130 (2005) MATHEMATICA BOHEMICA No. 4, 387-396

DISTRIBUTION OF QUADRATIC NON-RESIDUES
WHICH ARE NOT PRIMITIVE ROOTS

S. GuN, B. RAMAKRISHNAN, B. SAHU, R. THANGADURAI, India

(Received February 24, 2005)

Abstract. In this article we study, using elementary and combinatorial methods, the
distribution of quadratic non-residues which are not primitive roots modulo p”* or 2p" for
an odd prime p and h > 1 an integer.
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1. INTRODUCTION

Distribution of quadratic residues, non-residues and primitive roots modulo n
for any positive integer n is one of the classical problems in Number Theory. In
this article, by applying elementary and combinatorial methods, we will study the
distribution of quadratic non-residues which are not primitive roots modulo odd
prime powers.

Let n be any positive integer and p any odd prime number. We denote the additive
cyclic group of order n by Z,.. The multiplicative group modulo n is denoted by 7}
of order ¢(n), the Euler phi function.

Definition 1.1. A primitive root g modulo n is a generator of Z¥, whenever Z},
is cyclic.

A well known result of C. F. Gauss says that Z}, has a primitive root g if and only if
n = 2,4 or p" or 2p" for any prime number p and a positive integer k > 1. Moreover,
the number of primitive roots modulo these n's is equal to p(p(n)).

Definition 1.2. Letn > 2 and a be integers such that (a,n) = 1. If the quadratic
congruence
2% = a (mod n)
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has an integer solution z, then a is called a quadratic residue modulo n. Otherwise,
a is called a quadratic non-residue modulo n.

Whenever Z% is cyclic and g is a primitive root modulo n, then g?~! for | =
1,2,...,¢(n)/2 are all the quadratic non-residues modulo n and g% for I = 0,
1,...,p(n)/2 — 1 are all the quadratic residues modulo n. Also, g%~ for all | =
1,2,...,¢(n)/2 such that (2 —1,¢(n)) > 1 are all the quadratic non-residues which
are not primitive roots modulo n.

For a positive integer n, set

M(n) = {g € Z},; g is a primitive root modulo n}

and
K(n) = {a € Z},; a is a quadratic non-residue modulo n}.

n?

Note that M(1) = K(1) = 0, M(2) = {1} and K(2) = 0. When n > 3, we know
that |K(n)| > ¢(n)/2 and whenever n = 2,4 or p® or 2p*, we have |K(n)| = ¢(n)/2.
Also, it can be easily seen that if n > 3, then

M(n) C K(n).

We shall denote a quadratic non-residue which is not a primitive root modulo n by
QNRNP modulo n. Therefore, any € K(n)\ M(n) is a QNRNP modulo n.

Recently, Kiizek and Somer [2] proved that M (n) = I (n) iff n is either a Fermat
prime (primes of the form 22" + 1) or 4 or twice a Fermat prime. Moreover, they
proved that for n > 2, |M(n)] = |K(n)| — 1 if and only if n = 9 or 18, or either n or
n/2 is equal to a prime p, where (p — 1)/2 is also an odd prime. They also proved
that when |M(n)| = |K(n)] — 1, then n — 1 € K(n) \ M(n).

In this article, we will prove the following theorems.

Theorem 1.1. Let r and h be any positive integers. Let n = p" or 2p" for an odd
prime p. Then |M(n)| = |K(n)| — 2" if and only if n is either (i) p or 2p whenever
p = 2"t q+1 with ¢ is also a prime or (ii) p? or 2p® whenever p = 2"+1 +1 is a Fermat
prime. In this case, the set K(n)\ M (n) is nothing but the set of all generators of
the unique cyclic subgroup H of order 27+! of 7 et

When p is not a Fermat prime, then it is clear from the above discussion that
v:=|K(p) \M@p)|=p-1)/2—-¢(@—1) > 0. When v > 2, a natural question is
whether there exists any consecutive pair of QNRNP modulo p. From Theorem 1.1,
we know that v = 2 for all primes p = 4¢ + 1 where ¢ is also a prime number.
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Theorem 1.2. Let p be a prime such that p = 4q + 1, where q is also a prime.
Then there exists no pair of consecutive QNRNP modulo p.

In contrast to Theorem 1.2, we will prove the following

Theorem 1.3. Let p be any odd prime such that p(p—1)/(p—1) < %. Then
there exists a pair of consecutive QNRNP modulo p.

In the next theorem, we will address a weaker question than Theorem 1.3; however,

it works for an arbitrary length k.

Theorem 1.4. Let ¢ > 1 be any odd integer and k > 1,h > 1 integers. Then
there exists a positive integer N = N(q, k) depending only on q and k such that for
every prime p > N and p = 1 (mod gq) we have an arithmetic progression of length k

whose terms are QNRNP modulo n, where n = p" or 2p". Moreover, we can choose

the common difference to be a QNRNP modulo n, whenever n = p".

2. PRELIMINARIES

In this section we shall prove some preliminary lemmas which will be useful for
proving our four theorems.

Proposition 2.1. Let h be any positive integer and let n = p* or 2p" for an odd
prime p. Then an integer g is a primitive root modulo n if and only if

giﬂ(“)/q # 1 (mod n)

for every prime divisor q of ¢(n).
Proof. We omit the proof as it is straightforward. O

The following proposition gives a criterion for QNRNP modulo n whenever n = p"
or 2ph.

Proposition 2.2. Let h be any positive integer. Let n be any positive integer of
the form p" or 2p" where p is an odd prime. Then an integer a is a QNRNP modulo
n if and only if for some odd divisor ¢ > 1 of ¢(n) we have

a?™/24 = _1 (mod n).
Proof. Suppose ais a QNRNP modulo n. Then
a?™/? = _1 (mod n).
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If n is a Fermat prime or twice a Fermat prime, then we know that every non-
residue is a primitive root modulo n. Therefore, by the assumption, n is not such a
number. Thus there exists an odd integer ¢ > 1 which divides ¢(n). Since a is not a
primitive root modulo n, by Proposition 2.1 there exists an odd prime q; dividing ¢
and satisfying

a?™/% =1 (mod n).

Therefore, by taking the square-root of a®(™/% modulo n, we see that
a?™/20 = 41 (mod n).

If

a¥M/21 =1 (mod n),

then by taking the g;-th power of both the sides it follows that a is a quadratic
residue modulo p, which is a contradiction. Hence, we get a#(™/241 = —1 (mod n).

Conversely, let a be an integer satisfying
(1) a¥™/24 = _1 (mod n),

where ¢ > 1 is an odd divisor of ¢(n). Then by squaring both the sides of (1) we
conclude by Proposition 2.1 that a cannot be a primitive root modulo n. By taking
the g-th power of both sides of (1), we see that the right-hand side of the congruence
is still —1 as g is odd and hence we conclude that a is a quadratic non-residue modulo
n. Thus the proposition follows. O

Corollary 2.3. Let p be a prime. Suppose p is not a Fermat prime and 4 divides
p—1. If a is a QNRNP modulo p, then £a®~1)/%4 js a square root of —1 modulo p
for some odd divisor g of p— 1.

Proof. By Lemma 2.2 it follows that there exists an odd divisor g of p— 1 such

that a(?~1)/2¢ = —1 (mod p). Since 4 divides p— 1, it is clear that (a(P~1)/49)2 = —1
(mod p) and hence the result. O

Lemma 2.4 (Kfizek and Somer, [2]). Let m > 3 be an odd positive integer. Then
|K(2m)| = |K(m)| and |M (2m)] = |M (m).
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Theorem 2.5 (Brauer, [1]). Let r,k and s be positive integers. Then there exists
a positive integer N = N(r,k,s) depending only on r,k and s such that for any
partition of the set
1,2, 0, N} = GG U L G

into r-classes we have positive integers a,a+d,...,a+ (k—1)d < N and sd < N lie
in only one of the C;’s.

Using Theorem 2.5, Brauer [1] proved that for all primes p large enough, one can
find an arbitrary long sequence of consecutive quadratic residues (or non-residues)
modulo p. Also, in a series of papers, E. Vegh [3], [4], [5], [6], [7] studied the distri-
bution of primitive roots modulo p* or 2p".

3. PROOF OF THEOREM 1.1

Lemma 3.1. Let h and r be any positive integers. Let n = p" or 2p" for an odd
prime p. Then |M(n)| = |K(n)| — 27 if and on}y if n is either (i) p or 2p whenever
p=2"tq+1 with q being also a prime or (ii) p? or 2p? whenever p=2"t' 4+ 1isa
Fermat prime.

Proof. Inview of Lemma 2.4, it is enough to assume that n = p". Let p = 2!¢+1
where [, ¢ are positive integers such that 2 { q.
Case (i) (h =1). We have

IM (p)| = o(e(p)) = 2'""o(q)

¢(p) P
r T 1 T — T
|K (p)] — 2 —_E___g —_.__2_____2 — 9! 1g-27.

Hence, |M(p)| = |K(p)| — 2" implies

2ty =2"g- =1-1=r

and ¢(q) = ¢ — 1. Since the positive integer g satisfies ¢(¢) = ¢ — 1, ¢ must be a
prime number. Therefore, the primes p which satisfy the hypothesis are of the form
27+1g + 1, where ¢ is also a prime number.

Case (ii) (h = 2). We have

IM (") = ole®")) = @" (p-1)) = 0" e -1)
= p" 2(p—1)p(p—1) = p"22'q2'Yp(q) = 22 qp(q)p" 2
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Now,

= ofpt). g lp—=1) -
) =22 TP

Therefore, |[M (p")| = |K (p")| — 2" implies

ph—vlzl—l

q.

22{—1qw(q)ph—2 5T ph—-l 21—19‘ = 2!‘

and hence, we get | — 1 = r and ¢ = 1. Thus we have 2"t1p"~2 = ph~1 — 1 which
implies h cannot be greater than 2. If h = 2, then we have p = 2"*! + 1. That is,
if h > 2, then the only integers n that satisfy the hypothesis are p?, where p is a
Fermat prime.

The converse is trivial to establish. O

Proof of Theorem 1.1. Given |[M(n)| = |K(n)| — 27, then by Lemma 3.1
we have two cases.

Case (i) (n = p or 2p, where p = 2"*!q + 1 is prime and q is also a prime).

Let g € K(n) \ M(n) be an arbitrary element. Then g is a quadratic non-residue
modulo n, but not a primitive root modulo n. Therefore, by Proposition 2.2, we
know that there exists an odd divisor [ > 1 of ¢(n) that satisfies

g?™M/2 = _1 (mod n).

Since ¢(n) = p— 1 = 2"*+1q, where g is the only odd divisor of ¢(n), we have [ = q.
Therefore,

¢ V/24 = _1 (mod n) = ¢*" = -1 (mod n) = ¢*" =1 (mod n).

Let H be the unique cyclic subgroup of Z},. Then g € H with order of g being 27+*.
Hence, as g is arbitrary, K (n) \ M (n) is the set of all generators of H.

Case (ii) (n = p? or 2p?, where p = 2"*! + 1 is a prime and r + 1 is a power
of 2).

Let g € K(n)\ M(n). Then by Proposition 2.2, we know that there exists an odd
divisor g of (n) satisfying

gw(n)/ﬂq = gp(p—l)ﬂp = 92' = —1 (mod n)

and hence, > =1 (mod n). Thus, g € H, where H is the unique subgroup of Z%
of order 27+1, O
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4. ProOOF OF THEOREM 1.2

Lemma 4.1. Let p be a prime such that p = 4q + 1, where q is also a prime. If
(aya+ 1) is a pair of QNRNP modulo p, then a = —1/2 (mod p).

Proof. Let a and a + 1 be QNRNP modulo p. Therefore, by Proposition 2.2,
we have

aP~9/20 = g2 = —1 (mod p) and (a+1)?"1/20 = (a +1)? = -1 (mod p).

That is, (a +1)? = a®? + 2a + 1 = 2a = —1 (mod p). Hence the result. O

Proof of Theorem 1.2. By Lemma 3.1, we know that for these primes,
there are exactly two QNRNP modulo p. Suppose that these two QNRNP modulo
p are a consecutive pair, say, (a,a + 1). Then by Lemma 4.1, we get a = —1/2
(mod p). To complete the proof, we shall show that a is a primitive root modulo p
and we arrive at a contradiction. To prove a is a primitive root, we have to prove
that the order of a = —1/2 in Z3 is p — 1. Since the order of —1 is 2 and the order
of 2 is equal to the order of 1/2, it is enough to prove that 2 is a primitive root
modulo p. By Proposition 2.1, we have to prove that 2(P~1)/™ = 1 (mod p) for every
prime divisor m of p — 1. In this case, we have m = 2 and m = ¢q. If m = ¢, then
(p—1)/qg = 4 and so 16 = 2* # 1 (mod p), as p = 4¢ + 1. Hence, it is enough to
prove that 2(P=1)/2 £ 1 (mod p). Indeed, by the quadratic reciprocity law, we know
that 2(P~1)/2 = —1 (mod p) and hence the theorem follows. O

5. PROOF OF THEOREM 1.3

Lemma 5.1. Let p > 3 be a prime such that p # 2' + 1. Let v denote the total
number of QNRNP modulo p. Then exactly (v—1)/2 QNRNP modulo p are followed
by a quadratic non-residue modulo p whenever p = 2m + 1, where m > 1 is an odd
integer; otherwise, exactly half of QNRNP modulo p is followed by a quadratic non-
residue modulo p.

Proof. First note that v = (p—1)/2 — ¢(p — 1) is odd if and only if (p — 1)/2
is odd if and only if p = 2m + 1, where m > 1 is an odd integer.

Let ®; be a QNRNP modulo p. Let g be a fixed primitive root modulo p. Then
there exists an odd integer [ satisfying 1 <1 < p—2, (I,p—1) > 1 and &; = ¢'.
Therefore, ®; = g?~'~! is also a QNRNP modulo p. Then we have

By (1+®y) =B + 1P, = &, + 1 (mod p).
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This implies 3 +1 is a quadratic residue modulo p if and only if ®; +1 is a quadratic
non-residue modulo p. Therefore, to complete the proof of this lemma, it is enough
to show that if y = g" is a QNRNP modulo p and xy # ®;,®, (mod p), then
gP~1"" # &;,®, (mod p). Suppose not, that is, g?"1~" = ®; = ¢' (mod p). Then
p—1—r=1 (mod p). Since 1 < p—1—r < p—2, it is clear that p— 1 —r = [, which
would imply p — 1 — I = r and therefore, we get x = g" = g?~!~! = &, (mod p),
a contradiction and hence, g?~1=" # &, (mod p). Similarly, we have g?~17" # &,
(mod p). Note that ¢; = @3 (mod p) if and only if [ =p—1—1 (mod p — 1), which
would imply I = (p—1)/2, as 1 <l < p— 2. Since [ is odd, this happens precisely
when p = 2m + 1, where m > 1 is an odd integer. Hence the lemma. O

Proof of Theorem 1.3. Let p be any prime such that ¢(p—1) < (p—1)/6.
If possible, we will assume that there is no pair of consecutive QNRNP modulo p.
Let k = (p—1)/2—p(p—1). Therefore, clearly, k > (p—1)/2—(p—1)/6 = (p—1)/3.
By Lemma 5.1, we know that exactly half of QNRNP modulo p are followed by a
quadratic non-residue modulo p. This implies that k/2 > (p — 1)/6 QNRNP modulo
p are followed by primitive roots modulo p. Since there are at most (p —1)/6 — 1
primitive roots available, it follows that there exists a QNRNP modulo p followed
by a QNRNP modulo p. O

6. PROOF OF THEOREM 1.4

Given that ¢ > 1 is an odd integer and & > 1 is an integer, put r = 2g and s = 1
in Theorem 2.5. We get a natural number N = N(q, k) depending only on ¢ and
k such that for any r-partitioning of the set {1,2,..., N}, we have positive integers
a,a+d,a+2d,...,a+ (k— 1)d and d which are less than or equal to N and are
lying in exactly one of the classes.

Choose a prime p > N such that p = 1 (mod g). By Dirichlet’s prime number
theorem on arithmetic progression, such a prime p exists and there are infinitely
many such primes. Let g be a fixed primitive root modulo p". Note that for each
4;1 < j € p— 1, there exists a unique integer A\;;1 < A\; < p"~(p — 1) satisfying
g% = j (mod p*).

We partition the set {1,2,...,p— 1} into r = 2q parts as follows.

{l,2,...,p—1}=Cl UCzU...UC,-

with j € C; if and only if A; =i (mod r).
Since p — 1 > N, there exists an arithmetic progression of length k, say a,a +
d,...,a+ (k — 1)d, together with its common difference d lying in C, for some

394



7=1,2,...,r. By the definition of our partition, we have
a+id=g" (mod p") and d= g™ (mod p"),
where 7; € {1,2,...,p— 1} for each i = 0,1,...,k, satisfies
TH=EN=...=7 =7 (mod r).

Since 7;'s run through a single residue class modulo r, we can as well assume, if
necessary applying a suitable translation, that 7 = 0 (mod r). Now, choose an integer
& such that K =1 (mod 2) and k = 0 (mod ¢). Then we see that

T+KETT+KE=... =T+ K=k (mod ).

Since k is an odd integer and 7/s are even integers, we get that 7; +k are odd integers
together with 7; + £ = 0 (mod g). Therefore, g divides the ged(7; + k,p—1). Putting
ag = g~ (mod p*), we get

apa, aga + apd, . .., apa + (k — 1)apd, apd

are QNRNP p".

If g is an odd integer, then g is also a primitive root modulo 2p". If g is an even
integer, then put g’ = g+ p" which is an odd integer and hence, it is a primitive root
modulo 2p". Now the proof is similar to the case when n = p* and we leave it to the
reader. El

Before we conclude this section, we wish to raise the following open questions.

(1) Can Theorem 1.4 be true for all large enough primes p?

(2) What is the general property of the set of all positive integers n satisfying
M(n) = K(n) —m for a given positive integer m # 1,277
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