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Abstract
We give a common proof of several results on Steinhaus sets inRd for d�2 including the fact that

a Steinhaus set inR2 must be disconnected.
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1. Introduction

A subsetSofRd is said to be aSteinhaus set if |(� ·S +x)∩Zd |=1 for any� ∈ SO(d)

and anyx ∈ Rd , where� · S = {�x : x ∈ S}. So,S is a Steinhaus set if every rigid motion
of Scontains exactly one integer lattice point inRd .
In 1957, Polish mathematician H. Steinhaus asked whether there exists a Steinhaus set in

R2 (cf. [10]). The existence of a Steinhaus set in dimension 2 has been shown recently by
Jackson and Mauldin (cf.[5–7]). Whether there exists a Steinhaus set in higher dimension
is still an open question. Steinhaus sets have been the subject of several recent papers. In
this note, we give a common proof of some results (which are known inR2) and some new
results on Steinhaus sets in any dimension.
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We fix some notation first. The point(x1, x2, . . . , xd) in Rd will be simply denoted by
x. Let a1<a2<a3< · · · be the increasing enumeration of all non-zero integers which can
be written as a sum ofd squares. For anyx ∈ Rd and�>0,B(x, �) will denote the open
ball inRd with centerx and radius�, C(x, �) the closed ball inRd with centerx and radius
�, S(x, �) the sphere inRd with centerx and radius� andSd−1 denotes the unit sphere in
Rd ; An(x, �) will denote the annulus

An(x, �) = {z ∈ Rd : √
an − �< |z − x|<√

an + �}.

Theorem 1. LetS ⊂ Rd be a Steinhaus set, x ∈ Rd and�>0.ThenS ∩An(x, �) �= ∅ for
somen�1.

Remark. The method of the proof of this theorem is essentially derived from the result
of Ciucu[3] (see Corollary 4 in this article). Indeed, Theorem 1 is equivalent to his result
which says that the interior of a Steinhaus set is empty.

As a corollary, we show that a Steinhaus set inRd does not contain a homeomorph of
Sd−1 (Corollary 5). We then prove that a Steinhaus set is disconnected. It is still not known
whether a Steinhaus set is always totally disconnected.

2. Proof of our results

We shall start this section with following lemma.

Lemma 2. Let b1, b2, . . . be any sequence inR such thatbn → ∞ asn → ∞. Then for
any�>0, there exists a positive integer N such that for everyn�N there exists an integer
� of the form� = r2 + t2 satisfyingbn < �<bn + 2�

√
bn.

Proof. Let x = bn andt = [√x] where[x] denotes the integral part ofx. So,t = √
x − �

for 0��<1. Letx1 andx2 satisfy

x = x21 + t2 (1)

and

x + 2�
√
x = x22 + t2. (2)

Subtracting Eq. (1) from Eq. (2), we get

x2 − x1 = 2�
√
x

x1 + x2
. (3)

Now,

x1 =
√
x − t2 =

√
x − (

√
x − �)2 =

√
2�

√
x − �2<

√
2 x1/4 (4)
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and

x2 =
√
x + 2�

√
x − t2 =

√
2�

√
x + 2

√
x� − �2<

√
2(� + 1)x1/4. (5)

Therefore from Eqs. (4) and (5), we get

x1 + x2<
(√
2(1+ √

� + 1)
)
x1/4.

Substituting this in Eq. (3), we get

x2 − x1>
2�

√
x(√

2(1+ √
� + 1)

)
x1/4

=
√
2�

1+ √
� + 1

x1/4.

Sincebn → ∞ asn → ∞, there exists a positive integerN such that for everyn�N ,
x2 − x1>2. Thus for everyn�N , there exists a positive integerr such thatx1<r <x2.
Therefore,x21 + t2<r2 + t2<x22 + t2. Sobn < � = r2 + t2<bn + 2�

√
bn. �

Corollary 3.
√
an+1 − √

an → 0 asn → ∞.

Proof. Clearly,an → ∞ asn → ∞. Note that

√
an+1 − √

an = an+1 − an√
an+1 + √

an
<

an+1 − an

2
√
an

.

By Lemma 2, for every�>0, there is a positive integerN such that for everyn�N ,
there exist integersr andt satisfyingan < r2 + t2<an + 2�

√
an. Therefore, by the above

inequality,
√
an+1 − √

an < � for everyn�N . �

Remark. It is known by Lagrange’s theorem that every positive integer can be written
as sum of four squares. Therefore, Corollary 3 trivially holds ford�4, since

√
n + 1−√

n<1/(2
√
n), we have

√
an+1 − √

an = √
n + 1− √

n → 0 asn → ∞.

Proof of Theorem 1. ReplacingSby S − x, we assume thatx = 0, the origin. For easy
notation, we shall writeAn instead ofAn(0, �). If possible, supposeS ∩An =∅ for everyn.
By Corollary 3, there exists a positive integerN such that[∪n�NAn]c is a closed ball

C(0, R) with center the origin and radiusR. So, by our hypothesis,S ⊂ C(0, R). ThusSis
bounded.
For anym = (m1, . . . , md) ∈ Zd , we denote,

Im =
d∏

i=1
[mi,mi + 1).

Let

F =
{
m ∈ Zd : m �= 0, ∃ � ∈ SO(d) andx ∈ I0 such thatx + m ∈ � · S

}
.
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SinceS is bounded,F is finite. Set

I (�) =
⋂
m∈F

[(An ∩ Im) − m],

wherem21 + · · · + m2d = an. Note thatI (�) ⊂ I0.

Claim 1. I (�) ⊂ � · S for every� ∈ SO(d).

Let � ∈ SO(d) andx ∈ I (�). Since� · S is a Steinhaus set, there is am such that
x +m ∈ � · S. If m �= 0, then by definition ofF,m ∈ F . But this implies thatx +m ∈ An,
wherem21 + · · · + m2d = an. Thus,An ∩ [� · S] �= ∅. This contradicts our assumption that
S ∩ An = ∅. Thus,m = 0 and hencex ∈ � · S.
Let

B =
⋃

�∈SO(d)

� · I (�).

By Claim 1, it follows thatB ⊂ S. It is easy to see that there exists a�> � such that
B(0, �) ⊂ B ⊂ S. Let � be the largest number such thatB(0, �) ⊂ S.

Claim 2. For everyn�1, S ∩ An(0, �) = ∅.

If possible, suppose for somen�1, S ∩ An(0, �) �= ∅. Let y ∈ S ∩ An(0, �). Clearly,
there exists az ∈ B(0, �) such that|y−z|=√

an. SinceB(0, �) ⊂ S, this implies that there
existsy, z ∈ S such that|y − z| = √

an. But this contradicts the fact thatS is a Steinhaus
set. Thus the claim follows.
Set

I (�) =
⋂
m∈F

[(An(0, �) ∩ Im) − m],

wherem21 + · · · + m2d = an (andF is as defined before).
By the argument contained in the proof of Claim 1, we see thatI (�) ⊂ S. Also, by the

argument following the proof of Claim 1,

∪�� · I (�) ⊂ S

and hence we see that there exists a�′ > � such thatB(0, �′) ⊂ I (�). This contradicts the
maximality of� and our proof is complete.�

Corollary 4. Every Steinhaus set S has empty interior.

Proof. If possible, suppose the interior ofS(denoted byS◦) is non-empty. Assume without
loss of any generality that 0∈ S◦. Get a�>0 such thatB(0, �) ⊂ S. By Claim 2 of
Theorem 1, we see thatS ∩An(0, �)= ∅ for everyn�1. This contradicts Theorem 1.�

Corollary 4 implies Theorem 1. Assume that the interior ofSis empty. IfS∩An(0, �)=∅
for all n�1, thenB(0, �) ⊂ S. For, if x ∈ B(0, �)\S, then there isy ∈ S with |x − y| = an
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for somen. But then||y| − an|< � and soy ∈ An(0, �) which is a contradiction. Thus,
B(0, �) ⊂ S which contradicts the assumption that interior ofSempty. �

The following corollary is the generalization of the result in[1].

Corollary 5. No Steinhaus set S inRd contains a homeomorph ofSd−1.

Proof. If possible, suppose there exists a Steinhaus setS in Rd containing a homeomorph
C of Sd−1. By the Jordan curve theorem (cf.[11, Corollary 36.4]), Rd\C has a bounded
componentE. Without any loss of generality, we assume that 0∈ E. Get a�>0 such that
B(0, �) ⊂ E.
By Theorem 1, our result will follow, if we show thatS ∩ An(0, �) = ∅ for everyn.

Suppose for somen, S ∩ An(0, �) �= ∅. Take anyx ∈ S ∩ An(0, �). By looking at the
intersection ofSwith the line passing through 0 andx, we see that there existy andz in C
such that|x − y|<√

an and|x − z|>√
an. SinceC is connected, there must be a point

p ∈ C such that|x − p| = √
an. But this is impossible becauseS is Steinhaus. �

Using Corollary 4 we now deduce some results.

Corollary 6. No closed set S is Steinhaus.

Proof. SupposeS is a closed Steinhaus set inRd . SinceS is a Steinhaus set,

Rd =
⋃

m∈Zd

(S + m).

As S is closed, eachS + m is closed. So, by the Baire Category theorem,S + m has non-
empty interior for somem, which impliesShas non-empty interior. This is impossible by
Corollary 4. HenceScannot be closed. �

It has been already proved that no Steinhaus setS in R2 has the property of Baire (cf.
[5]). Their proof can be easily modified to see that this result is true in any dimension. In
[2,4], it is shown that no bounded Steinhaus set inR2 is Lebesgue measurable, whereas in
[8,9], it is shown that there does not exist a Lebesgue measurable Steinhaus set inRd for
anyd�3. The existence of an unbounded Lebesgue measurable Steinhaus set inR2 is still
open.

Lemma 7. If S is a connected Steinhaus set inRd , then there does not existz1, z2 ∈ S such
that |z1 − z2|>1.

Proof. SupposeS is a connected Steinhaus set inRd . We shall arrive at a contradiction.
Without loss of generality we assume that the origin 0∈ S. SinceS is a Steinhaus set, for
everyx ∈ S, S ∩ S(x,1) = ∅. As S is connected, it follows thatS ⊂ B(x,1) for every
x ∈ S. Therefore,S ⊂ B(0, 12). For otherwise, there existsz1, z2 ∈ S such that|z1−z2|>1.
Hence,S ⊂ B(z1,1) ∩ B(z2,1) impliesz1, z2 /∈ S which is a contradiction. Hence, there
does not existz1, z2 ∈ S such that|z1 − z2|>1. �
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Theorem 8. No Steinhaus set S inRd is connected.

We shall present two proofs of this theorem. One uses Corollary 4 and the other is
self-contained.
LetSbe a connected Steinhaus set inRd . Without loss of generality we may assume that

Scontains the origin 0∈ S. By Lemma 7, it follows in particular thatS ⊂ B(0,1).

Proof No. 1. First we claim the following. Ife1 = (1,0, . . . ,0) ∈ Rd , then,e1 ∈ S (the
closure ofS).
For, if not, let�>0 be such thatS ∩ B(e1, �) = ∅. Set

A = B(0,1) ∩ B(e1, �)

and

J =
{
m ∈ {0,1}d : m1 = 1, ∃ i >1 such thatmi = 1

}
.

Now consider the non-empty open set

E =
⋂
m∈J

{x ∈ A : xi >0 ∀i and |x − m|>1}.

Let z ∈ E be an arbitrary element. SinceS is a Steinhaus set,z + m ∈ S for somem ∈ Zd .
As S ⊂ B(0,1) andz ∈ E, we must havem = −e1. Thus,E − e1 ⊂ S. In particular,Shas
non-empty interior. This is a contradiction by Corollary 4. Thus our claim is proved.
Sincee1 is a limit point ofS, there is a sequence{xn} in S such thatxn → e1. Since

S ⊂ B(xn,1) for eachn, we haveS ⊂ C(e1,1). By the same argument, we see that
S ⊂ C(−e1,1) also.
Thus 0∈ S ⊂ B(0,1) ∩ C(e1,1) ∩ C(−e1,1). HenceS = {0}. This is clearly not a

Steinhaus set and our proof is complete.�

Proof No. 2. First we show that for everyz = (x1, x2, . . . , xd) ∈ S, one of the following
segments:

Vi =
i−1∏
j=1

{xj } ×
[
xi, xi + 1

4

]
×

d∏
j=i+1

{xj },

i = 1,2, . . . , d, is contained inS.
Suppose not. That is, there existsz ∈ S such that the above claim is not true. Without

loss of generality we may assume thatz = 0 the origin. Then there existszi ∈ Vi\S for
eachi = 1,2, . . . , d. SinceS is a Steinhaus set,Smust meetZd + zi for eachi. Since
S ⊂ B(0,1), in fact,Smust meet at the point

wi = (0,0, . . . ,0,︸ ︷︷ ︸
i−1times

−1,0,0, . . . ,0︸ ︷︷ ︸
d−itimes

) + zi, ∀i,
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because all the other points ofZd + zi have distance>1 from the origin. Then, we see that
|wi − wj |� 3

4

√
2>1 for everyi �= j which is not possible by Lemma 7. Therefore our

claim is true.
Now take any pointx ∈ S. By the above observation, there is another pointy ∈ S with

|x−y|>1 such that there is a polygonal path inSfromx toy. This again contradicts Lemma
7. �

Remark. Referee pointed out that Steinhaus set cannot exists inRd for d�4. If one replace
Zd by other latticeL inRd in the definition of Steinhaus set, onemay possibly obtain similar
results that of the above with respect toL.
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