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Abstract. Given an integer N ≥ 3, we shall prove that for all primes p ≥ (N −
2)24N , there exists x in (Z/pZ)∗ such that x, x + 1, . . . , x + N − 1 are all squares
(respectively, non-squares) modulo p. Similarly, for an integer N ≥ 2, we prove that

for all primes p ≥ exp
(

25.54N
)

, there exists an element x ∈ (Z/pZ)∗ such that

x, x + 1, . . . , x + N − 1 are all generators of (Z/pZ)∗.

Keywords. Quadratic residues; primitive roots; finite fields. 8

1. Introduction 9

Let p be a prime number. The study of distribution of quadratic residues and quadratic 10

non residues modulo p has been considered with great interest in the literature. One can- 11

not expect to get consecutive squares in integers as the difference of two squares is at 12

least twice of the least one. But, in modulo p, one can expect to get a string of con- 13

secutive squares (which are called quadratic residues). The same is true while dealing 14

with quadratic nonresidues and primitive roots modulo p. Let Z/pZ denote the group 15

of residues modulo p and (Z/pZ)∗ the multiplicative group of Z/pZ. In this paper, we 16

address the following question. 17

Question. For a given natural number N ≥ 2, can we find a positive constant p0(N ) 18

depending only on N such that for every prime p ≥ p0(N ), there exists an element 19

x ∈ (Z/pZ)∗ with x, x + 1, x + 2, . . . , x + N − 1 are all quadratic residues (respec- 20

tively, quadratic non-residues) modulo p? If p0(N ) exists, then can we find the explicit 21

value? 22

In 1928, Brauer [1] answered the above question and proved the existence of p0(N ) for 23

quadratic residues and non-residues cases using some refinement of van der Warden’s the- 24

orem in combinatorial number theory. Therefore, in his proof, the constant p0(N ) depends 25

on the van der Warden number, which is very difficult to calculate for all N . For instance, 26

recently, Luca and Thangadurai [8] proved that for all primes p ≥ exp

(
222N2+10

)
, there 27

exists x such that x, x + 1, . . . , x + N − 1 are all quadratic residues modulo p, using 28

Gowers [3] bound for van der Warden theorem. 29
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For a given prime p, the set of all non-residues modulo p can be further divided into 30

two classes, namely the set of all primitive roots modulo p (or generators of (Z/pZ)∗) 31

and non-residues which are not primitive roots modulo p. 32

In 1956, Carlitz [2] answered the above question for the set of all primitive roots mod- 33

ulo p and proved the existence of p0(N ) in this case. This was independently proved by 34

Szalay [12,13]. Recently, Gun et al [4,5] and Luca et al [7] answered the above question 35

for the complementary case and gave an explicit value of p0(N ) in that case. 36

In this article, we shall prove the following theorems. 37

Theorem 1.1. Let p be a prime. For all p ≥ 7 (respectively for p ≥ 5), there is a 38

consecutive pair of quadratic residues (respectively for p nonresidues) modulo p. 39

Theorem 1.2. Let N ≥ 3 be any positive integer. Then for all primes p > (N − 2)24N , 40

we can find N consecutive quadratic residues (respectively quadratic nonresidues) 41

modulo p. 42

Theorem 1.3. Let N ≥ 2 be any positive integer. Then for all primes p ≥ e25.54N
, we can 43

find N consecutive primitive roots modulo p. 44

Let p be an odd prime. It has been conjectured [10] that there exists an integer g ≤ p−1 45

which is a primitive root modulo p and which is relatively prime to p − 1. In 1976, 46

Hausman [6] proved this conjecture for all sufficiently large primes p without giving an 47

explicit bound. Here, we compute an explicit bound. 48

Theorem 1.4. Let p be a prime number such that p > e110.8 ∼ 1.318 × 1048. Then there 49

exists an integer 1<g ≤ p−1 such that g is a primitive root modulo p and (g, p−1)=1. 50

In particular, odd primitive root modulo p exists. 51

2. Preliminaries 52

Lemma 2.1. 53

(i) For any integer n > 90, we have 54

φ(n) >
n

log n
, 55

where φ(n) is the Euler �-function. 56

(ii) Let ω(n) denote the number of distinct prime divisors of n. Then we have 57

ω(p − 1) ≤ (1.385)
log p

log log p
58

for all primes p ≥ 5. 59

The first result was proved by Moser [9] in 1951 and the second result can be seen in 60

page 167 of [11]. 61

Lemma 2.2. Let N be any positive integer. Then 62

(
N

2

)
+ 2

(
N

3

)
+ · · · + (r − 1)

(
N

r

)
+ · · · + (N − 1) = (N − 2)2N−1 + 1. 63
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64Proof. Differentiating 65

(1 + x)N = 1 +
(

N

1

)
x +

(
N

2

)
x2 + · · · +

(
N

r

)
xr + · · · + x N , (2.1) 66

we get 67

N (1 + x)N−1 =
(

N

1

)
+ 2

(
N

2

)
x + · · · + r

(
N

r

)
xr−1 + · · · + N x N−1. (2.2) 68

Substituting x = 1, we get 69

2N = 1 +
(

N

1

)
+

(
N

2

)
+ · · · +

(
N

r

)
+ · · · +

(
N

N

)
, 70

N2N−1 =
(

N

1

)
+ 2

(
N

2

)
+ · · · + r

(
N

r

)
+ · · · + N

(
N

N

)
. 71

Substracting (2.1) from the (2.2), we get 72

(
N

2

)
+ 2

(
N

3

)
+ · · · + (r − 1)

(
N

r

)
+ · · · + (N − 1) 73

= (N − 2)2N−1 + 1. 74

� 75

An element γ ∈ (Z/pZ)∗ is said to be a primitive root (mod p) if γ is a generator 76

of (Z/pZ)∗. Once we know a primitive root (mod p), all primitive roots (mod p) are 77

given by the set 78

{γ i : gcd(i, p − 1) = 1}. 79

Consider a non-principal character χ : (Z/pZ)∗ → μp−1, where μn denotes the sub- 80

group of C
∗ of n-th roots of unity. Then one sees that χ(γ ) is a primitive (p − 1)-th root 81

of unity if and only if γ is a primitive root (mod p). Let η be a primitive (p − 1)-th 82

root of unity and assume that χ(γ ) = η. Since χ is a homomorphism, we have 83

χ(γ i ) = χ i (γ ) = ηi . Hence by the above observation, it is clear that χ(α) = ηi with 84

gcd(i, p − 1) = 1 if and only if α is a primitive root (mod p). 85

Let l be any non-negative integer. We define 86

αl(p − 1) =
p−1∑

i=1,(i,p−1)=1

(ηi )l . 87

Set χi = χ i for 1 ≤ i ≤ p − 1. 88

Let 89

f (x) = 1

2

(
1 +

(
x

p

))
for all x ∈ (Z/pZ)∗ 90
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and 91

g(x) = 1

2

(
1 −

(
x

p

))
for all x ∈ (Z/pZ)∗, 92

where

( ·
p

)
is the Legendre symbol. 93

Clearly 94

f (x) =
{

1, if x is a quadratic residue (mod p)

0, otherwise
95

and 96

g(x) =
{

1, if x is a quadratic nonresidue (mod p)

0, otherwise.
97

Lemma 2.3. We have 98

p−2∑
l=0

αl(p − 1)χl(x) =
{

p − 1, if x is a primitive root (mod p)

0, otherwise.
99

100

Proof. See Lemma 2 in [13]. � 101

The following theorem was proved by Weil in [14]. 102

Theorem 2.4. For any integer l, 2 ≤ l < p and for any non-principal characters 103

χ1, . . . , χl and distinct a1, . . . , al ∈ Z/pZ, we have 104

∣∣∣∣∣
p∑

x=1

χ1(x + a1)χ2(x + a2) · · · χl(x + al)

∣∣∣∣∣ ≤ (l − 1)
√

p. 105

For a positive integer m, we denote ω(m) by the number of distinct prime factors of m. 106

Lemma 2.5. We have 107

p−2∑
l=0

|αl(p − 1)| = 2ω(p−1)φ(p − 1). 108

Proof. See [13]. � 109

Theorem 2.6. For any prime p, let Np denote the number of integers 1 < g < p − 1 110

which are primitive roots modulo p and coprime to p − 1. Then 111

Np = φ2(p − 1)

p − 1
+ φ(p − 1)

p − 1
E p, 112

where 113

|E p| ≤ 4ω(p−1)√p(log p). 114

Proof. The proof can be found in [6]. � 115
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3. Residues modulo p 116

Let Q(p, N ) (respectively N(p, N )) be the number of N consecutive quadratic residuesQ1 117
(respectively nonresidues) modulo p in (Z/pZ)∗. Then, using properties of f (x) and 118

g(x), we see that 119

Q(p, N ) =
p−N∑
x=1

f (x) f (x + 1) · · · f (x + N − 1) 120

and 121

N(p, N ) =
p−N∑
x=1

g(x)g(x + 1) · · · g(x + N − 1). 122

We have the following technical lemma. 123

Lemma 3.1. For any prime p and any positive integer N ≥ 3, we have 124

∣∣∣Q(p, N ) − p

2N

∣∣∣ ≤
(
(N − 2)2N−1 + 1

) √
p

2N
125

and 126

∣∣∣N(p, N ) − p

2N

∣∣∣ ≤
(
(N − 2)2N−1 + 1

) √
p

2N
. 127

128

Proof. Consider 129

Q(p, N ) =
p−N∑
x=1

{
N−1∏
l=0

f (x + l)

}
= 1

2N

p−N∑
x=1

{
N−1∏
l=0

(
1 +

(
x + l

p

))}
130

≤ 1

2N

p∑
x=1

(
1+

(
x

p

))(
1+

(
x+1

p

))
· · ·

(
1+

(
x+N −1

p

))
. 131

Set xl =
(

x + l

p

)
for l = 0, . . . , N − 1. Since 132

N−1∏
l=0

(1 + xl) = 1 +
N−1∑
l=0

xl +
∑

0≤l1<l2≤N−1

xl1 xl2 + · · · + x0x1 · · · xN−1, 133

we have 134

Q(p, N ) ≤ p

2N
+ 1

2N

⎧⎨
⎩

N−1∑
l=0

p∑
x=1

(
x+l

p

)
+

∑
0≤l1<l2≤N−1

p∑
x=1

(
(x+l1)

p

)(
(x+l2)

p

)
135

+ · · · +
p∑

x=1

(
x

p

) (
x + 1

p

)
· · ·

(
x + N − 1

p

)}
. 136
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By Theorem 2.4, we get 137

∣∣∣Q(p, N )− p

2N

∣∣∣ ≤ 1

2N

⎧⎨
⎩

∑
0≤l1<l2≤N−1

√
p +

∑
0≤l1<l2<l3≤N−1

2
√

p + · · · +(N −1)
√

p

⎫⎬
⎭ 138

=
√

p

2N

{(
N

2

)
+ 2

(
N

3

)
+ · · · + (N − 1)

(
N

N

)}
. 139

Now applying Lemma 2.2, we get 140

∣∣∣Q(p, N ) − p

2N

∣∣∣ ≤
(
(N − 2)2N−1 + 1

) √
p

2N
, 141

as desired. 142

Replacing the function f by g, we get the required estimate for N(p, N ). � 143

Proof of Theorem 1.1. When p = 7, we clearly see that (1, 2) is a consecutive pair of 144

quadratic residue modulo 7. Assume that p ≥ 11. If 10 is a quadratic residue modulo p, 145

then we have (9, 10) as a consecutive pair of quadratic residues modulo p, otherwise as 146

10 = 2×5, either 2 or 5 is a quadratic residue modulo p. Thus again either (1, 2) or (4, 5) 147

serves as a consecutive pair of quadratic residues modulo p. Therefore, Q(p, 2) > 0 for 148

all primes p ≥ 7. 149

Now when p = 5, we see that (2, 3) is a consecutive pair of quadratic nonresidues 150

and when p = 7, (5, 6) serves the purpose. Assume that p ≥ 11. Let 2 ≤ a1 < a2 < 151

· · · < a p−1
2

≤ p − 1 be all the quadratic nonresidues. If there are no consecutive pairs 152

then a1 ≥ 2, a2 − a1 ≥ 2, and in general ai+1 − ai ≥ 2 for 1 ≤ i ≤ p−3
2 , with at least 153

one i such that ai+1 − ai > 2 as there exists a pair of consecutive quadratic residues. But 154

this is impossible since we cannot fit p−1
2 numbers in {2, . . . , p − 1} such that no two 155

are consecutive and there are atleast two at a distance larger than 2 apart. This proves the 156

theorem. � 157

Proof of Theorem 1.2. By Lemma 3.1, we have 158

−Q(p, N ) + p

2N
≤

∣∣∣Q(p, N ) − p

2N

∣∣∣ ≤
(
(N − 2)2N−1 + 1

) √
p

2N
. 159

Clearly Q(p, N ) > 0 if 160

p

2N
>

(
(N − 2)2N−1 + 1

) √
p

2N
⇐⇒ p >

(
(N − 2)2N−1 + 1

) √
p. 161

Thus if p > (N − 2)24N , then Q(p, N ) > 0. 162

Similar arguments show that if p > (N − 2)24N , then N(p, N ) > 0. � 163

4. Primitive roots modulo p 164

Let P(p, N ) be the number of N consecutive primitive roots modulo p in (Z/pZ)∗. We 165

have the following lemma. 166
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Lemma 4.1. For any prime p and any positive integer N, we have 167
∣∣∣∣∣P(p, N ) − p

(
φ(p − 1)

p − 1

)N
∣∣∣∣∣ ≤ 2N

√
p2Nω(p−1). 168

169

Proof. Replace β
(p − 1) by α
(p − 1) and put φ(p − 1) in place of k in Lemma 4 of [5] 170

to get the required result. We shall omit the proof here. � 171

Proof of Theorem 1.3. Clearly, by Lemma 4.1, we have 172

p

(
φ(p−1)

p−1

)N

−P(p, N )≤
∣∣∣∣∣P(p, N )− p

(
φ(p−1)

p−1

)N
∣∣∣∣∣≤2N

√
p2Nω(p−1). 173

Clearly P(p, N ) > 0 if 174

p

(
φ(p−1)

p−1

)N

−2N
√

p2Nω(p−1) >0 ⇐⇒ √
p

(
φ(p−1)

p−1

)N

>2N2Nω(p−1). 175

This last inequality is satisfied if log p−2N log φ(p−1)
p−1 > 2(log 2N )+2Nω(p−1) log 2. 176

If p > e4N , then we see that log p
2 > 2N log φ(p−1)

p−1 . Hence, if we prove that log p > 177

4(log 2N ) + 4Nω(p − 1) log 2, then it follows that P(p, N ) > 0 for all p > e4N . 178

By Lemma 2, we have, ω(p − 1) ≤ (1.385)
log p

log log p
holds for all prime p ≥ 5. Thus 179

for such primes the right-hand side of the above is bounded by 180

4 log(2N ) + 4N × 1.385
log p log 2

log log p
. 181

So, if we prove 182

(
1 − 4N × 1.385 log 2

log log p

)
log p > 4 log(2N ), 183

we are done. Note that 184

4N ×1.385 log 2

log log p
<1 ⇐⇒ log log p > log 24N×1.385 ⇐⇒ p>exp(25.54N ). 185

Also, we need 186

log p > 4 log(2N ) = log(24 · N 4) ⇐⇒ p > 16N 4. 187

So if 188

p > max
{

e25.54N
, 16N 4, e4N

}
= e25.54N

189

we have P(p, N ) > 0. � 190
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Proof of Theorem 1.4. By Lemma 2.1(ii), we see that 191

4ω(p−1) ≤ 4(1.385)
log p

log log p < (6.83)
log p

log log p = p
log 6.83
log log p . (4.3) 192

Let ε > 0 be such that 0 < ε < 1/2. Then for all primes 193

p ≥ exp exp

(
2 log 6.83

1 − 2ε

)
, 194

we have 195

4ω(p−1) < p
1
2 −ε, (4.4) 196

which is an easy computation from (4.3) and (4.4). Therefore, Np ≥ 1 follows at once, if 197

we prove that 198

φ2(p − 1)

p − 1
>

φ(p − 1)

p − 1
p1−ε log p for all p > exp exp

(
2 log 6.83

1−2ε

)
; 199

or if we prove φ(p − 1) > p1−ε(log p) for all primes p satisfying 200

p > exp exp

(
2 log 6.83

1 − 2ε

)
. 201

Note that 202

p − 1

log(p − 1)
> p1−ε log p 203

is equivalent to 204

p > (log(p − 1) + 1)2/ε. 205

Choose ε = 1/11 and we check whether 206

p − 1

log(p − 1)
> p1−ε log p 207

is true for this choice of ε. (Lemma 2.1(i) says that it is enough to check this inequality 208

only to prove the theorem.) In fact, we get 209

exp exp

(
2 log 6.83

1 − 2ε

)
= exp exp(log(6.83)2.45) = exp((6.83)2.45) < e110.8. 210

Choose primes p > e110.8 and we see that 211

φ(p − 1) >
p − 1

log(p − 1)
> p10/11 log p. 212

Therefore, Np ≥ 1 for all p > e110.8. This completes the proof. � 213
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[1] Brauer A, Űber Sequenzen von Potenzresten, Sitzungsberichte der Preubischen 221
Akademie der Wissenschaften (1928) pp. 9–16 222

[2] Carlitz L, Sets of primitive roots, Compositio Math. 13 (1956) 65–70 223
[3] Gowers W T, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11(3) (2001) 224

465–588 225
[4] Gun S, Ramakrishnan B, Sahu B and Thangadurai R, Distribution of quadratic non- 226

residues which are not primitive roots, Math. Bohem. 130(4) (2005) 387–396 227
[5] Gun S, Luca F, Rath P, Sahu B and Thangadurai R, Distribution of residues modulo p, 228

Acta Arith. 129(4) (2007) 325–333 229
[6] Hausman M, Primitive roots satisfying a coprime condition, Am. Math. Monthly 83 230

(1976) 720–723 231
[7] Luca F, Shparlinski I E and Thangadurai R, Quadratic non-residue verses primitive roots 232

modulo p, J. Ramanujan Math. Soc. 23(1) (2008) 97–104 233
[8] Luca F and Thangadurai R, Distribution of Resodues Modulo p – II, to appear in the 234

Ramanujan Mathematical Society Lecture Notes Series (2011)Q2 235
[9] Moser L, On the equation φ(n) = π(n), Pi Mu Epsilon J. (1951) 101–110Q3 236

[10] Problems and Solutions, Problem E-2488, this MONTHLY, 81 (1974) 776Q4 237
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