On the Diophantine Equation
$$x^3 + by + 1 - xyz = 0$$

S. Subburam and R. Thangadurai

Presented by V. Kumar Murty, FRSC

ABSTRACT. In this paper, we shall prove that all positive integral solutions (x,y,z) of the diophantine equation $x^3+by+1-xyz=0$ satisfy $x\leq b\left((2b^3+b)^3+1\right)+1,\,y\leq (2b^3+b)^3+1,\,\text{and}\,z\leq \left(b\left((2b^3+b)^3+1\right)+1\right)^2+2b^3+b$ for a given positive integer b. As an application of this result, we investigate the divisors of the sequence $\{n^3+1\}$ in residue classes. More precisely, we study the following sums:

$$\sum_{b \le X} \sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1 \text{ and } \sum_{n \le X} \sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1$$

for a given positive real number X and a positive integer b.

1. **Introduction** Consider the diophantine equation

$$(1) x^3 + by + 1 - xyz = 0,$$

where b is a fixed positive integer and x, y and z are unknown positive integers. This equation has been studied by many authors including Mohanty [4], Utz [8], Mohanty-Ramasamy [5] and [6], Luca-Togbe [3], Subburam [7], etc. In 1984, Mohanty and Ramasamy in [5] suggested the following conjecture.

Conjecture 1. The number (denoted by N(b)) of all positive integral solutions (x, y, z) of the diophantine equation $x^3 + by + 1 - xyz = 0$ is less than or equal to 8b + 15, for any positive integer b.

Recently, Subburam [7] proved the above conjecture for all large enough b. More precisely, he proved:

Theorem A. (Subburam [7]) We have

$$N(b) \leq 6b + t(b)$$
,

where t(b) = o(b) as $b \to \infty$ and t(b) < b for all $b \ge c$, for some computable constant c depending on b.

In this paper, we prove the following theorems.

Received by the editors on February 21, 2013; revised February 18, 2014.

AMS Subject Classification: Primary: 11D25; secondary: 11D45.

Keywords: Diophantine equations, divisors, residue classes.

© Royal Society of Canada 2014.

Theorem 1. Any positive integral solution (x, y, z) of (1) satisfies

- $\begin{array}{ll} (1) & x \leq b \left((2b^3 + b)^3 + 1 \right) + 1; \\ (2) & y \leq (2b^3 + b)^3 + 1; \end{array}$
- (3) $z \le (b((2b^3+b)^3+1)+1)^2+2b^3+b$.

In the following theorem, we give a closed formula for N(b).

Theorem 2. Let b be a given positive integer. Then

$$N(b) = \sum_{n=1}^{\infty} \sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1.$$

In view of Theorem A, we have the following Corollary.

COROLLARY 1. Let b be a given positive integer. Then

$$\sum_{n=1}^{\infty} \sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1 \le 6b + t(b),$$

where t(b) is the integer stated in Theorem A.

In 1984, H. W. Lenstra [2] considered the problem of divisors in residue classes as follows. For every real number $\alpha > 1/4$, there exists a constant $\kappa(\alpha)$ with the following property. If r, s and N are integers such that $0 \le r < s < N$, $s > N^{\alpha}$ and (r,s)=1, then he proved that there are at most $\kappa(\alpha)$ positive divisors of N which are congruent to r modulo s. Also, in the same paper, he showed that if $\alpha > 1/3$, then $\kappa(\alpha) = 11$. In 2007, Coppersmith et al. [1] showed that if $\alpha > 0.331$, then $\kappa(\alpha) = 32$. This result will imply that if $n \geq 4$ and b are any positive integers, then

$$\sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1 \le 32.$$

In this paper, as an application of Theorems 1 and 2, we obtain a refinement in the case where $N = n^3 + 1$ and s = n in the above problem. More precisely, we prove:

Theorem 3. Let b be a given positive integer. Then for every integer n > 1 $b((2b^3+b)^3+1)+1$, we have

$$\sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1 = 0.$$

In other words, if $n > b ((2b^3 + b)^3 + 1) + 1$, then no divisor of $n^3 + 1$ is congruent $to -b \ modulo \ n.$

If $b \le X$ and $n > X((2X^3 + X)^3 + 1) + 1$, then we have

$$n > b((2b^3 + b)^3 + 1) + 1.$$

Hence, by Theorem 3, we have the following corollary.

COROLLARY 2. Let X be any real number. Then for every integer n satisfying

$$n > X((2X^3 + X)^3 + 1) + 1,$$

we have

$$\sum_{b \le X} \sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1 = 0.$$

2. **Proof of Theorem 1** To prove this theorem, we need the following lemma.

LEMMA 1 (Subburam [2]). Let (x, y, z) be a positive integral solution of (1). Then there exists a positive integral solution (l(x), y, l(z)) of (1) satisfying

- (1) xl(x) = by + 1.
- (2) If $l(x) \ge x$, then l(z) > b and if $x \ge l(x)$, then z > b.
- (3) If $x \ge 3$, and $l(x) \ge x+2$, then $z \le b$ and if $l(x) \ge 3$, $x \ge l(x)+2$, then $l(z) \le b$.

Let (x, y, z) be any positive integral solution of (1).

Case 1. $z \leq b$.

Since $x^3+1=(xz-b)y$, we have $(xz-b)\mid (x^3+1)$. We see that $(xz-b)\mid (z^3+b^3)$. This is because

$$z^{3}(x^{3}+1) = (xz-b)(z^{2}x^{2} + xbz + b^{2}) + (z^{3}+b^{3}).$$

Therefore

$$(xz - b) \le (z^3 + b^3) \le 2b^3.$$

Hence, as $z \geq 1$, we get

$$x \le 2b^3 + b.$$

Since $y \le x^3 + 1$, we get $y \le (2b^3 + b)^3 + 1$, and so

$$x < 2b^3 + b, y < (2b^3 + b)^3 + 1 \text{ and } z < b.$$

Case 2. z > b.

By Lemma 1, there exists a positive integral solution (l(x), y, l(z)) of (1) satisfying xl(x) = by + 1.

If $x \geq 3$ and $l(x) \geq x + 2$, then, by Lemma 1, we get $z \leq b$, which is a contradiction. Hence either x < 3 or l(x) < x + 2.

If $l(x) \ge 3$ and $x \ge l(x) + 2$, then, by Lemma 1, we have $l(z) \le b$. Therefore, by Case 1, we get

$$l(x) \le 2b^3 + b$$
 and $y \le (2b^3 + b)^3 + 1$.

Since xl(x) = by + 1,

$$x \le by + 1 \le b((2b^3 + b)^3 + 1) + 1.$$

Since $x^2 + l(x) = yz$, we get

$$z \le x^2 + l(x) \le (b((2b^3 + b)^3 + 1) + 1)^2 + 2b^3 + b.$$

If x = 1 or l(x) = 1, then all the possible integral solutions (x, y, z) of (1) are $(1, 1, b + 2), (1, 2, b + 1), (b + 1, 1, b^2 + 2b + 2), (2b + 1, 2, 2b^2 + 2b + 1)$.

If x=2 or l(x)=2, then all the possible integral solutions (x,y,z) of (1) are (2,1,(b+9)/2), (2,3,(b+3)/2), (2,9,(b+1)/2), $((b+1)/2,1,(b^2+2b+9)/4)$, $((3b+1)/2,3,(3b^2+2b+3)/4)$, $((9b+1)/2,9,(9b^2+2b+1)/4)$.

For the case x = l(x), all the positive integral solutions (x, y, z) of (1) satisfy

$$x \in \{x \in \mathbb{N} : (x-1) \mid b \text{ and } b \mid (x^2 - 1)\}.$$

When x = l(x) + 1 or l(x) = x + 1, then the possible solutions (x, y, z) of (1) are

$$((-1+\sqrt{4b+5})/2,1,b+2)$$
 and $((1+\sqrt{4b+5})/2,1,b+1+\sqrt{4b+5})$.

Thus, in all the cases, we observe that the positive integral solutions (x, y, z) of (1) satisfy

$$x \le b((2b^3 + b)^3 + 1) + 1, y \le (2b^3 + b)^3 + 1$$

and

$$z \le (b((2b^3 + b)^3 + 1) + 1)^2 + 2b^3 + b.$$

3. **Proof of Theorem 2** Let n be any positive integer. Let d be a positive divisor of $n^3 + 1$ such that $d \equiv -b \pmod{n}$. Then there exists a positive integer m such that d = mn - b. Since $mn - b \mid n^3 + 1$, there is a positive integer y such that $n^3 + 1 = (mn - b)y$ which in turn satisfies $n^3 + by + 1 = myn$. That is, for a positive divisor d of $n^3 + 1$ with $d \equiv -b \pmod{n}$, we get a positive integral solution (n, y, m) of (1). Indeed, for any two distinct positive divisors d_1 and

 d_2 , $d_1 \equiv -b \pmod{n}$ and $d_2 \equiv -b \pmod{n}$, of $n^3 + 1$, we get distinct positive integral solutions of (1). Therefore, we get,

$$\sum_{n=1}^{\infty} \sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1 \le N(b).$$

For the other inequality, let (n, y, z) be a positive integral solution of (1). Then we see that (nz - b) divides $n^3 + 1$ and nz - b is positive as y and $n^3 + 1$ are positive. By letting d = nz - b, we get a positive divisor of $n^3 + 1$ which is $\equiv -b \pmod{n}$. Thus, we get

$$N(b) \le \sum_{n=1}^{\infty} \sum_{\substack{d \mid n^3 + 1 \\ d \equiv -b \pmod{n}}} 1.$$

These inequalities prove the theorem.

4. **Proof of Theorem 3** Suppose that there is a positive divisor d of n^3+1 such that $d \equiv -b \pmod{n}$. Then there exists two positive integers y and z such that $n^3+by+1=nyz$. Thus (n,y,z) is a positive integral solution of (1). Therefore, by Theorem 1, we get $n \leq b \left((2b^3+b)^3+1 \right) + 1$, which is a contradiction to the assumption that $n > b \left((2b^3+b)^3+1 \right) + 1$. This proves the theorem.

References

- D. Coppersmith, N. Howgrave-Graham, S. V. Nagaraj, Divisors in Residue Classes, Constructively, Math. Comp., 77 (261) (2008), 531-545.
- 2. H. W. Lenstra, Divisors in residue classes, Math. Comp. 42 (165) (1984), 331 340.
- **3.** F. Luca and A. Togbe, On the Positive Integral Solution of the Diophantine Equation $x^3 + by + 1 xyz = 0$, Bull. Malays. Math. Sci. Soc., **31** (2)(2008), 129-134.
- **4.** S. P. Mohanty, On the Diophantine equation $x^3 + y + 1 xyz = 0$, Math. Student, **45** (1977), no. 4, (1979) 13-16.
- 5. S. P. Mohanty and A. M. S. Ramasamy, On the Positive Solution of the Diophantine Equation $x^3 + by + 1 xyz = 0$, Bull. Malays. Math. Sci. Soc., 7 (2)(1984), 23 28.
- **6.** S. P. Mohanty and A. M. S. Ramasamy, On the Positive Solution of the Diophantine Equation $ax^3 + by + c xyz = 0$, J. Indian Math. Soc. (N. S.) **62** (1996), 210-214.
- 7. S. Subburam, On the positive integral solutions of the diophantine equation $x^3 + by + 1 xyz = 0$, To appear in: Ramanujan J.
- 8. W. R. Utz, Positive Solutions of the Diophantine Equation $x^3 + 2y + 1 xyz = 0$, Internat. J. Math. Math. Sci., 5 (1982), no. 2, 311-314.

Department of Mathematics, SASTRA University, Thanjavur - 613401, Tamil Nadu, India. e-mail: ssubburam@maths.sastra.edu

Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad - 211019, India e-mail:thanga@hri.res.in