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Summary. Let k ≥ 1 be any integer. Let G be a finite abelian group of exponent n. Let
sk(G) be the smallest positive integer t such that every sequence S in G of length at least t has
a zero-sum subsequence of length kn. We study this constant for groups G ∼= Z

d
n when d = 3

or 4. In particular, we prove, as a main result, that sk(Z3
p) = kp + 3p − 3 for every k ≥ 4,

5p + p−1

2
− 3 ≤ s2(Z3

p) ≤ 6p − 3 and 6p − 3 ≤ s3(Z3
p) ≤ 8p − 7 for every prime p ≥ 5.
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1. Introduction

Let G be an additively written, finite abelian group. From the structure theorem
of finite abelian groups, we know that G ∼= Zn1

⊕· · ·⊕Znd
with 1 < n1|n2| · · · |nd,

where nd = exp(G) = n is the exponent of G and d is the rank of G. A sequence

in G is a formal product S =
∏ℓ

i=1 gi of elements gi ∈ G (that is, an element of
the free abelian monoid with basis G). We denote by |S| = ℓ the length of S,

by vg(S) the number of times g ∈ G appears in S, by σ(S) =
∑ℓ

i=1 gi the sum
of S and by T |S a subsequence T of S. We say that the sequence is a zero-sum

sequence, if σ(S) = 0 in G. Also, if T |S, then by the deleted sequence ST−1, we
mean the sequence after removing the elements of T from S. Let R|S and T |S be

two subsequences of S =
∏ℓ

i=1 gi. We say R and T are disjoint subsequences of
S, if there exists two disjoint non-empty subsets I and J of {1, 2, . . . , ℓ} such that
R =

∏

i∈I gi and T =
∏

j∈J gj .

Definition 1.1. For any positive integer k, we define sk(G) as the smallest posi-
tive integer t such that every sequence S in G of length at least t has a zero-sum
subsequence of length k exp(G).

This constant was first studied by the first author in [6] and by Adhikari and
Rath in [1].
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Let Zn be the cyclic group of order n. Let Zd
n be the finite abelian group of

order nd such that it is isomorphic to the direct sum of d copies of Zn.
The study of s1(Z

d
n) stems from an integer lattice point problem (See, e.g. [2]

and [9]). In 1961, Erdős, Ginzburg and Ziv (see [4]) proved that s1(Zn) = 2n − 1
and hence sk(Zn) = kn+n−1 for all integers k > 1. Recently, C. Reiher (cf. [13])
proved that s1(Z

2
n) = 4n− 3 which together with a result in [8] ([8], Theorem 3.7)

implies sk(Z2
n) = kn + 2n − 2 for all integers k > 1.

In this paper, we shall mainly investigate sk(Z3
n) and sk(Z4

n). For k > 1, we
obtain the following main results.

Theorem 1.1. (1)Let p≥5 be an odd prime number. Then we have (i) 5p+ p−1
2 −3

≤ s2(Z
3
p) ≤ 6p − 3; (ii) 6p − 3 ≤ s3(Z

3
p) ≤ 8p − 7, and (iii) sk(Z3

p) = kp + 3p − 3
for every k ≥ 4.

(2) We have s2(Z
3
3) = 13; 15 ≤ s3(Z

3
3) ≤ 17 and sk(Z3

3) = 3k + 6, ∀ k ≥ 4.
(3) We have sk(Z3

2) = 2k + 3 for every integer k ≥ 2.

Theorem 1.2. For every integer k ≥ 1 and every prime p ≥ 7, we have

s6k(Z4
p) ≤ 6(k + 1)p − 4.

Concerning the lower bound of s1(Z
d
n), recently C. Elsholtz [3] proved that

s1(Z
d
n) ≥

(

9

8

)[d/3]

(n − 1)2d + 1

for d > 2 and odd n > 2. Thus, when d = 3, the above lower bound implies
s1(Z

3
n) ≥ 9n − 8 for odd n > 2, which is seemingly the optimal one and so we

formally write this as the following conjecture.

Conjecture 0. For any odd integer n > 1, we have

s1(Z
3
n) = 9n − 8.

Note that Conjecture 0 is proved for n = 3 by Harborth in [9]. Also, Conjec-
ture 0 is multiplicative, that is, it is enough to prove Conjecture 0 for all primes
p > 2. However, an easy observation shows that s1(Z

3
2a) = 8 · 2a − 7. We shall

prove the following theorem which is related to Conjecture 0.

Theorem 1.3. Let p ≥ 5 be a prime number. Let S be a sequence in Z3
p of length

9p − 3. Suppose S has at most two disjoint zero-sum subsequences of length 2p.
Then S has a zero-sum subsequence of length p.

Remark 1.1. Since s2(Z
3
p) > 5p − 3 for every prime p ≥ 5, there exists a class

of sequences of length 5p − 3 which do not have any zero-sum subsequence of
length 2p. Thus, Theorem 1.3 is valid in this class.
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2. Preliminaries

Definition 2.1. Davenport’s constant, D(G), stands for the smallest positive
integer t such that every sequence S in G of length at least t has a nonempty
zero-sum subsequence in it.

It is clear that D(G) ≤ |G|. The constant D(G) was coined by H. Davenport in
connection with non-unique factorization in the ring of integers of number fields.
Finding the exact values of D(G) for all groups G seems to be a very difficult
problem. Till now, we know the exact value of D(G) only for very few groups.
For example, D(Zn) = n, D(Zm⊕Zn) = m+n−1 (where m|n), D(Z3

2pℓ) = 6pℓ−2,

D(Z3
32ℓ) = 92ℓ − 2, D(⊕k

i=1Zpei ) = 1 +
∑k

i=1(p
ei − 1). For more information and

conjectures, we refer to [5]. The best known upper bound for D(Zd
n) with d ≥ 3 is

n(1 + (d − 1) log n) and the following conjecture is well known.

Conjecture 1. D(Zd
n) = d(n − 1) + 1 for any integers n > 1 and d ≥ 3.

W. D. Gao (see [6]) proved that

sk(G) ≥ kn + D(G) − 1, (1)

and if k < D(G)/n, then sk(G) ≥ kn + D(G). Moreover, he proved that equality
of (1) holds for all k such that k ≥ |G|/n. We discuss the problem to determine
for which k equality holds in (1), and related questions, in more detail at the end
of this paper.

Lemma 2.1. Let n ≥ 2 be an integer and d be a positive integer. If D(Zd+1
n ) =

(d + 1)(n − 1) + 1, then any sequence S in Zd
n of length (d + 1)(n − 1) + 1 has a

zero-sum subsequence T of length kn for some integer k satisfying 1 ≤ k ≤ d.

Proof. Assume that D(Zd+1
n ) = (d + 1)(n− 1) + 1. Let S =

∏

i ai be any sequence
in Zd

n of length (d + 1)(n − 1) + 1. Set bi = (1, ai) in Zd+1
n for every i = 1, 2, . . . ,

(d+1)(n−1)+1. Then W =
∏

i bi is a sequence in Zd+1
n of length (d+1)(n−1)+1.

Since D(Zd+1
n ) = (d + 1)(n − 1) + 1, we have that W has a nonempty zero-sum

subsequence T of length t with 1 ≤ t ≤ (d + 1)(n− 1) + 1. That is, if necessary by
renaming the indices, we see that

0 = σ(T ) =
t

∑

i=1

bi =

(

t
∑

i=1

1,
t

∑

i=1

ai

)

=

(

t,
t

∑

i=1

ai

)

in Zd+1
n .

This implies, t = kn and T ′ =
∏kn

i=1 ai is a zero-sum subsequence of S of length
kn with 1 ≤ k ≤ d. ¤

Corollary 2.1.1. Let p be any prime number and r be any positive integer. Let

S be a sequence in Zd
pr of length (d + 1)(pr − 1) + 1. Then S has a zero-sum

subsequence of length kpr with 1 ≤ k ≤ d.
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Proof. Since D(Zd
pr ) = d(pr − 1) + 1 for any positive integer d, the result follows

from Lemma 2.1. ¤

Definitions 2.2. Let S =
∏ℓ

i=1 gi be a sequence in Zd
p. Then

fE(S) =

∣

∣

∣

∣

∣

{

I ⊂ {1, 2, . . . , ℓ}} |
∑

i∈I

gi = 0, |I| even

}∣

∣

∣

∣

∣

,

fO(S) =

∣

∣

∣

∣

∣

{

I ⊂ {1, 2, . . . , ℓ}} |
∑

i∈I

gi = 0, |I| odd

}∣

∣

∣

∣

∣

and

r(S; l) =

∣

∣

∣

∣

∣

{

I ⊂ {1, 2, . . . , ℓ}} |
∑

i∈I

gi = 0, |I| = lp

}∣

∣

∣

∣

∣

.

Here, we follow the usual convention that the empty sequence (that is, when I = ∅)
is a zero-sum sequence and hence fE(S) ≥ 1.

Theorem A. (Olson, [12].) Let S be a sequence in Zd
p such that |S| ≥ d(p−1)+1.

Then fE(S) ≡ fO(S) (mod p).

The following Lemma 2.2, Theorem 2.1 and Theorem 2.3 are interesting in
itself; but we need these results for our main results.

Lemma 2.2. Let d ≥ 2 be a positive integer, and let l be an integer such that

1 ≤ l ≤ d. Let p ≥ d + 2 be a prime number. Let T be a sequence in Zd
p with

(d+1)(p−1)+1 ≤ |T | ≤ (d+2)p−1. Suppose that T has no zero-sum subsequences

of length kp for every k ∈ {1, 2, . . . , d + 1} \ {l}. Then

r(T ; l) ≡ (−1)l+1 (mod p).

Proof. Set t = |T |, and suppose T =
∏t

i=1 ai with (d + 1)(p − 1) + 1 ≤ t ≤

(d + 2)p − 1. Set bi = (1, ai) ∈ Zd+1
p for every i = 1, 2, . . . , t. Put W =

∏t
i=1 bi.

Let V ′ be a non-empty zero-sum subsequence of W . Such a sequence exists, as
t ≥ D(Zd+1

p ) = (d+1)(p−1)+1. By the definition of bi, it is clear that p | |V ′|. Let
V be the corresponding zero-sum subsequence of T, then p | |V | and |V | = kp with
k ∈ {1, 2, . . . , d + 1}. Since T contains no zero-sum subsequence of length kp with
k ∈ {1, 2, . . . , d+1}\{l}, we have |V | = lp. Therefore, either r(T ; l) = fE(W )−1,
if 2 | l or r(T ; l) = fO(W ), if 2 ∤ l. By Theorem A, we know that fO(W ) ≡ fE(W )
(mod p) which implies that either r(T ; l) + 1 = fE(W ) ≡ fO(W ) = 0 (mod p)
provided that 2 | l, or r(T ; l) = fO(W ) ≡ fE(W ) = 1 (mod p) provided that 2 ∤ l.
Therefore r(T ; l) ≡ (−1)l+1 (mod p). ¤
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Note. In the statement of Lemma 2.2, we have assumed an upper bound for |T |
to ensure that |V | 6= (d + 2)p.

Theorem 2.1. Let d ≥ 2 be an integer and let p ≥ d + 2 be a prime number. Let

l be an integer such that 1 ≤ l ≤ d. Let S be a sequence in Zd
p of length at least

(d + 2)(p− 1) + 2. Then S contains a zero-sum subsequence of length kp for some

integer k ∈ {1, 2, . . . , d + 1} \ {l}. Moreover, for every l ∈ {1, 2, . . . , d} \ {d+1
2 }, S

contains a zero-sum subsequence of length kp with k ∈ {1, 2, . . . , d} \ {l}.

Proof. Assume to the contrary that there is a sequence S in Zd
p with |S| =

(d + 2)(p − 1) + 2 and S contains no zero subsequences of length kp for every
integer k ∈ {1, 2, . . . , d + 1} \ {l}. By Lemma 2.1, we have that

r(T ; l) ≡ (−1)l+1 (mod p)

holds for every subsequence T of S with |T | ≥ (d + 1)(p− 1) + 1. We clearly have

∑

T |S, |T |=(d+1)(p−1)+1

r(T ; l) =

(

(d + 2)(p − 1) + 2 − lp
(d + 1)(p − 1) + 1 − lp

)

r(S; l).

Therefore,

∑

T |S, |T |=(d+1)(p−1)+1

(−1)l+1 ≡

(

(d + 2 − l)p − d
(d + 1 − l)p − d

)

(−1)l+1 (mod p).

This gives that
(

(d + 2)(p − 1) + 2
(d + 1)(p − 1) + 1

)

≡

(

(d + 2 − l)p − d
(d + 1 − l)p − d

)

( mod p).

Since p ≥ d + 2,

d + 1 ≡

(

(d + 2)(p − 1) + 2
p

)

≡

(

(d + 2)(p − 1) + 2
(d + 1)(p − 1) + 1

)

≡

(

(d + 2 − l)p − d
(d + 1 − l)p − d

)

≡

(

(d + 2 − l)p − d
p

)

≡ d + 1 − l (mod p),

which is a contradiction. This proves the first part of the theorem.

To prove the “moreover” part of the theorem, suppose l 6= d+1
2 . By the first

part of the theorem, there is a zero-sum subsequence V with |V | = kp and k ∈
{1, 2, . . . , d + 1} \ {l}. If k ≤ d, then we are done. Otherwise, |V | = (d + 1)p
and by Corollary 2.1.1 the sequence V contains a zero-sum subsequence W with
|W | = hp and 1 ≤ h ≤ d. Therefore, V W−1 is also a zero-sum subsequence of |T |
with |V W−1| = (d + 1 − h)p. By assuming that h = l and d + 1 − h = l, we get
l = d+1

2 , a contradiction. Hence the proof is completed. ¤
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Definition 2.3. Let k be any positive integer. By Ek(G), we denote the smallest
positive integer t such that every sequence in G of length at least t contains a
zero-sum subsequence T with k ∤ |T |.

Theorem B. If p is an odd prime and k is any positive integer such that (k, p)=1,
then

Ek(Zd
p) =

[

k

k − 1
d(p − 1)

]

+ 1.

For k = 2, this was first proved by the first author in [7] and for general k by
Wolfgang A. Schmid in [15].

Theorem 2.2. If p is an odd prime and k is any positive integer such that

(k, p) = 1, then every sequence of length
[

k
k−1 (d + 1)(p − 1)

]

+1 in Zd
p has a zero-

sum subsequence of length rp with k ∤ r.

Proof. Let ℓ =
[

k
k−1 (d + 1)(p − 1)

]

+ 1 and let S =
∏ℓ

i=1 ai be a sequence in Zd
p

of length ℓ. Let bi = (1, ai) ∈ Zd+1
p for i = 1, 2, . . . , ℓ. By Theorem B, we see that

there exists a zero-sum subsequence T of
∏ℓ

i=1 bi such that k ∤ |T |. Set l = |T |.
That is, by rearranging the indices, if necessary, we have

0 =

l
∑

i=1

bi =

l
∑

i=1

(1, ai) =

(

l,

l
∑

i=1

ai

)

in Zd+1
p ,

which implies that p divides l and T ′ =
∏l

i=1 ai is a zero-sum subsequence of S.
Therefore, it is clear that |T ′| = rp for some integer r with k ∤ r. ¤

Lemma 2.3. Let S be a sequence in Z3
3 of length 12. Suppose S is not a zero-sum

sequence. Then S contains a zero-sum subsequence of length 6.

Proof. It is enough to assume that vg(S) ≤ 5 for every g ∈ Z3
3. Otherwise, we

obviously have a zero subsequence of length 6. Then there exists a subsequence T of
S of length 9 such that T is not a zero-sum subsequence. Now, by Corollary 2.2.1,
T has a zero-sum subsequence T1 of length 3 or 6. Assume that |T1| = 3. Consider
the sequence ST−1

1 which is of length 9. Since S is not a zero-sum sequence, ST−1
1

is not a zero-sum subsequence of S. Once again by Corollary 2.2.1, there exists
a zero-sum subsequence T2 of ST−1

1 of length 3 or 6. If |T2| = 3, then T1T2 is
the required zero-sum subsequence of length 6. Otherwise T2 does the job. This
completes the proof of the lemma. ¤
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Lemma 2.4. Let d > 1 be an integer and let ℓ be an integer such that 1 ≤ ℓ ≤ d−1.
Then for any positive integer n we have

sℓ(Z
d
n) ≥ n(d + ℓ) +

[

(d − ℓ)n − 1

d − 1

]

− d.

Proof. Let

T = (1, 1, . . . , 1)s
d

∏

i=1

en−1
i ,

where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) for all i = 1, 2, . . . , d and s =
[

(d−ℓ)n−1
d−1

]

. Note

that any zero-sum subsequence W of T will be of the form

W = (1, 1, . . . , 1)i
d

∏

j=1

en−i
j

and hence |W | = d(n− i)+ i = dn− (d−1)i. Since s =
[

(d−ℓ)n−1
d−1

]

, it is clear that

|W | > ℓn. Now, let S = T (0, 0, . . . , 0)ℓn−1 be a sequence in Zd
n whose length is

|T |+ℓn−1 = d(n−1)+s+nℓ−1 = (d+ℓ)n+s−d−1. Clearly, by the construction
of S, we see that S does not have a zero-sum subsequence of length ℓn. Hence we
have the desired inequality. ¤

Lemma 2.5. Let k, ℓ ≥ 1 be integers. Then

skℓ(G) ≤ (ℓ − 1)k exp(G) + sk(G).

Proof. Let m = (ℓ−1)k exp(G)+sk(G) and let S =
∏m

i=1 gi be any sequence in G of
length m. To prove the lemma, we shall prove that S has a zero-sum subsequence
of length kℓ exp(G). By the definition of m, we can extract ℓ disjoint zero-sum
subsequences, say, T1, T2, . . . , Tℓ of S such that |Ti| = k exp(G) for each i. Hence
the sequence T1T2 . . . Tℓ is the desired zero-sum subsequence of S. ¤

3. Proof of our main results

Proof of Theorem 1.1. (1) (i) Putting d = 3, ℓ = 2 and n = p in Lemma 2.4, we
get 5p + p−1

2 − 3 ≤ s2(Z
3
p).

Now we shall prove that s2(Z
3
p) ≤ 6p − 3. Let S be a sequence in Z3

p of length
6p − 3. Put d = l = 3 in Theorem 2.1. We get a zero-sum subsequence T of S
of length p or 2p. Assume that |T | = p. Then the deleted sequence S1 = ST−1,
which is of length 5p − 3, has a zero-sum subsequence T1 of length either p or 2p
by Theorem 2.1, with l = 3. Assuming that |T1| = p, we get a zero-sum sequence
T2 = TT1 which is of length 2p. Thus, s2(Z

3
p) ≤ 6p − 3.
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(ii) In view of Equation (1), it is enough to prove that s3(Z
3
p) ≤ 8p − 7 for all

primes p ≥ 5. Let S be a sequence in Z3
p of length 8p − 7. By Theorem 2.2, there

exists a zero-sum subsequence T of S with |T | = p, 3p, 5p or 7p.
If |T | = p, then the deleted sequence ST−1 is of length 7p − 7. Applying

s2(Z
3
p) ≤ 6p − 3, we see that the sequence ST−1 has a zero-sum subsequence T1

of length 2p. Thus TT1 is the required zero-sum subsequence of S of length 3p.
If |T | = 5p, then by putting d = 3 and l = 1 in Theorem 2.1, we get that T

has zero-sum subsequence T5 of length 2p, or 3p. Assume that |T5| = 2p. Then
look at the deleted sequence TT−1

5 which is a zero-sum sequence of length 3p.
If |T | = 7p, then as s2(Z

3
p) ≤ 6p − 3, there exists a zero-sum subsequence T2

of T of length 2p. That is, T breaks into two zero-sum subsequences T2 and T3 of
lengths 2p and 5p respectively. Since |T3| = 5p, by the previous case, we are done
again. Thus we have proved that s3(Z

3
p) ≤ 8p − 7 for all primes p ≥ 5.

(iii) First we shall prove that s2k(Z3
p) = 2kp + 3p − 3 and then prove that

s2k+1(Z
3
p) = (2k + 1)p + 3p − 3 for every integer k ≥ 2.

Let S be a sequence in Z3
p of length 2kp + 3p − 3. If k = 2, then |S| = 7p − 3.

Since s2(Z
3
p) ≤ 6p − 3, S contains a zero-sum subsequence T1 of length 2p. Note

that |ST−1
1 | = 5p − 3. Using Theorem 2.1 with l = 3, we see that ST−1

1 has a
zero-sum subsequence T2 of length p or 2p. If |T2| = 2p, then T1T2 is a zero-sum
subsequence of S of length 4p and we are done. So, we may assume that |T2| = p.
Since |ST−1

1 T−1
2 | = 4p− 3, by Corollary 2.1.1, there is a zero-sum subsequence T3

of ST−1
1 T−1

2 of length p, 2p or 3p. Therefore, T1T2T3, T1T3 or T2T3 is a zero-sum
subsequence of S of length 4p. Hence s4(Z

3
p) ≤ 7p − 3. Thus, by the inequality

(1), we see that s4(Z
3
p) = 4p + 3p − 3.

Now we shall assume that the result is true for any k ≥ 2 and prove it for k+1.
By the virtue of inequality (1), it is enough to prove that s2(k+1)(Z

3
p) ≤ 2(k+1)p+

3p−3. Consider a sequence S4 in Z3
p of length 2(k+1)p+3p−3. As k ≥ 2, one can

find a zero-sum subsequence T4 of S4 with |T4| = 2p, as s2(Z
3
p) ≤ 6p−3. Now, since

the deleted sequence S5 = S4T
−1
4 has length 2kp+2p+3p−3−2p = 2kp+3p−3,

by induction hypothesis, S5 has a zero-sum subsequence W such that |W | = 2kp.
Then T4W is a zero-sum subsequence of S4 with |TW | = 2(k+1)p. Thus it follows
that s2k(Z3

p) = 2kp + 3p − 3 for every integer k ≥ 2.
First we shall prove that s5(Z

3
p) = 8p − 3. It is enough to prove that s5(Z

3
p) ≤

8p − 3. Let S be a sequence in Z3
p of length 8p − 3. By Theorem 2.2, S contains

a zero-sum subsequence T of length lp with l ∈ {1, 3, 5, 7}. Therefore it is enough
to assume that |T | = p, 3p or 7p. If |T | = p, then apply s4(Z

3
p) = 7p − 3 to get

a zero-sum subsequence T1 of ST−1 of length 4p and we are done. Hence it is
enough to assume that |T | = 3p or 7p. If |T | = 7p, again by using s4(Z

3
p) = 7p−3,

one can get a zero-sum subsequence T2 of T length 4p and its complement is of
length 3p. Thus, we may assume that S contains a zero-sum subsequence T of
length 3p. Note that |ST−1| = 5p − 3, by Theorem 2.1, (by putting d = l = 3),
there is a zero-sum subsequence W of ST−1 such that |W | = kp with k ∈ {1, 2}.
If |W | = 2p, then |TW | = 5p and we are done. Otherwise, |W | = p and it reduces
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to the above case. Thus s5(Z
3
p) = 8p − 3.

Now to prove sk(Z3
p) = kp + 3p − 3 for every odd integer k ≥ 7, consider a

sequence S in Z3
p of length kp + 3p − 3. Since k ≥ 7, as s2(Z

3
p) ≤ 6p − 3, S

has a zero-sum subsequence T of length 2p. Since the sequence ST−1 has length
(k − 2)p + 3p− 3, by the induction hypothesis, ST−1 has a zero-sum subsequence
T1 of length (k − 2)p (as k − 2 ≥ 5 and odd). Thus TT1 is the required zero-sum
subsequence of length kp.

(2) From the inequality (1), it is clear that s2(Z
3
3) ≥ 13 and hence it is enough

to prove that s2(Z
3
3) ≤ 13. Let S be a sequence in Z3

3 of length 13. If vg(S) ≥ 6
for some g ∈ Z3

3, then we are done. So, we can assume that vg(S) ≤ 5 for every
g ∈ Z3

3. Then one can find a subsequence T of S such that |T | = 12 and T is
not a zero-sum subsequence of S. Therefore, by Lemma 2.3, we have a zero-sum
subsequence of length 6. Thus, s2(Z

3
3) = 13.

Now, we shall prove that s3(Z
3
3) ≤ 17. Let S be a sequence in Z3

3 of length 17.
By putting k = 2 in Theorem 2.2, we see that S does have a zero-sum subsequence
T of length 3, 9 or 15. It is enough to assume that |T | = 3 or 15. If |T | = 3, then
consider S1 = ST−1 which is of length 14. Since s2(Z

3
3) = 13, there exists a zero-

sum subsequence of length 6 in ST−1 and hence there is a zero-sum subsequence
of length 9 in S. Now, it remains to consider the case |T | = 15. Again by the value
s2(Z

3
3) = 13, there exists a zero-sum subsequence T1 of T of length 6 and hence

TT−1
1 is a zero-sum subsequence of S and is of length 9. Hence s3(Z

3
3) ≤ 17.

To complete the proof, we shall proceed by induction on k. When k = 4, by
the inequality (1), it suffices to prove that s4(Z

3
3) ≤ 18. Let S be a sequence

in Z3
3 of length 18. We have to prove that S contains a zero-sum subsequence of

length 12. As s2(Z
3
3) = 13, S contains a zero-sum subsequence T of length 6. If

ST−1 is a zero-sum subsequence, then we are done as its length is 12. If ST−1 is
not a zero-sum subsequence, then by Lemma 2.3, we have a zero-sum subsequence
T1 of ST−1 of length 6. Thus TT1 is the required zero-sum subsequence of S of
length 12.

So, we shall assume that sk(Z3
3) = 3k +6 for some k ≥ 4 and prove it for k +1.

Let S be a sequence in Z3
3 of length 3(k + 1) + 6. Since (see for instance [9] and

[10]) s1(Z
3
3) = 19 < 3(k + 1) + 6, S contains a zero-sum subsequence T of length

3. As the length of the sequence ST−1 is 3k + 6, by the induction hypothesis, we
see that ST−1 has a zero-sum subsequence of length 3k. Hence S has a zero-sum
subsequence of length 3k + 3 = 3(k + 1). Thus sk(Z3

3) = 3k + 6 for every k ≥ 4.

(3) By inequality (1), we have s2(Z
3
2) ≥ 7. So, we shall prove that s2(Z

3
2) ≤ 7.

Let S be a sequence in Z3
2 of length 7. By Corollary 2.1.1, we see that S contains

a zero-sum subsequence T1 of length 2 or 4. Assume that |T1| = 2. Since ST−1
1

is of length 5, once again by Corollary 2.1.1, we get a zero-sum subsequence T2

of length 2 or 4. If |T2| = 2, then T1T2 is the required zero-sum subsequence of
length 4 of S. Otherwise T2 will do. Thus, s2(Z

3
2) = 7. Now, s3(Z

3
2) = 9 follows

easily because we know that s1(Z
3
2) = 9 (see for instance [9]) and s2(Z

3
2) = 7. Now

the rest follows by a straightforward induction. ¤
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Proof of Theorem 1.2. First let us prove that s6(Z
4
p) ≤ 12p−4. Then by Lemma 2.5,

the result follows. Let p be any prime with p ≥ 7. Let S be a sequence in Z4
p

of length 12p − 4. By Theorem 2.1, we know that every sequence in Z4
p of length

6p − 4 has a zero-sum subsequence of length ℓp with ℓ ∈ {1, 2, 3, 4}\{r} for every
r ∈ {1, 2, 3, 4}. We distinguish cases as follows:

Case 1. (S has two disjoint zero-sum subsequences T1 and T2 of length 3p.)
In this case, it is clear that T1T2 forms a zero-sum subsequence of S of length

6p and we are done.

Case 2. (Case 1 does not hold but S has a zero-sum subsequence T of length 3p.)
Then consider the deleted sequence ST−1 which is of length 9p − 4. Clearly

ST−1 does not have a zero-sum subsequence of length 3p. By letting l = 4 = d
in Theorem 2.1, we get that ST−1 has disjoint zero-sum subsequences of lengths
p, p, p or p, 2p or 2p, 2p. For the first two cases, we clearly have the desired zero-sum
subsequence of length 6p of S. So, we may assume that ST−1 has two disjoint zero-
sum subsequences T1 and T2 each of length 2p. Note that |ST−1T−1

1 T−1
2 | = 5p−4.

By Corollary 2.1.1, the sequence ST−1T−1
1 T−1

2 has a zero-sum subsequence of
length rp with r ∈ {1, 2, 3, 4} and we always get a zero-sum subsequence of length
6p of S for whatever value of r.

Case 3. (S does not have any zero-sum subsequence of length 3p.)
By the assumption, it is only possible that S has disjoint zero subsequences of

lengths 2p, 2p, 2p by letting l = 4 = d in Theorem 2.1. Hence S has a zero-sum
subsequence of length 6p. ¤

Proof of Theorem 1.3. Let p ≥ 5 be any prime and let S be a sequence in Z3
p

of length 9p − 3. Suppose S has at most two disjoint zero-sum subsequences of
length 2p. By Theorem 1.1 (1), we know that s6(Z

3
p) = 9p−3. Hence there exists a

zero-sum subsequence T of S of length 6p. Again using the value s2(Z
3
p) ≤ 6p− 3,

there exists a zero-sum subsequence T1 of T of length 2p. Thus T2 = TT−1
1 is

a zero-sum subsequence of T of length 4p. By Corollary 2.1.1, we know that T2

has a zero-sum subsequence T3 of length p or 2p or 3p. If |T3| = 2p, then T2T
−1
3

is also a zero subsequence of T2 of length 2p. Thus S has T1, T2T
−1
3 , T3 disjoint

zero-sum subsequence of length 2p which is a contradiction to the assumption.
Hence |T3| = p or 3p. In either case, we have a zero-sum subsequence T3 or T2T

−1
3

of length p of S. This completes the proof of the theorem. ¤

Before we conclude this section, we shall discuss the following open problems
and applications of our results.

Definition 3.1. By ℓ(G), we denote the smallest positive integer t such that
sk(G) − k exp(G) = D(G) − 1 for every k ≥ t.
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Gao proved in [6] that

D(G)

exp(G)
≤ ℓ(G) ≤

|G|

exp(G)
. (2)

It is clear from the upper bound of the inequality (2) that the sequence {sk(G)−
k exp(G)}∞k=1 is eventually constant. Since ℓ(Zn) = 1, the sequence {sk(Zn)−kn}
is a constant sequence. From the introduction, it follows that ℓ(Z2

n) = 2 and we see
that s1(Z

2
n) − n > s2(Z

2
n) − 2n is strictly decreasing. So, the following conjecture

seems to be plausible.

Conjecture 2. The sequence {sk(G) − k exp(G)}
ℓ(G)−1
k=1 is strictly decreasing.

In [6] the following two conjectures have been posed.

Conjecture 3. (W. D. Gao, [6].) If k ≤ ℓ(G)−1, then sk(G)−k exp(G) ≥ D(G).

We mentioned in the Preliminaries that Conjecture 3 is true for every k <
D(G)/n. Also, one can easily see that if Conjecture 2 is true, then so is Conjec-
ture 3.

Conjecture 4. (W. D. Gao, [6].) If G 6∈ {Zn, Z2
2}, then ℓ(G) < |G|/ exp(G).

A referee pointed out that the following recent work [11] of S. Kubertin is
related to this problem. Indeed, S. Kubertin (see [11]) conjectured the following.

Conjecture 5. (S. Kubertin, [11].) For positive integers k ≥ d and n we have

sk(Zd
n) = (k + d)n − d.

Conjecture 5 has been verified for all prime powers n and k ≥ nd−1 by Gao
in [6]. Also, Conjecture 5 has been verified in [11] for all k = ℓp, n = pr and
for any integer d > 1. Also, he verifies Conjecture 5 for n = pr when d = 3
or 4.

If both Conjecture 1 and Conjecture 5 are true, then one easily sees that
ℓ(Zd

n) ≤ d. Therefore, Conjecture 4 is true for G = Zd
n.
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