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Abstract. In 1935, P. Erdös proved that all natural numbers can be written as a sum of a

square of a prime and a square-free number. S. S. Pillai in 1939 derived an asymptotic formula

for the number of such representations. The mathematical review of Pillai’s paper stated that

the proof of the above result contained inaccuracies, thus casting a doubt on the correctness

of the paper. In this paper, we re-examine Pillai’s paper and show that his argument was

essentially correct. Afterwards, we improve the error term in Pillai’s theorem using the Bombieri

- Vinogradov theorem.

1. Introduction

Let n be an natural number. Define

R(n) := #
{
n = p2 + f : p is a prime and f is a square-free integer

}
.

Thus R(n) is the number of representations of n as a sum of a square of a prime and a square-free
integer. P. Erdös [2] proved that R(n) > 0. In 1939, S. S. Pillai [7] (see [1], page 253) provided
an asymptotic formula for R(n) as follows: if n 6≡ 1 (mod 4),

R(n) ∼ 2
√
n

log n

∏
q

(
1− 2

q(q − 1)

)
,

where the product runs through all the primes for which n is a quadratic residue.

P. Scherk [8], in his short review of Pillai’s paper wrote: “Let R(n) denote the number of
representations of n as the sum of the square of a prime and a square-free integer; n 6≡ 1 (mod 4).
Following Erdös’s proof of R(n) > 0 [J. London Math. Soc. 10, 243–245 (1935)], the author
proves

R(n) =
2
√
n

log n

∏
q

(
1− 2

q(q − 1)

)
+O

( √
n

(log n)(log log n)

)
,

where q runs through all the primes for which n is a quadratic residue. The paper contains
inaccuracies.” The review does not indicate where the inaccuracies are, or if the inaccuracies
are major or minor. The reader would get the impression that Pillai’s paper was flawed. A more
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accurate assessment of his paper would be that it was poorly written with inadequate references.

In this paper, we show Pillai’s argument is essentially correct. Also, his proof contains the
essence of the “simple asymptotic sieve” later developed by Hooley, [5], in his conditional proof of
the Artin’s primitive root conjecture. Moreover, by applying the Bombieri-Vinogradov theorem,
we will improve the error term of Pillai. More precisely, we prove:

Theorem 1. (S. S. Pillai, 1939) For any integer n 6≡ 1 (mod 4), we have

R(n) = li(
√
n)

∏
q“

n
q

”
=1

(
1− 2

q(q − 1)

)
+O

( √
n

(log n)(log logn)

)

where li(x) =
∫ x

2

dt

log t
.

Let us note that for any natural number N ,

li(x) =
x

log x

N∑
k=0

k!
logk x

+O

(
x

(log x)N+1

)
,

a fact easily verified by integrating by parts.

Theorem 2. For any integer n 6≡ 1 (mod 4) and for any given A ≥ 1, we have

R(n) = li(
√
n)

∏
q“

n
q

”
=1

(
1− 2

q(q − 1)

)
+O

( √
n

(log n)A

)
.

In the concluding remarks, we consider the more general problem of representing natural
number as the sum of k-th power of a prime and a k-free integer. We indicate how the techniques
of this paper can be used to treat this problem.

2. Preliminaries

Throughout the paper, we will use the fundamental relation

∑
d2|n

µ(d) =

1 if n is squarefree

0 otherwise.

For given natural numbers a and d such that (a, d) = 1, we denote by π(x, d, a) the number
of primes p ≡ a (mod d) such that p ≤ x. We define

E(x, d) := max
(a,d)=1

∣∣∣∣π(x, d, a)− li(x)
φ(d)

∣∣∣∣ .



ON A PAPER OF S.S. PILLAI 3

Also, we denote by ν(d), the number of distinct prime factors of an integer d ≥ 2. It is well
known that

ν(d)� log n
log log n

.

Theorem 3. (The Siegel - Walfisz Theorem) For any A > 0 and B > 0, we have

π(x, d, a) =
li(x)
φ(d)

+O

(
x

(log x)A

)
holds uniformly for all d ≤ (log x)B.

Theorem 4. (The Bombieri - Vinogradov Theorem) For any A > 0 there exists B = B(A) > 0
such that ∑

d≤
√

x

(log x)B

E(x, d)� x

(log x)A
.

For our applications, we need the following weighted version of the Bombieri - Vinogradov
Theorem.

Theorem 5. Let C ≥ 1 be a real number. For any A > 0, there exists B = B(A,C) such that∑
d≤

√
x

(log x)B

Cν(d)E(x, d)� x

(log x)A
.

Proof. Apply Theorem 4, with 2A, to get a constant B. Note that, as π(x, d, a) ≤ 2x/d for all
d ≤ x, we have

E(x, d)� x

d
.

Therefore, by putting z =
√
x

(log x)B
, we have

∑
d≤z

Cν(d)E(x, d) �
∑
d≤z

Cν(d)
(x
d

)1/2
(E(x, d))1/2

�
√
x

∑
d≤z

C2ν(d)

d

1/2∑
d≤z

E(x, d)

1/2

,

by the Cauchy-Schwarz inequality. By Theorem 4 and by the choice 2A, we see that∑
d≤z

E(x, d)

1/2

�
√
x

(log x)A
.

Considering the other sum, we have by standard methods that (see for example, [6])∑
d≤z

C2ν(d)

d

1/2

� (log z)C
2 � (log x)C

2
.
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Thus, we get the required estimate. � �

In our discussion below, we will use the following standard estimates.
∑
p>y

1
p(p− 1)

� 1
y

;

∑
d|Py

2ν(d) � 3y where Py =
∏
p≤y

p.

As in the papers of Erdös [2] and (implicit in) Pillai [7], we need the following result.

Theorem 6. (T. Estermann, [3]) Let A > 0 and B > 0 be integers. Then the number of integer
solutions for n = Ax2 +By2 is ≤ 2d(n), where d(n) is the number of divisors of n.

Since we indicate in the last section that Pillai’s method extends to count the number of
representations of a natural number as a sum of a k-th power of a prime and a k-free integer, we
record here the neccesary generalization of Theorem 6 required in the proof. This result can be
found in the paper by Evelyn and Linfoot [4] where it is written that the argument originates
with H. Rademacher and was extended by A. Oppenheim.

Theorem 7. Let a, b be positive integers. The number of solutions of

axk + byk = n

is bounded by (k(k − 1) + 1)dk2(n) where dt(n) is the number of ways of writing n as a product
of t natural numbers.

For other standard estimates in analytic number theory, we refer to [6].

3. Proof of Theorem 1

Let us first note that

(1) R(n) = S1 + S2,

where

(2) S1 = #
{
n = p2 + f : p is a prime and (p, n) = 1, f is a square-free integer

}
and

(3) S2 = #
{
n = p2 + f : p is a prime and p|n, f is a square-free integer

}
.

Since S2 ≤ ν(n), the number of distinct prime factors of n and ν(n) = O

(
log n

log logn

)
, we

conclude that

(4) S2 = O

(
log n

log log n

)
.

Hence to compute R(n), essentially, we need to compute S1.
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It is clear from Pillai’s paper that one can apply the simple asymptotic sieve to treat S1.
Indeed, let N(n, y) (with y to be chosen later) be the number of primes p ≤

√
n such that n−p2

is not divisible by a square of a prime q with q < y.
Thus, we see that

(5) S1 ≤ #
{
p ≤
√
n : q prime such that q2|(n− p2) =⇒ q > y

}
:= N(n, y)

On the other hand, we note that

(6) S1 ≥ N(n, y)−#
{
p ≤
√
n : ∃q > y prime such that q2|(n− p2)

}
.

From (5) and (6), we will show that N(n, y) gives the main term and rest is an error term.

To treat N(n, y), let P (k) denotes the largest prime factor of k and µ(k) the Mobius function.
Then clearly,

N(n, y) =
∑
p≤
√
n

(p,n)=1

∑
d2|(n−p2)
P (d)≤y

µ(d)

=
∑
d≤
√
n

P (d)≤y
(d,n)=1

µ(d)
∑
p≤
√
n

p2≡n (mod d2)

1.

For a given natural number n, let ρ(d2) = #
{

1 ≤ x ≤ d2 : x2 ≡ n (mod d2)
}
. By the Chinese

remainder theorem, ρ(d2) is a multiplicative function of d and ρ(d2) = O(2ν(d)). Then as
(n, d) = 1, we have for each such x by Theorem 3, for any A,B > 0,

(7)
li(
√
n)

φ(d2)
+O

( √
n

(log n)A

)
number of primes p ≤ n satisfying p2 ≡ n (mod d2) uniformly for all d ≤ (log n)B. Therefore,
we get

N(n, y) =
∑
d≤
√
n

P (d)≤y
(d,n)=1

µ(d)
[
ρ(d2)li(

√
n)

φ(d2)
+O

(
ρ(d2)

√
n

(log n)A

)]
.

= li(
√
n)

∑
d≤
√
n

P (d)≤y
(d,n)=1

µ(d)ρ(d2)
φ(d2)

+O


∑
d≤
√
n

P (d)≤y
(d,n)=1

|µ(d)|ρ(d2)
√
n

(log n)A

 .

= T1 + T2 (say).
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Note that

T1 = li(
√
n)

∞∑
d=1

P (d)≤y
(d,n)=1

µ(d)ρ(d2)
φ(d2)

− li(
√
n)

∞∑
d>
√
n

P (d)≤y
(d,n)=1

µ(d)ρ(d2)
φ(d2)

Let us write

A(n) =
∏

p,(p,n)=1

(
1− ρ(p2)

p(p− 1)

)
.

By the multiplicativity of ρ(d2), we have
∞∑
d=1

P (d)≤y
(d,n)=1

µ(d)ρ(d2)
φ(d2)

=
∏
p≤y

(p,n)=1

(
1− ρ(p2)

p(p− 1)

)

=
∏
p

(p,n)=1

(
1− ρ(p2)

p(p− 1)

) ∏
p>y

(p,n)=1

(
1− ρ(p2)

p(p− 1)

)−1

= A(n)
∏
p>y“
n
p

”
=1

(
1 +

2/(p(p− 1)
1− 2

p(p−1)

)

= A(n)
∏
p>y“
n
p

”
=1

(
1 +O(

1
p(p− 1)

)
)

= A(n)
∏
p>y“
n
p

”
=1

exp
(

O(1)
p(p− 1)

)

= A(n) exp

(∑
p>y

O(
1

p(p− 1)
)

)

= A(n) exp
(
O

(
1
y

))
= A(n)

(
1 +O

(
1
y

))
.

Now,

−li(
√
n)

∞∑
d>
√
n

P (d)≤y
(d,n)=1

µ(d)ρ(d2)
φ(d2)

= O

li(
√

n)
∑
d>
√
n

2ν(d)

d2



= O

(
li(
√

n)
∫ ∞
√
n

S(m)
m3

dm

)
where S(m) =

∑
d≤m

2ν(d) = O(m logm)

= O

(
li(
√
n)

log n√
n

)
= O(1).
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Therefore,

T1 = li(
√
n)

∏
p“

n
p

”
=1

(
1− 2

p(p− 1)

)(
1 +O

(
1
y

))
+O (1) .

Consider

T2 = O


√
n

(log n)A
∑
d≤
√
n

P (d)≤y

|µ(d)|2ν(d)


= O

 √
n

(log n)A
∑
d|Py

2ν(d)

 where Py =
∏
p≤y

p

= O

(
3y
√
n

(log n)A

)
Thus,

(8) N(n, y) = li(
√
n)

∏
p“

n
p

”
=1

(
1− 2

p(p− 1)

)(
1 +O

(
1
y

))
+O (1) +O

(
3y
√
n

(log n)A

)
.

Consider now

M(y, n) = #
{
p ≤
√
n : ∃q > y prime such that q2|(n− p2)

}
.

Following Pillai’s outline, we compute M(y, n) in three intervals, namely, (1) y < q < (log n)c (2)

(log n)c < q <

√
n

(log n)c
; and (3)

√
n

(log n)c
< q <

√
n where c is a suitable constant to be chosen

later.

By Theorem 3, we have,

M1(y, n) =
∑

y<q<(logn)c

(q,n)=1

∑
p≤
√
n

p2≡n (mod q2)
(p,q)=1

1

=
∑

y<q<(logn)c

(q,n)=1

[
ρ(q2)li(

√
n)

q(q − 1)
+O

(
ρ(q2)

√
n

(log n)A

)]

≤ li(
√
n)
∑
y<q

2
q(q − 1)

+O

 √
n

(log n)A
∑

y<q<(logn)c

ρ(q2)


Therefore,

(9) M1(y, n) = O

( √
n

(log n)
× 1
y

)
+O

(√
n log log n

(log n)A−c

)
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Now, consider

M2(y, n) =
∑

(logn)c<q<
√

n
(log n)c

(q,n)=1

∑
p≤
√
n

p2≡n (mod q2)
(p,q)=1

1

≤
∑

(logn)c<q<
√

n
(log n)c

(q,n)=1

∑
p≤
√
n

n−p2

q2 =k

1

≤
∑

(logn)c<q<
√

n
(log n)c

(q,n)=1

∑
a≤
√
n

n−a2

q2 =k

1

=
∑

(logn)c<q<
√

n
(log n)c

(q,n)=1

(
2
√
n

q2
+ 1
)

≤ 2
√
n

∑
q>(logn)c

1
q(q − 1)

+
√
n

(log n)c

≤ 3
√
n

(log n)c
.

Therefore

(10) M2(y, n) = O

( √
n

(log n)c

)
Finally, consider

M3(y, n) =
∑

√
n

(log n)c
<q<

√
n

(q,n)=1

∑
p≤
√
n

p2≡n (mod q2)

1

=
∑

√
n

(log n)c
<q<

√
n

(q,n)=1

∑
p≤
√
n

n=p2+kq2

1.

Since q >
√
n/(log n)c, we see that q2 > n/(log n)2c. Since kq2 = n − p2 < n, we see that the

integer k is at most (log n)2c. For each such integer k, we can have at most 2d(n) number of
solutions of n = p2 + kq2, by Theorem 6. Therefore, we have

(11) M3(y, n) = O
(
(log n)2cd(n)

)
= O

(
(log n)2cnε

)
for any ε > 0.

Thus, from (9), (10) and (11), we get

(12) M(y, n) = O

( √
n

(log n)y

)
+O

( √
n

(log n)A−c

)
+O

( √
n

(log n)c

)
+O

(
(log n)2cnε

)
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Choose y = c1 log log n, A = 4 and c = 2 where c1 > 0 fixed constant. With these choices, we
see that

M(y, n) = O

( √
n

(log n)(log log n)

)
.

Therefore, by (8), we get

N(n, y) = li(
√
n)

∏
p“

n
p

”
=1

(
1− 2

p(p− 1)

)
+O

( √
n

(log n)(log log n)

)
.

Thus, we arrive at

R(n) = li(
√
n)

∏
p“

n
p

”
=1

(
1− 2

p(p− 1)

)
+O

( √
n

(log n)(log logn)

)
.

This proves the theorem. �

4. Proof of Theorem 2.

We shall not apply the asymptotic sieve. Instead, we compute the formula directly.

R(n) =
∑
p2≤n

∑
d2|(n−p2)

µ(d)

=
∑
p2≤n

 ∑
d2|(n−p2)

d<z

µ(d) +
∑

d2|(n−p2)
d≥z

µ(d)


for a suitable z to be chosen later. For a given A ≥ 1, we choose B > 0 as in Theorem 2.3.
Consider ∑

d<z

µ(d)
∑
p≤
√
n

p2≡n (mod d2)

1 =
∑
d<z

µ(d)F (
√
n, d2)

where

F (
√
n, d2) =


ρ(d2)li(

√
n)

φ(d2)
+O

(
ρ(d2)E(

√
n, d2)

)
if d < n1/4/(log n)B

≤ ρ(d2)
(√

n
d2

+ 1
)

if n1/4/(log n)B < d < z
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Consider ∑
n1/4/(logn)B<d<z

µ(d)ρ(d2)
(√

n

d2
+ 1
)
≤ 2

√
n

∑
n1/4/(logn)B<d<z

µ(d)ρ(d2)
d2

≤ 2
√
n

∑
n1/4/(logn)B<d<z

2ν(d)

d2

= O

(√
n log n
n1/4

)
= O

(
n1/4 log n

)
By Theorem 5, we have

O

 ∑
d<n1/4/(logn)B

|µ(d)|ρ(d2)E(
√
n, d2)

 = O

 ∑
d<n1/4/(logn)B

|µ(d)|ρ(d2)E(
√
n, d2)


= O

( √
n

(log n)A

)
Therefore,∑
d<z

µ(d)F (
√
n, d2) =

∑
d<n1/4/(logn)B

µ(d)ρ(d2) li(
√
n)

φ(d2)
+O

( √
n

(log n)A

)
+O

(
n1/4 log n

)

= li(
√
n)
∞∑
d=1

µ(d)ρ(d2)
φ(d2)

− li(
√
n)

∑
d>n1/4/(logn)B

µ(d)ρ(d2)
φ(d2)

+O

( √
n

(log n)A

)

= li(
√
n)
∞∑
d=1

µ(d)ρ(d2)
φ(d2)

− li(
√
n)
∑
d>z

µ(d)ρ(d2)
φ(d2)

+O

( √
n

(log n)A

)

= li(
√
n)

∏
q“

n
q

”
=1

(
1− 2

q(q − 1)

)
+O

(
li(
√
n)
z

)
+O

( √
n

(log n)A

)
.

Note that in the penultimate equation we have added few terms which is at most O(n1/4 log n).
Since we have error of O(

√
n/(log n)A), the new error O(n1/4 log n) does not cause any further

problem. By choosing z =
√
n/(log n)2A, we see that∑

d<z

µ(d)F (
√
n, d2) = li(

√
n)

∏
q“

n
q

”
=1

(
1− 2

q(q − 1)

)
+O

( √
n

(log n)A

)
.

Now, consider ∑
p≤
√
n

∑
d>z

n=p2+kd2

µ(d) ≤
∑

k<n/z2

#
{

(d, p) : d2k + p2 = n
}
.
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By Theorem 6, we get∑
p≤
√
n

∑
d>z

n=p2+kd2

µ(d) ≤
∑

k≤n/z2
2d(k)� nεn/z2 ≤ nε(log n)A,

where 0 < ε < 1/2. Thus,

R(n) = li(
√
n)

∏
q“

n
q

”
=1

(
1− 2

q(q − 1)

)
+O

( √
n

(log n)A

)
.

This proves our theorem. �

5. Concluding Remarks.

Let k ≥ 2 be an integer. Let

R(n, k) := #
{
n = pk + f : p is a prime, f is a k-free integer

}
.

Then, P. Erdös proved that R(n, k) > 0. One may get a similar asymptotic formula as for
R(n, k) by imitating our proof of Theorem 2. Hence we omit the proof of the following theorem.

Theorem 8. Let ρ(pk) denote the number of solutions of the congruence xk ≡ n (mod pk). We
have for any A > 0,

R(n, k) = li(n1/k)
∏
q“

n
q

”
=1

(
1− ρ(pk)

qk−1(q − 1)

)
+O

(
n1/k

(log n)A

)
.

The question of whether these error terms can be improved is an interesting one. Without
going into details, we remark that one can use Montgomery’s conjecture on the error term

E(n, d) = O((n/d)1/2dε),

for any ε > 0 to deduce that the error terms in Theorem 2 can be improved to O(nθ) for some
θ < 1/2. We leave the details to the reader.
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