
C. R. Math. Rep. Acad. Sci. Canada Vol. 36 (1) 2014, pp. 1–5
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x3 + by + 1− xyz = 0
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Abstract. In this paper, we shall prove that all positive integral solu-
tions (x, y, z) of the diophantine equation x3 + by + 1−xyz = 0 satisfy x ≤
b
(
(2b3 + b)3 + 1

)
+1, y ≤ (2b3+b)3+1, and z ≤

(
b
(
(2b3 + b)3 + 1

)
+ 1
)2

+

2b3 + b for a given positive integer b. As an application of this result, we
investigate the divisors of the sequence {n3 + 1} in residue classes. More

precisely, we study the following sums:∑
b≤X

∑
d | n3 + 1

d ≡ −b (mod n)

1 and
∑
n≤X

∑
d | n3 + 1

d ≡ −b (mod n)

1

for a given positive real number X and a positive integer b.

1. Introduction Consider the diophantine equation

(1) x3 + by + 1− xyz = 0,

where b is a fixed positive integer and x, y and z are unknown positive integers.
This equation has been studied by many authors including Mohanty [4], Utz [8],
Mohanty-Ramasamy [5] and [6], Luca-Togbe [3], Subburam [7], etc. In 1984,
Mohanty and Ramasamy in [5] suggested the following conjecture.

Conjecture 1. The number (denoted by N(b)) of all positive integral solutions
(x, y, z) of the diophantine equation x3 + by + 1− xyz = 0 is less than or equal
to 8b+ 15, for any positive integer b.

Recently, Subburam [7] proved the above conjecture for all large enough b.
More precisely, he proved:

Theorem A. (Subburam [7]) We have

N(b) ≤ 6b+ t(b),

where t(b) = o(b) as b → ∞ and t(b) < b for all b ≥ c, for some computable
constant c depending on b.

In this paper, we prove the following theorems.
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Theorem 1. Any positive integral solution (x, y, z) of ( 1) satisfies

(1) x ≤ b
(
(2b3 + b)3 + 1

)
+ 1;

(2) y ≤ (2b3 + b)3 + 1;

(3) z ≤
(
b
(
(2b3 + b)3 + 1

)
+ 1
)2

+ 2b3 + b.

In the following theorem, we give a closed formula for N(b).

Theorem 2. Let b be a given positive integer. Then

N(b) =

∞∑
n=1

∑
d | n3 + 1

d ≡ −b (mod n)

1.

In view of Theorem A, we have the following Corollary.

Corollary 1. Let b be a given positive integer. Then

∞∑
n=1

∑
d | n3 + 1

d ≡ −b (mod n)

1 ≤ 6b+ t(b),

where t(b) is the integer stated in Theorem A.

In 1984, H. W. Lenstra [2] considered the problem of divisors in residue classes
as follows. For every real number α > 1/4, there exists a constant κ(α) with the
following property. If r, s and N are integers such that 0 ≤ r < s < N , s > Nα

and (r, s) = 1, then he proved that there are at most κ(α) positive divisors of
N which are congruent to r modulo s. Also, in the same paper, he showed that
if α > 1/3, then κ(α) = 11. In 2007, Coppersmith et al. [1] showed that if
α > 0.331, then κ(α) = 32. This result will imply that if n ≥ 4 and b are any
positive integers, then ∑

d | n3 + 1
d ≡ −b (mod n)

1 ≤ 32.

In this paper, as an application of Theorems 1 and 2, we obtain a refinement in
the case where N = n3 + 1 and s = n in the above problem. More precisely, we
prove:

Theorem 3. Let b be a given positive integer. Then for every integer n >
b
(
(2b3 + b)3 + 1

)
+ 1, we have ∑

d | n3 + 1
d ≡ −b (mod n)

1 = 0.

In other words, if n > b
(
(2b3 + b)3 + 1

)
+1, then no divisor of n3+1 is congruent

to −b modulo n.
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If b ≤ X and n > X
(
(2X3 +X)3 + 1

)
+ 1, then we have

n > b
(
(2b3 + b)3 + 1

)
+ 1.

Hence, by Theorem 3, we have the following corollary.

Corollary 2. Let X be any real number. Then for every integer n satisfying

n > X
(
(2X3 +X)3 + 1

)
+ 1,

we have ∑
b≤X

∑
d | n3 + 1

d ≡ −b (mod n)

1 = 0.

2. Proof of Theorem 1 To prove this theorem, we need the following
lemma.

Lemma 1 (Subburam [2]). Let (x, y, z) be a positive integral solution of (1).
Then there exists a positive integral solution (l(x), y, l(z)) of (1) satisfying

(1) xl(x) = by + 1.
(2) If l(x) ≥ x, then l(z) > b and if x ≥ l(x), then z > b.
(3) If x ≥ 3, and l(x) ≥ x + 2, then z ≤ b and if l(x) ≥ 3, x ≥ l(x) + 2, then

l(z) ≤ b.

Let (x, y, z) be any positive integral solution of (1).

Case 1. z ≤ b.
Since x3 + 1 = (xz − b)y, we have (xz − b) | (x3 + 1). We see that (xz − b) |

(z3 + b3). This is because

z3(x3 + 1) = (xz − b)(z2x2 + xbz + b2) + (z3 + b3).

Therefore
(xz − b) ≤ (z3 + b3) ≤ 2b3.

Hence, as z ≥ 1, we get
x ≤ 2b3 + b.

Since y ≤ x3 + 1, we get y ≤ (2b3 + b)3 + 1, and so

x ≤ 2b3 + b, y ≤ (2b3 + b)3 + 1 and z ≤ b.

Case 2. z > b.

By Lemma 1, there exists a positive integral solution (l(x), y, l(z)) of (1)
satisfying xl(x) = by + 1.
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If x ≥ 3 and l(x) ≥ x + 2, then, by Lemma 1, we get z ≤ b, which is a
contradiction. Hence either x < 3 or l(x) < x+ 2.

If l(x) ≥ 3 and x ≥ l(x) + 2, then, by Lemma 1, we have l(z) ≤ b. Therefore,
by Case 1, we get

l(x) ≤ 2b3 + b and y ≤ (2b3 + b)3 + 1.

Since xl(x) = by + 1,

x ≤ by + 1 ≤ b((2b3 + b)3 + 1) + 1.

Since x2 + l(x) = yz, we get

z ≤ x2 + l(x) ≤
(
b((2b3 + b)3 + 1) + 1

)2
+ 2b3 + b.

If x = 1 or l(x) = 1, then all the possible integral solutions (x, y, z) of (1) are
(1, 1, b+ 2), (1, 2, b+ 1), (b+ 1, 1, b2 + 2b+ 2), (2b+ 1, 2, 2b2 + 2b+ 1).

If x = 2 or l(x) = 2, then all the possible integral solutions (x, y, z) of (1) are
(2, 1, (b+ 9)/2) , (2, 3, (b+ 3)/2) , (2, 9, (b+ 1)/2) ,

(
(b+1)/2, 1, (b2+2b+9)/4

)
,(

(3b+ 1)/2, 3, (3b2 + 2b+ 3)/4
)
,
(
(9b+ 1)/2, 9, (9b2 + 2b+ 1)/4

)
.

For the case x = l(x), all the positive integral solutions (x, y, z) of (1) satisfy

x ∈
{
x ∈ N : (x− 1) | b and b | (x2 − 1)

}
.

When x = l(x) + 1 or l(x) = x+ 1, then the possible solutions (x, y, z) of (1)
are(

(−1 +
√

4b+ 5)/2, 1, b+ 2
)

and
(

(1 +
√

4b+ 5)/2, 1, b+ 1 +
√

4b+ 5
)
.

Thus, in all the cases, we observe that the positive integral solutions (x, y, z)
of (1) satisfy

x ≤ b((2b3 + b)3 + 1) + 1, y ≤ (2b3 + b)3 + 1

and

z ≤
(
b((2b3 + b)3 + 1) + 1

)2
+ 2b3 + b.

3. Proof of Theorem 2 Let n be any positive integer. Let d be a positive
divisor of n3 + 1 such that d ≡ −b (mod n). Then there exists a positive integer
m such that d = mn− b. Since mn− b | n3 + 1, there is a positive integer y such
that n3 + 1 = (mn− b)y which in turn satisfies n3 + by + 1 = myn. That is, for
a positive divisor d of n3 + 1 with d ≡ −b (mod n), we get a positive integral
solution (n, y,m) of (1). Indeed, for any two distinct positive divisors d1 and
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d2, d1 ≡ −b (mod n) and d2 ≡ −b (mod n), of n3 + 1, we get distinct positive
integral solutions of (1). Therefore, we get,

∞∑
n=1

∑
d | n3 + 1

d ≡ −b (mod n)

1 ≤ N(b).

For the other inequality, let (n, y, z) be a positive integral solution of (1). Then
we see that (nz − b) divides n3 + 1 and nz − b is positive as y and n3 + 1 are
positive. By letting d = nz− b, we get a positive divisor of n3 + 1 which is ≡ −b
(mod n). Thus, we get

N(b) ≤
∞∑
n=1

∑
d | n3 + 1

d ≡ −b (mod n))

1.

These inequalities prove the theorem.

4. Proof of Theorem 3 Suppose that there is a positive divisor d of n3 + 1
such that d ≡ −b (mod n). Then there exists two positive integers y and z
such that n3 + by + 1 = nyz. Thus (n, y, z) is a positive integral solution of
(1). Therefore, by Theorem 1, we get n ≤ b

(
(2b3 + b)3 + 1

)
+ 1, which is a

contradiction to the assumption that n > b
(
(2b3 + b)3 + 1

)
+ 1. This proves the

theorem.
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