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Abstract

Let p be a prime number and � be any positive integer. Let G be the cyclic group of order p� and let S be any sequence in G of
length p� + k for some positive integer k�p�−1 − 1 such that S do not admit a subsequence of length p� whose sum is zero in G.
Then we prove that there exists an element of G which appears in S at least k + 1 times.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper, let G be an additive finite abelian group. Let S = (a1, a2, . . . , ak) be a sequence (not
necessarily distinct) of elements in G of length k. Define �(S) = ∑k

i=1ai . For any integer r such that 1�r �k, we
denote

∑
r
(S) = {ai1 + ai2 + · · · + air |1� i1 < i2 < · · · < ir �k},

and
∑

� r (S) = ⋃r
m=1(

∑
m(S)). Thus, in our notation, we write

∑
(S) = ∑

�k(S) where k = |S|. Let h = h(S) denote
the maximal number of an element a ∈ G appearing in S. Let F(G) be the free monoid, multiplicatively written, with
basis G. For convenience, we regards S as an element of F(G) and write S = a1a2 · · · ak . Also, we follow the same
terminologies and notations as in the survey article [8] or in the recent book [11].

In 1961, Erdős–Ginzburg–Ziv [3] proved the following theorem (which we call EGZ Theorem). Let Cm denote the
cyclic group of order m.

EGZ Theorem. If S ∈ F(Cm) of length 2m − 1, then 0 ∈ ∑
m(S). In other words, we have s(Cm) = 2m − 1.

The EGZ Theorem is tight in the following sense. It is clear that S = 0m−11m−1 in F(Cm) of length 2m− 2 satisfies
0 /∈ ∑

m(S).
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The inverse problem to EGZ theorem (see for instance, [2]) is, for every integer k satisfying 1�k�m−2, to describe
the structure of S ∈ F(Cm) with |S| = m + k and 0 /∈ ∑

m(S). When k = m − 2, the inverse problem was solved by
Yuster and Peterson [14] and Bialostocki and Dierker [1]; k = m − 3 was solved by Flores and Ordaz [4]; and when
m − [(m + 1)/4] − 1�k�m − 2, the inverse problem was tackled by Gao [7]. Also, for m = p, a prime number, Gao
et al. [9] solved this inverse problem when p − [(p + 1)/3] − 1�k�p − 2. But it becomes difficult to describe the
structure of S completely, when k is much smaller than m.

Instead of describing the structure of S completely, one considers the problem of determining the following constant.
For k ∈ N we define

h(G, k) = min

⎧⎨
⎩h(S)|S ∈ F(G) with |S| = |G| + k and 0 /∈

∑
|G|

(S)

⎫⎬
⎭ .

The main result in [7] implies that h(Cm, k)�k + 1 whenever m − [(m + 1)/4] − 1�k�m − 2. Also, the authors in
[10] shows that h(Cp, k)�k + 1 for every prime p and every k such that 1�k�p − 2. It is natural to ask whether
h(Cm, k)�k + 1 holds for every k such that 1�k�m − 2. We conjecture the following.

Conjecture 1. Let m�2 be any integer and let k be an integer such that 1�k�m − 2. Then h(Cm, k)�k + 1.

In this article, we prove the following theorem.

Theorem 1. Let m = p� for some prime p and some integer � > 1. If p�−1 − 1�k�p� − 2 then h(Cm, k)�k + 1.

Using the same technique of the proof of Theorem 1, we shall be able to prove the following theorem.

Theorem 2. Let p be a prime, and � be any positive integer. Let S be a sequence in Cp�\{0} of length p�. If h =
h(S)�p�−1 − 1, then,

∑
�h

(S) =
∑

(S).

Further, we conjecture the following.

Conjecture 2. Let m�2 be any integer. If S is a sequence of elements in Cm\{0} of length |S| = m, then,
∑

�h(S) =∑
(S) where h = h(S).

2. Main theorems

As already mentioned in Section 1, our terminology and notations are consistent with the survey article [8]. For
convenience we repeat some key notions, and moreover we formulate our main tools. Every group homomorphism
� : G → H extends to a homomorphism � : F(G) → F(H) which maps a sequence S = g1 · · · · · gl to �(S) =
�(g1) · · · · · �(gl).

Let A, B ⊂ G be non-empty subsets. Then the stabilizer of A is denoted by Stab(A) and defined as Stab(A) = {g ∈
G | g + A = A}. This is the maximal subgroup H ⊂ G such that A + H = A, and A is the union of cosets of Stab(A)

in G (see [[11, Proposition 5.2.3]). For g ∈ G, let

rA,B(g) = |{(a, b) ∈ A × B|g = a + b}| = |A ∩ (g − B)|
denote the number of representations of g as a sum of an element of A and an element of B. Proofs of the following
results may be found in ([13, Theorem 4.4]) and [11, Theorems 5.2.10 and 5.7.3]). Theorem 2.3 was first proved in [5]
and for the sake of completion, we shall present a different proof.

Theorem 2.1 (Kneser). If h ∈ N, A1, . . . , Ah ⊂ G are non-empty subsets and H the stabilizer of A1 +· · ·+Ah, then

|A1 + A2 + · · · + Ah|� |A1| + |A2| + · · · + |Ah| − (h − 1)|H |.
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Theorem 2.2 (Kemperman–Scherk). If A, B ⊂ G are non-empty subsets, then

|A + B|� |A| + |B| − min
{
rA,B(g)|g ∈ A + B

}
.

Theorem 2.3 (Gao). Let S ∈ F(G) be a sequence of length |S|� |G|, h′ = max{ord(g)|g ∈ supp(S)} and h =
min{h(S), h′}. Then 0 ∈ ∑

�h(S).

Proof. If h(S)�h′ then h = h′, and some element g occurs in S at least ord(g) times. Therefore, gord(g) is a zero-sum
subsequence of S. Hence, 0 ∈ ∑

ord(g)(S) ⊂ ∑
�h(S). So, we may assume that h(S) < h′. Thus, h = h(S), and one

can distribute the terms of S into h disjoint non-empty subsets B1, . . . , Bh of G. For any two non-empty subsets A, B

of G, let A ⊕ B = A ∪ B ∪ (A + B), and the definition can be generalized to three or more subsets by induction.
Assume to the contrary that 0 /∈ ∑

�h(S), then 0 /∈ Bi and

0 /∈ B1 ⊕ B2 ⊂ B1 ⊕ B2 ⊕ B3 ⊂ · · · ⊂ B1 ⊕ B2 ⊕ B3 ⊕ · · · ⊕ Bh.

Set Ai = {0} ∪ Bi for i = 1, . . . , h. Applying Theorem 2.2 to A1 + A2, we get,

|A1 + A2|� |A1| + |A2| − 1 = |B1| + |B2| + 1.

Since 0 /∈ B1 ⊕ B2 ⊕ B3, again we can apply Theorem 2.2 to

A1 + A2 = {0} ∪ (B1 ⊕ B2) and A3 = {0} ∪ B3,

we obtain that,

|A1 + A2 + A3|� |A1 + A2| + |A3| − 1� |B1| + |B2| + 1 + |B3| + 1 − 1

� |B1| + |B2| + |B3| + 1.

By continuing the above process, we final arrive at

|A1 + A2 + · · · + Ah|� |B1| + |B2| + · · · + |Bh| + 1 = |G| + 1,

a contradiction. �

For the proofs of Theorems 1 and 2, we assume that G = Cp� where p is a prime number and � > 1 is an integer.

Proof of Theorem 1. Let k be an integer with k�p�−1 − 1. Let S ∈ F(G) of length p� + k. To prove the theorem, it
is enough to prove that if h(S)�k, then, 0 ∈ ∑

p�(S). Since |S| = p� + k, we easily see that 0 ∈ ∑
p�(S) is equivalent

to �(S) ∈ ∑
k(S). Therefore, it is enough to prove �(S) ∈ ∑

k(S).
Let H be the stabilizer of

∑
k(S). If H =G, then

∑
k(S)=G and hence �(S) ∈ ∑

k(G). Now, suppose that H 	= G.
We distinguish two cases.

Case 1: (1 < |H | < p�). Since
∑

k(S) is a union of cosets of H , it suffices to show that there is some y ∈ ∑
k(S)

such that �(S) − y ∈ H . Let � : G → G/H denote the natural epimorphism. Since

|S| = p� + k�(|H | − 1)|G/H | + (2|G/H | − 1) = (|H | − 1)|G/H | + s(G/H),

S allows a product decomposition of the form S = S1 · · · · · S|H |S′, where S1, . . . , S|H |, S′ ∈ F(G) and, for every i ∈
[1, |H |], �(Si) has sum zero and length |Si |=|G/H |. Then |S′|=k, �(S′) ∈ ∑

k(S) and �(S)−�(S′)=�(S1 · · · S|H |) ∈
H .

Case 2: (H = {0}) Let N be the subgroup of G with |N | = p. Then,
∑

k(S) + N /⊂ ∑
k(S). Therefore, there is

a subsequence W of S such that �(W) + N /⊂ ∑
k(S) and |W | = k. Suppose W = b1b2 · · · bk . Since h�k, one can

distribute the elements of S into k disjoint subsets B1, B2, . . . , Bk with bi ∈ Bi for i = 1, 2, . . . , k. Set Ai = Bi ∪ {0}
for i = 1, 2, . . . , k. Then,

�(W) + N ∈ A1 + · · · + Ak + N /⊂
∑

k
(S) but A1 + A2 + · · · + Ak ⊂

∑
k
(S).
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Therefore, A1 + · · · + Ak + N /⊂ A1 + · · · + Ak . Since every subgroup of G contains N , {0} is the maximal subgroup
M such that A1 + · · · + Ak + M = A1 + · · · + Ak . Now apply Theorem 2.1 to A1 + · · · + Ak , we derive that

|A1 + · · · + Ak|� |A1| + · · · + |Ak| − (k − 1) = p� + 1 = |G| + 1.

This is impossible and hence the theorem. �

Proof Theorem 2. By the definition, it is clear that
∑

�h(S) ⊂ ∑
(S). It is enough to prove the other inclusion. Let

H be the stabilizer of
∑

�h(S). If H = G, then G = ∑
�h(S) ⊂ ∑

(S) which would imply
∑

(S) = G = ∑
�h(S)

and we are done. Hence we can assume that H 	= G. Now, we consider two cases as follows.
Case 1: (1 < |H | < p�). Since

∑
�h(S) is a union of cosets of H , it suffices to show that, for every element x ∈ ∑

(S),
there exists an element y ∈ ∑

�h(S) such that x − y ∈ H . By the definition of
∑

(S), it is clear that x = �(T ) for
some subsequence T of S.

Let � : G → G/H be the natural epimorphism. Since |G/H |�p�−1, we see that there is a subsequence T0 of T

such that �(�(T )) = �(�(T0)) + 0 = �(�(T0)) and 0� |T0|�p�−1 − 1 (here we adopt the convention that the sum of
the empty sequence is zero). Therefore, x − �(T0) = �(T ) − �(T0) ∈ H . But �(T0) ∈ ∑

�h(S) (note that when T0 is
the empty sequence, we apply Theorem 2.3). This proves that

∑
(S) ⊂ ∑

�h(S). Therefore, we get
∑

(S)=∑
�h(S).

Case 2: (H = {0}). Let N be the subgroup of G with |N | = p. Then,
∑

�h(S) + N /⊂ ∑
�h(S). Therefore, there

is a subsequence W of S such that �(W) + N /⊂ ∑
�h(S) and 1� |W |�h. Suppose W = b1b2 · · · bt with 1� t �h.

Clearly, one can distribute the elements S into h disjoint subsets B1, B2, . . . , Bh with bi ∈ Bi for i = 1, 2, . . . , t . Set
Ai = Bi ∪ {0} for i = 1, 2, . . . , h. Then,

�(W) + N ∈ A1 + · · · + Ah + N /⊂
∑
�h

(S), but A1 + · · · + Ah ⊂
∑
�h

(S).

Therefore, A1 + · · · + Ah + N /⊂ A1 + · · · + Ah. Since every subgroup of G contains N , {0} is the maximal subgroup
M such that A1 + · · · + Ah + M = A1 + · · · + Ah. Now apply Theorem 2.1 to A1 + · · · + Ah, we derive that

|A1 + · · · + Ah|� |A1| + · · · + |Ah| − (h − 1) = p� + 1 = |G| + 1

and hence we get G = B1 + · · · + Bh ⊂ ∑
�h(S). This is impossible and hence the theorem. �
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