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Abstract

We give a common proof of several results on Steinhaus sétéford>2 including the fact that
a Steinhaus set iR2 must be disconnected.
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1. Introduction

A subsetSof R¢ is said to be &teinhaus set if [(p- S +x)NZ¢|=1foranyp € SO(d)
and anyx € R, wherep - S = {px : x € S}. So,Sis a Steinhaus set if every rigid motion
of Scontains exactly one integer lattice pointif.

In 1957, Polish mathematician H. Steinhaus asked whether there exists a Steinhaus set in
R? (cf. [10]). The existence of a Steinhaus set in dimension 2 has been shown recently by
Jackson and Mauldin (cf5—7]). Whether there exists a Steinhaus set in higher dimension
is still an open question. Steinhaus sets have been the subject of several recent papers. In
this note, we give a common proof of some results (which are knoif)jrand some new
results on Steinhaus sets in any dimension.
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We fix some notation first. The poiiit1, x2, ..., x4) Iin R will be simply denoted by
X. Letas <ap <az < --- be the increasing enumeration of all non-zero integers which can
be written as a sum af squares. For any € RY ande > 0, B(x, ¢) will denote the open
ball in R with centerx and radius;, C(x, ¢) the closed ball ifR? with centerx and radius
&, S(x, ¢) the sphere iR with centerx and radius: andS?~* denotes the unit sphere in
R?: A, (x, &) will denote the annulus

Ap(x,e)={z € R : Ja, —e< |z — x| < Jan + ¢}

Theorem 1. LetS c R? be a Steinhaus set € R? ande > 0.ThenS N A, (x, &) # ¥ for
somen > 1.

Remark. The method of the proof of this theorem is essentially derived from the result
of Ciucu[3] (see Corollary 4 in this article). Indeed, Theorem 1 is equivalent to his result
which says that the interior of a Steinhaus set is empty.

As a corollary, we show that a Steinhaus seRfhdoes not contain a homeomorph of
S?~1 (Corollary 5). We then prove that a Steinhaus set is disconnected. It is still not known
whether a Steinhaus set is always totally disconnected.

2. Proof of our results
We shall start this section with following lemma.

Lemma 2. Lethq, by, ... be any sequence R such thath, — oo asn — oo. Then for
anye > 0, there exists a positive integer N such that for evelyN there exists an integer
¢ of the form¢ = r2 + 2 satisfyingb, < £ < b, + 2¢+/by,.

Proof. Letx = b, andr = [\/x] where[x] denotes the integral part &f S0, = /x — 0
for 0<0 < 1. Letx1 andxy satisfy

x= xf +12 (1)
and
X + 26X = x2 + 12, 2
Subtracting Eqg. (1) from Eq. (2), we get
2e./x

x1+x2'

®)

X2 — X1 =
Now,

x1=\/x—12=\/x—(\/_—Q)zz\/ZG\/_—02< 2 x4 4)
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and

X =1/x +2e/x — 12 = \/2sﬁ + 2/x0 — 02 < /2( + Dx V4. (5)
Therefore from Egs. (4) and (5), we get

X1+ x2< (ﬁ(l + x/m-)) x4,
Substituting this in Eq. (3), we get

2e/x _ Y L4
(ﬁ(1+m))x1/4 1+ve+1"

X2 — X1 >

Sinceb, — oo asn — oo, there exists a positive integdl such that for every: > N,
x2 — x1 > 2. Thus for every: > N, there exists a positive integeisuch thatvy < r < xa.
Thereforex? + 12 <r? + 12 <x2 4+ 12. Sob, <t =r2+ 12 <b, + 2e/b,. O

Corollary 3. /a1 — /a, — O0asn — oo.

Proof. Clearly,a, — oo asn — oo. Note that

Ap+1 — apn dp+1 — dpn
a — a, = < .
VO TN et an | 2Jan
By Lemma 2, for every > 0, there is a positive integeéd such that for everyi > N,
there exist integersandt satisfyinga, < r2 + t2 < a, + 2¢./a,. Therefore, by the above

inequality,/a,+1 — /a, <¢foreveryn>N. [

Remark. It is known by Lagrange’s theorem that every positive integer can be written
as sum of four squares. Therefore, Corollary 3 trivially holdsdgr4, sincev/n + 1 —

Vn<1/(2\/n), we have/a, ;1 — /ay =/n+1—/n — 0asn — oc.

Proof of Theorem 1. ReplacingSby S — x, we assume that = 0, the origin. For easy
notation, we shall writet,, instead ofA,, (0, ¢). If possible, suppos&n A, = ¢ for everyn.
By Corollary 3, there exists a positive intedérsuch thafu, > xA,]¢ is a closed ball
C(0, R) with center the origin and radid® So, by our hypothesis, ¢ C(0, R). ThusSis
bounded.
For anym = (m1, ..., mq) € Z¢, we denote,

d
Iy = H[mi, m; +1).
i=1
Let

F={n_1€Zd:n_17£O, 3pe S0 andxelosuchthatx+n_1€p~5}.



174 S.M. Srivastava, R. Thangadurai / Expo. Math. 23 (2005) 171-177

SinceSis boundedF is finite. Set

1) = () [(An N L) — ],

meF

wherem? + - - - + m?2 = a,. Note that/ (¢) C Io.
Claim 1. I(¢) C p- S foreveryp € SO(d).

Letp € SO() andx € I(¢g). Sincep - S is a Steinhaus set, there israsuch that
x+m e p-S.If m # 0, then by definition of, m € F. But this implies thak +m € A,,
wherem? + - -- +m? = a,. Thus,A, N [p - S] # @. This contradicts our assumption that
SNA,=¢.Thus;m =0and hence € p - S.

Let

B = U p-1(e).

peSO(d)

By Claim 1, it follows thatB C S. It is easy to see that there exist® & ¢ such that
B(0, ) C B C S. Letd be the largest number such th&t0, o) C S.

Claim 2. Foreveryn>1,SN A,(0, ) = 0.

If possible, suppose for some>1, S N A, (0,0) # ¥. Lety € SN A,(0, J). Clearly,
there exists @ € B(0, 6) such thaty —z| = \/a,. SinceB(0, ) C S, thisimplies that there
existsy, z € S such thaty — z| = \/a,. But this contradicts the fact th&tis a Steinhaus
set. Thus the claim follows.

Set

13) =[] [(An(0, 6) N L) — ],

meF

wherem? + - - - + m3 = a, (andF is as defined before).
By the argument contained in the proof of Claim 1, we see ki@t c S. Also, by the
argument following the proof of Claim 1,

Upp-1(6) C S
and hence we see that there existé a 6 such thatB(0, §') c I(J). This contradicts the
maximality of 6 and our proof is complete.[]

Corollary 4. Every Steinhaus set S has empty interior

Proof. If possible, suppose the interior 8{denoted by5°) is non-empty. Assume without
loss of any generality that @ S°. Get ad > 0 such thatB(0, ) C S. By Claim 2 of
Theorem 1, we see thatn A,, (0, 6) = ¥ for everyn > 1. This contradicts Theorem 1.

Corollary 4 implies Theorem 1. Assume that the interior &is empty. IfSNA,, (0, &)=¢
foralln>1, thenB(0,¢) C S. For, ifx € B(0, ¢)\S, then there iy € Swith |x — y| =a,



S.M. Srivastava, R. Thangadurai / Expo. Math. 23 (2005) 171-177 175

for somen. But then||y| — a,| <& and soy € A, (0, ¢) which is a contradiction. Thus,
B(0, ¢) C S which contradicts the assumption that interioS&#mpty. O

The following corollary is the generalization of the resulf1.
Corollary 5. No Steinhaus set S &¢ contains a homeomorph &~

Proof. If possible, suppose there exists a Steinhau$seR? containing a homeomorph
C of S¢~1. By the Jordan curve theorem (§11, Corollary 36.4), R\ C has a bounded
component. Without any loss of generality, we assume that &. Get ad > 0 such that
B(0,9) C E.

By Theorem 1, our result will follow, if we show tha& N A, (0, §) = @ for everyn.
Suppose for soma, S N A,(0, 0) # @. Take anyx € S N A,(0, o). By looking at the
intersection ofSwith the line passing through 0 axgdwe see that there exigtandzin C
such thatix — y| < /a, and|x — z| > ,/a,. SinceC is connected, there must be a point
p € C suchthafx — p| = ,/a,. But this is impossible becausds Steinhaus. [

Using Corollary 4 we now deduce some results.
Corollary 6. No closed set S is Steinhaus

Proof. Supposéis a closed Steinhaus setlitf . SinceSis a Steinhaus set,

RY = U (S + m).
mez!
As Sis closed, eacly + m is closed. So, by the Baire Category theorém; m has non-

empty interior for som@z, which impliesShas non-empty interior. This is impossible by
Corollary 4. Hencé cannot be closed. [

It has been already proved that no SteinhausSsetR? has the property of Baire (cf.
[5]). Their proof can be easily modified to see that this result is true in any dimension. In
[2,4], it is shown that no bounded Steinhaus se®fnis Lebesgue measurable, whereas in
[8,9], it is shown that there does not exist a Lebesgue measurable Steinhau&$doin
anyd > 3. The existence of an unbounded Lebesgue measurable SteinhauB%ist still
open.

Lemma 7. If Sis a connected Steinhaus sefif, then there does not exist, z2 € S such
that|z1 — z2| > 1.

Proof. SupposeSis a connected Steinhaus setfl. We shall arrive at a contradiction.
Without loss of generality we assume that the origia 8. SinceSis a Steinhaus set, for
everyx € S, SN S(x,1) = @. As Sis connected, it follows tha§ c B(x, 1) for every

x € S. ThereforeS c B(0, %). For otherwise, there exists, zo> € S suchthatz,—z»| > 1.
Hence,S C B(z1,1) N B(z2, 1) implieszy, z2 ¢ S which is a contradiction. Hence, there
does not existy, z» € Ssuchthatizy —zo|>1. O



176 S.M. Srivastava, R. Thangadurai / Expo. Math. 23 (2005) 171-177
Theorem 8. No Steinhaus set S ¢ is connected

We shall present two proofs of this theorem. One uses Corollary 4 and the other is
self-contained.

Let Sbhe a connected Steinhaus sefith Without loss of generality we may assume that
Scontains the origin & S. By Lemma 7, it follows in particular th&& ¢ B(0, 1).

Proof No. 1. First we claim the following. Ife; = (1,0,...,0) € R?, then,e; € S (the
closure ofS).
For, if not, lete > 0 be such tha$ N B(e1, ¢) = @. Set

A = B(0,1) N B(ey, &)
and

J={me(0.1 m=1 3 i>1such tham, =1}.
Now consider the non-empty open set

E=(){xeA:x>0 Viand[x—in|>1).

meJ

Letz € E be an arbitrary element. Sin&s a Steinhaus set,+ i € S for somem € 7¢.
As S C B(0,1) andz € E, we must hav@: = —e1. Thus,E — e C S. In particular,Shas
non-empty interior. This is a contradiction by Corollary 4. Thus our claim is proved.
Sincees is a limit point of S, there is a sequendg;,} in Ssuch thaty, — ej1. Since
S C B(x, 1) for eachn, we haveS C C(e1,1). By the same argument, we see that
S C C(—e, 1) also.
Thus 0e S € B(0,1) N C(e1,1) N C(—e1,1). HenceS = {0}. This is clearly not a
Steinhaus set and our proof is completé]

Proof No. 2. First we show that for every = (x1, x2, ..., x4) € S, one of the following
segments:
i—1 1 d
Vi= l_[ {x;} x [xi,x,' + Z:| X l_[ {x;}
Jj=1 j=i+1

i=1,2,...,d,is contained ir&.

Suppose not. That is, there exigtg S such that the above claim is not true. Without
loss of generality we may assume that O the origin. Then there exists € V;\S for
eachi = 1,2,...,d. SinceSis a Steinhaus se§ must meetZ? + z; for eachi. Since
S C B(0, 1), in fact, Smust meet at the point

w; =(0,0,...,0,-1,0,0,...,0) +z, Vi,

i—1times d—itimes




S.M. Srivastava, R. Thangadurai / Expo. Math. 23 (2005) 171-177 177

because all the other points#f + z; have distance- 1 from the origin. Then, we see that
lw; —w;|> %ﬁ> 1 for everyi # j which is not possible by Lemma 7. Therefore our
claim is true.

Now take any poink € S. By the above observation, there is another pgigt S with
|x —y| > 1 suchthat there is a polygonal pattGfrom x toy. This again contradicts Lemma
7. O

Remark. Referee pointed out that Steinhaus set cannot exigté far d > 4. If one replace
7% by other latticd_ in R? in the definition of Steinhaus set, one may possibly obtain similar
results that of the above with respect/to
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