be any odd prime and1 ≤ k ≤

[

p+1
3

]

. LetS = (1p−2k+1
, x1, x2, . . . ,

x

k−1) be a sequence inZ
p

\{0} of lengthp−k such that
∑

k−1
i=1 x

i

≤ 2k−2. Then, for any

x ∈ Z

p

satisfyingp − 2k + 1 ≤ x ≤ p − 2k + 1+

∑

k−1
i=1 x

i

, there exists a subsequence
T of S such that|T | ≥ p − 2k + 1 with σ(T ) = x.

Proof. Letx ∈ Z

p

such thatp−2k+1 ≤ x ≤ p−2k+1+

∑

k−1
i=1 x

i

. If x = p−2k+1,

thenx =

∑

p−2k+1
i=1 1 and we are done; otherwise, we have

p − 2k + 2 ≤ x ≤ p − 2k + 1 +

k−1
∑

i=1

x

i

≤ p − 1.

Therefore, we have 1≤ x − (p − 2k + 1) ≤

∑

k−1
i=1 x

i

.
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Claim. For any positive integerk, if S

′

= (x1, x2, . . . , x

k

) be a sequence inZ
p

\{0} such
that |S′

| = k and
∑

k

i=1 x

i

≤ 2k, then, for everyx ∈ Z

p

satisfying 1≤ x ≤

∑

k

i=1 x

i

,
eitherx ∈

∑

(S

′

) or x + 1 ∈

∑

(S

′

).
If the claim is proven, then, we get, eitherx − (p − 2k + 1) or x − (p −

2k + 1) + 1 in
∑

((x1, x2, . . . , x

k−1)). That is, eitherx = 1 + 1 + · · · + 1
︸ ︷︷ ︸

p−2k+1

+y or

x = 1 + 1 + · · · + 1
︸ ︷︷ ︸

p−2k

+y wherey ∈

∑

((x1, x2, . . . , x

k−1)). So, to end the proof of this

lemma, it is enough to prove this claim.

Whenk = 1, 2, the claim is trivially true. So, we letk ≥ 3. Assume the result is true
for k − 1 and we shall prove fork. If necessary by renaming the indices, without loss of
generality, we can assume thatS

′

= (x1, x2, . . . , x

k

) with x1 ≤ x2 ≤ · · · ≤ x

k

. Suppose
x

k−1 = 1. Then, we havex1 = x2 = · · · = x

k−1 = 1. As
∑

k

i=1 x

i

≤ 2k, we see that
x

k

≤ 2k − (k − 1) = k + 1. Therefore, we see that

∑

(S

′

) =

{

{1, 2, . . . , x

k

+ k − 1}, if x

k

≤ k,

{1, 2, . . . , x

k

+ k − 1} \ {k}, if x

k

= k + 1

which clearly implies the claim. Thus, now, we can assume that 2≤ x

k−1 ≤ x

k

. If
x ≤ x

k

+

∑

k−2
i=1 x

i

, then by induction, eitherx or x + 1 in
∑

((x1, x2, . . . , x

k−2, xk

)),
and we are through; otherwise, we have,x

k

+

∑

k−2
i=1 x

i

≤ x <

∑

k

i=1 x

i

. Therefore,
we have

k − 2 ≤ x

k

− x

k−1 +

k−2
∑

i=1

x

i

≤ x − x

k−1 ≤ x

k

+

k−2
∑

i=1

x

i

.

Therefore, by the induction hypothesis, we see that eitherx − x

k−1 or x − x

k−1 + 1 in
∑

((x1, x2, . . . , x

k−2, xk

)) and hence, we have eitherx or x + 1 in
∑

(S

′

). 2

3. Proof of Theorems 3.1 and 3.2

Proof of Theorem3.1. LetS be a sequence inZ
p

of length 2p−k where 2≤ k ≤ [ p+1
3 ]+1.

Given that 06∈
∑

p

(S). Without loss of generality we can assume that 0 (if necessary, by
translating by an element) appears maximum number of, sayu, times inS. By Theorem 2.2,
it is clear thatu ≥ p−k+1. Therefore,S = (0u

, a1, a2, . . . , a2p−k−u

) wherea
i

∈ Z

p

\{0}.
Let S1 = (a1, a2, . . . , a2p−k−u

) be a subsequence ofS. Sinceu ≥ p − k + 1, we have
2p − k − u ≤ 2p − k − p + k − 1 = p − 1. That is,|S1| ≤ p − 1. Let |S1| = p − m for
some positive integerm. Note thatp − m + u = 2p − k which impliesu + k − p = m.
As 0 6∈

∑

p

(S), we haveu ≤ p − 1. Therefore,m = u + k − p ≤ p − 1 + k − p

= k − 1.
If 0 6∈

∑

(S1), then by Theorem 2.1, we know that there exists an elementa ∈ Z

p

\{0}

such thatv
a

(S1) ≥ p − 2m + 1. Therefore,S = (0u

, a

v

, b1, b2, . . . , b2p−k−u−v

) and
2p − k − u − v ≤ m − 1 ≤ k − 2 which implies 2p − 2k + 2 ≤ u + v and we
are done.

Thus, we can assume that 0∈
∑

(S1). Let W be the maximal zero-sum subsequence
of S1 of length w. Moreover, since 06∈

∑

p

(S) and S1 is a sequence inZ
p

\{0} and
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u ≥ p − k + 1, we have

2 ≤ w ≤ p − u − 1 H⇒ 2 ≤ w ≤ k − 2. (1)

Also note thatk + u + w ≥ k + p − k + 1 + w ≥ p + 1. Put` = k + u + w − p.
Therefore, 2p − k − u − w = p − `. By the definition ofW , we have 06∈

∑

(S1W
−1

)

and |S1W
−1

| = p − `. Let T = S1W
−1. Also, by the inequality (1), we see that` =

k + u + w − p ≤ k + u + p − u − 1− p = k − 1 ≤

[

p+1
3

]

. Therefore, by Theorem 2.3,

we see that

T ∼ (1p−2`+1
, x1, x2, . . . , x

`−1) and
`−1
∑

i=1

x

i

≤ 2` − 2.

Thus, the given sequenceS = 0u

S1 = 0u

T W is equivalent to the following sequence:

S ∼ (0u

, 1p−2`+1
, x1, x2, . . . , x

`−1, z1, z2, . . . , z

w

)

where all thex
i

6= 0 satisfying
∑

`−1
i=1 x

i

≤ 2` − 2 andW ∼ (z1, z2, . . . , z

w

) is the
maximal zero-sum subsequence ofS1.

Without loss of generality, we shall replace ‘∼’ by ‘ =’ above. Also, we denote the
number of 1’s appearing in the sequences(x1, x2, . . . , x

`−1) and(z1, z2, . . . , z

w

) by r

andt respectively. Putv = p − 2` + 1 + r + t .
To end the proof of this theorem, it is enough to prove thatu + v ≥ 2p − 2k + 2.
If 2 ≤ z

i

≤ p − 2` + 1 for somei satisfying 1≤ i ≤ w, then as there arep − 2` + 1
number of 1’s inT , we can writez

i

= σ(L1) whereL1 = (1z

i

) with |L1| ≥ 2. If
p − 2` + 2 ≤ z

i

≤ p − 2` + 1 +

∑

`−1
j=1 x

i

holds for some 1≤ i ≤ w, then by
Lemma 2.4, there exists a subsequenceL1 of T such thatz

i

= σ(L1) and|L1| ≥ 2. By
letting W1 = L1Wz

−1
i

, we see thatσ(W1) = 0 and|W1| ≥ w + 1 which contradicts the
maximality ofW . Hence

p − 1 ≥ z

i

≥ p − 2` + 2 +

`−1
∑

i=1

x

i

for each z

i

6= 1. (2)

Since
∑

`−1
i=1 x

i

≤ 2` − 2, we have

2` − 2 ≤

`−1
∑

i=1

x

i

+ r. (3)

Therefore, by the inequalities (2) and (3), we get

p − 1 ≥ z

i

≥ p − r for each z

i

6= 1. (4)

By rearranging the indices and renaming them, if necessary, we can assume that for 0≤

q ≤ w, we have

z

i

6= 1 for 1 ≤ i ≤ q and z

i

= 1 for q + 1 ≤ i ≤ w. (5)
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Case i. (w = 2)

In this case, by the definition ofW , we havez1 + z2 = 0. Therefore, there are two cases,
namely,z1 = 1 andz2 = −1 or z1 6= 1 and hencez2 6= −1. Whenz1 6= 1, by the
inequality (4), we havep − 2 ≥ z1 ≥ p − r and in particular, we haver ≥ 2. Since
2 ≤ r ≤ p − 2` + 1, we have a zero-sum subsequenceZ = (z1, 1p−z1

) which has length
> 2 which is a contradiction to the maximality ofW . Thus,z1 = 1 andz2 = −1. In
this case,v ≥ 2p − k − u − ` + r. Therefore,u + v = u + 2p − k − u − ` + r ≥

2p − k − (k − 1) + r = 2p − 2k + 1 + r ≥ 2p − 2k + 3. We are done in this case.

Case ii. (w ≥ 3)

SinceW is a zero-sum sequence,q 6= 0. So, we have 1≤ q ≤ w. Whenq = 1, from the
inequality (4), we get

p − 1 ≥ z1 ≥ p − r. (6)

Whenq = 2, we have

2p − 2 ≥ z1 + z2 ≥ 2p − 2r ≥ 2p − 2(` − 1) ≥ 2p − 2(k − 2)

= 2p − 2k + 4.

Sincek ≤

[

p+1
3

]

+ 1, it is clear thatp ≥ 3k − 4 and hence

2p − 2 ≥ z1 + z2 > p H⇒ p − 2 ≥ z1 + z2 − p > p − 2` + 2.

Therefore, it follows that

p − 2 ≥ z1 + z2 > p − 2` + 2.

If z1 + z2 ≤ p − 2` + 1 +

∑

`−1
i=1 x

i

, thenz1 + z2 = σ(L2) for some subsequence
L2 of T with |L2| ≥ p − 2` + 1 (by Lemma 2.4). If we letW2 = L2Wz

−1
1 z

−1
2 , then

σ(W2) = 0 and|W2| = |L2| + w − 2 ≥ p − 2` + 1 + w − 2 = w + p − (2` + 1) > w

(as` < k − 1 ≤ (p + 1)/3) which contradicts the maximality ofW . Therefore, we have
z1 + z2 ≥

∑

`−1
i=1 x

i

+ p − 2` + 2. Thus, by the inequality (3), we have

p − 2 ≥ z1 + z2 ≥ p − r. (7)

Now, we shall assume thatq ≥ 3. Leta = min{q, w−2}. Then we claim the following.

Claim 1. Forq ≥ 3 and for everys = 1, 2, . . . , a, we have

p − s ≥

(

s

∑

i=1

z

i

)

− (s − 1)p =

s

∑

i=1

z

i

≥ p − r.

By inequalities (4) and (7), the Claim 1 is true fors = 1 and 2. Now, we shall assume
that claim 1 is true fors − 1 and we prove fors. By the inequality (4) and induction
hypothesis, we have

p − s ≥

(

s

∑

i=1

z

i

)

− (s − 1)p =

(

s−1
∑

i=1

z

i

)

− (s − 2)p + z

s

− p

≥ p − r − r = p − 2r ≥ p − 2` + 2 ≥ p − 2k + 4 > 0.
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Hence,

p − 2` + 2 ≤

s

∑

i=1

z

i

.

If
∑

s

i=1 z

i

≤ p−2`+1+

∑

`−1
i=1 x

i

, then by Lemma 2.4, there exists a subsequenceL3 of
T with |L3| ≥ p−2`+1 such that

∑

s

i=1 z

i

= σ(L3). If we letW3 = L3Wz

−1
1 z

−1
2 . . . z

−1
s

,
then we getσ(W3) = 0. Sincew ≤ k − 2, ` ≤ k − 1 andp ≥ 3k − 1, we have

|W3| = w + |L3| − s ≥ w + p − 2` + 1 − (w − 2)

≥ w + p − 2k + 4 + 1 − k + 4 = w + p − (3k − 9) > w.

This contradicts the fact thatW is the maximal zero-sum subsequence ofS1. Therefore,
we have

p − s ≥

s

∑

i=1

z

i

≥ p − 2` + 2 +

`−1
∑

i=1

x

i

and by the inequality (3), we get Claim 1.

Claim 2. q ≤ w − 2.

Assume, on the contrary thatq ≥ w − 1. Thenq = w − 1 orq = w. If q = w − 1, then
we havep − (w − 2) ≥ z1 + z2 + · · · + z

w−2 ≥ p − r, p − 1 ≥ z

w−1 ≥ p − r and
z

w

= 1. Therefore,

2p > 2p − w + 2 ≥ z1 + z2 + · · · + z

w−2 + z

w−1 + z

w

≥ 2p − 2r + 1 > p

which is a contradiction toσ(W) = 0. Henceq 6= w − 1.
If q = w, thenp − (w −2) ≥ z1 + z2 + · · · + z

w−2 ≥ p − r, p −1 ≥ z

w−1, z

w

≥

p − r. Therefore,

3p > 3p − w ≥ z1 + z2 + · · · + z

w−2 + z

w−1 + z

w

≥ 3p − 3r ≥ 3p − 3(k − 2) ≥ 3p − 3k + 6 = 2p + p − 3k + 6 > 2p,

(asr ≤ ` − 1 ≤ k − 2 andp ≥ 3k − 4) which is also a contradiction toσ(W) = 0. Hence
q 6= w. Thus Claim 2 is true.

From Claims 1 and 2, we see thats varies from 1 toq. Since we havep − s ≥ p − r

which impliesr ≥ s. In particular, whens = q, we get

q ≤ r. (8)

But by the definition ofq, we haveq = w − t which implies thatw = q + t . Therefore,
by the inequality (8), we haver + t ≥ q + t = w. Thus

u + v = u + p − 2` + 1 + r + t ≥ u + p − 2` + 1 + w

= 2p − k − (` − 1) ≥ 2p − 2k + 2,

as desired. 2
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Proof of Theorem3.2. LetS be a given sequence inZ
p

of length 2p − k. Suppose the
number of distinct residue classes appearing inS is g ≥ 2

√

2
√

k − 2. If possible, we
assume that 06∈

∑

p

(S). Then by Theorem 3.1,S = 0u

T W (notations as in the proof
of Theorem 3.1). Now, we shall count the number of distinct residue classes modulop

appearing inT and inW separately.
We recall thatT = (1p−2`+1

, x1, x2, . . . , x

`−1) with
∑

`−1
i=1 x

i

≤ 2` − 2 andr =

v1((x1, x2, . . . , x

`−1)). Also,W = (z1, z2, . . . , z

q

, 1, 1, . . . , 1
︸ ︷︷ ︸

w−q times

) wherez

i

6= 1. Note that

by Claim 2 of Theorem 3.1, we have 1≤ q ≤ w − 2 and by (6) and (8) we haveq ≤ r

andr ≥ 2.
Letg1 (respectively,g2) denote the number of distinct residue classes modulop appear-

ing inT (respectively, inW ). Thus, including 0, the total number of distinct residue classes
modulop appearing inS is g = g1 + g2 + 1 − 1 = g1 + g2 because the residue 1 is
calculated twice ing1 andg2. So, to end the proof of this theorem, it is enough to estimate
g = g1 + g2.

Since
∑

`−1
i=1 x

i

≤ 2` − 2 andr number of 1’s appearing in(x
i

)s, we have

1 + 2 + · · · + g1 ≤ 2` − 2 − (r − 1)

g

2
1 + g1 ≤ 4` − 4 − 2(r − 1) ≤ 4` − 4 − 2 = 2(` − 3).

Therefore, sincè ≤ k − 1, we have

g

2
1 + g1 ≤ 2(k − 4) H⇒ g1 ≤

√

2
√

k − 4 <

√

2
√

k − 2. (9)

Now, note that−z

i

= p−z

i

. Therefore by Claim 1 of Theorem 3.1, we get
∑

q

i=1 −z

i

≤ r.
Thus,

1 + 2 + · · · + g2 ≤ r H⇒ g2 ≤

√

2r.

Sincer ≤ ` − 1 ≤ k − 2, we have

g2 ≤

√

2k − 4 =

√

2
√

k − 2. (10)

Thus, from the inequalities (9) and (10) and counting 0, we have

g1 + g2 <

√

2
√

k − 2 +

√

2
√

k − 2 = 2
√

2
√

k − 2,

a contradiction. Hence the theorem. 2

We shall end this section with the following open problems.

Open Problem.Let n andk be two positive integers such thatk ≤ n − 2. Determine the
constant defined by

h(n, k) = min{h(S) | |S| = n + k},

whereS runs over all sequences inZ
n

of lengthn + k such that 06∈
∑

n

(S).
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It is proved in [1] and [18] thath(n, n−2) = n−1 and proved in [9] thath(n, n−3) =

n − 1. Theorem 2.2 shows thath(p, k) ≥ k + 1 for all 1 ≤ k ≤ p − 2. The main result in
[13] implies thath(n, k) ≥ k + 1 whenevern − [(n + 1)/4] − 1 ≤ k ≤ n − 2. It is natural
to ask ifh(n, k) ≥ k + 1 for every positive integern and everyk such that 1≤ k ≤ n − 2.
However, the answer is ‘no’ in general. Recently, in [15] we provided a counter example
for k satisfyingp ≤ k ≤ n/p − 2. We conjectured the following.

Conjecture[15]. Letn > 1 be any positive integer and letp be the smallest prime divisor
of n. Let k be an integer such thatk ≥ (n/p) − 1. Thenh(n, k) ≥ k + 1.

In [15], it is proved that Conjecture 1 is true forn = p

` for any primep. Also, it is not
known whether Conjecture 1 is true fork < p/3.
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