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Abstract. In this paper we prove that if Q(x, y) = ax2 + bxy + cy2 is an integral binary
quadratic form with a nonzero, nonsquare discriminant d and if Q represents an arithmetic
progression {kn + � : n = 0, 1, . . . , R − 1}, where k and � are positive integers, then there
are absolute constants C1 > 0 and L1 > 0 such that R < C1�(k2|d|)L1 . Moreover, we prove
that every nonzero integral binary quadratic form represents a nontrivial 3-term arithmetic
progression infinitely often.

Let Q(x, y) = ax2 + bxy + cy2 be an integral binary quadratic form of discriminant
d = b2 − 4ac �= 0. Recently, A. Alaca, Ş. Alaca, and K. S. Williams [1] proved that
Q represents an arithmetic progression of infinite length if and only if d is a perfect
square, that is, d = m2 for some nonzero integer m. Suppose from now on that d is not
a perfect square so that Q cannot represent an arithmetic progression of infinite length.
We address the question “How long can an arithmetic progression represented by Q
be?” Making use of the ideas used by Alaca, Alaca, and Williams in the proof of their
theorem [1], we obtain an upper bound for the length of any arithmetic progression
represented by Q.

We require the following result.

Proposition 1. Let N ≡ 0 (mod 4) be a nonzero integer which is not a perfect square.
Then there exist absolute constants C > 0 and L > 0 for which there is a prime p �= 2
satisfying

p ≤ C |N |L ,

(
N

p

)
= −1.

Proof. As N ≡ 0 (mod 4) is not a perfect square there is an integer a satisfying

(
N

a

)
= −1, where 1 ≤ a ≤ |N | − 1,

see for example [2, p. 298]. Clearly (a, |N |) = 1 so, by Linnik’s theorem [5], there
are absolute constants C > 0 and L > 0 such that the least prime p in the arithmetic
progression

{|N |k + a : k = 0, 1, 2, . . .}

satisfies

p ≤ C |N |L .

http://dx.doi.org/10.4169/amer.math.monthly.121.10.932
MSC: Primary 11E25, Secondary 11E12

932 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Since p belongs to this arithmetic progression, we have p ≡ a (mod |N |) and, by [2,
Lemma 2.3, p. 291] we deduce

(
N

p

)
=

(
N

a

)
= −1.

Finally, as N ≡ 0 (mod 4) and

(
N

p

)
= −1, we see that p �= 2.

Remark. By a deep result of Xylouris [8], one has L ≤ 5.2. Xylouris’s work is a
refinement of that of Heath-Brown [4], who showed that L satisfies L ≤ 5.5.

In this short note we prove the following result.

Theorem 1. Let Q(x, y) = ax2 + bxy + cy2 be an integral binary quadratic form
with discriminant d = b2 − 4ac �= 0. Suppose that d is not a perfect square and that
Q represents an arithmetic progression {kn + � : n = 0, 1, . . . , R − 1}, where k and �

are positive integers. Then there are absolute constants C1 > 0 and L1 > 0 such that
R < C1�(k2|d|)L1 .

Proof. Set N = 4k2d so that N is a nonzero integer with N ≡ 0 (mod 4) which is not
a perfect square. By the Proposition 1, there are absolute constants C > 0 and L > 0
for which there is a prime p �= 2 satisfying

p ≤ C |N |L ,

(
N

p

)
= −1.

Hence

(
4k2d

p

)
= −1 and thus

(d, p) = (k, p) = 1,

(
d

p

)
= −1.

If p|ac, then

−1 =
(

b2 − 4ac

p

)
=

(
b2

p

)
= 0 or 1,

which is impossible. Hence (ac, p) = 1.
As (k, p) = 1, there exists an integer t with 1 ≤ t < p2 such that kt ≡ 1 (mod p2).

Define the integer u by u = (kt − 1)/p2 so that kt = 1 + up2. As kt ≥ 1, we see that
u ≥ 0. Furthermore, as up2 < kt < kp2 we have u < k. Hence

kt = 1 + up2, 1 ≤ t < p2, 0 ≤ u < k.

We now construct an integer n with 1 ≤ n < C3�|N |3L such that p|(kn + �) and

p2 � (kn + �).
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If p > �, we choose n = t (p − �). Note that 1 ≤ n < p3. Since p ≤ C |N |L , it is
clear that n < C3|N |3L ≤ C3�|N |3L . Also, we see that

kn + � = kt (p − �) + � = (1 + up2)(p − �) + � = p(1 + up2 − up�),

so that p|(kn + �) and p2 � (kn + �) as required.

If p ≤ � and p � �, then we choose n = �t (p − 1). Note that 1 ≤ n < �p3

≤ C3�|N |3L . Moreover, we have

kn + � = k�t (p − 1) + � = �(1 + up2)(p − 1) + � = �p(1 + up2 − up)

so that p|(kn + �) and p2 � (kn + �).

If p ≤ � and p‖�, then we choose n = tsp, where the positive integer s = �/p is
not divisible by p. Clearly 1 ≤ n < �p3 < C3�|N |3L . Here

kn + � = ktsp + � = (1 + up2)sp + sp = sp(2 + up2),

so that p|(kn + �) and (as p �= 2 and p � s) p2 � (kn + �).

Finally, if p ≤ � and p2|�, we choose n = tp. Note that 1 ≤ n < p3 ≤ C3|N |3L

≤ C3�|N |3L . In this case we have

kn + � = ktp + � = (1 + up2)p + � = p(1 + up2 + (�/p)),

so that p|(kn + �) and (as p|(�/p)) p2 � (kn + �).

This completes the construction of an integer n satisfying 1 ≤ n < C3�|N |3L such
that p|(kn + �) and p2 � (kn + �).

Next we show that the integer kn + � is not represented by Q. Suppose on the
contrary that the integer kn + � is represented by Q. Then there exist integers x and y
such that kn + � = ax2 + bxy + cy2. Since p|(kn + �), we have ax2 + bxy + cy2 ≡ 0
(mod p). Therefore, since

4a(ax2 + bxy + cy2) = (2ax + by)2 − (b2 − 4ac)y2,

we see that (2ax + by)2 ≡ dy2 (mod p). If p � y then d ≡ ((2ax + by)z)2 (mod p)

for some integer z such that yz ≡ 1 (mod p). This contradicts that
(

d
p

) = −1. If p|y
then p|(2ax + by) so p|2ax . But p �= 2 and p � a hence p|x . Therefore, p2 divides
ax2 + bxy + cy2 = kn + �, contradicting p2 � (kn + �). This completes the proof that
the integer kn + � is not represented by Q.

Since all the integers �, k + �, 2k + �, . . . , (R − 1)k + � are represented by Q,
we must have n > R − 1, that is, R ≤ n. But n < C3�|N |3L so R < C3�|4k2d|3L

= C1�(k2|d|)L1 , where L1 and C1 are absolute constants satisfying L1 = 3L > 0 and
C1 = C326L > 0.

Remark. There is no loss of generality in assuming that Q represents an arithmetic
progression of positive integers since if Q only represents an arithmetic progression
of negative integers then −Q represents an arithmetic progression of positive integers.
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The least length of a nontrivial arithmetic progression is 3. Does every nonzero in-
tegral binary quadratic form represent an arithmetic progression of length 3? Two deep
results of Weber [7] and Green [3] positively answer the above question in the partic-
ular case when the integral binary quadratic form is positive-definite. In 1882, Weber
[7] proved that if Q is a primitive integral binary quadratic form which is positive-
definite, then the set of primes that are represented by Q has positive relative density.
In 2006 Green [3] proved that any subset of primes having positive relative density has
a 3-term arithmetic progression. Thus, by putting these two deep results together, we
see that every primitive, positive-definite, integral binary quadratic form represents a
3-term arithmetic progression. In this paper we shall prove in an elementary way that
any nonzero integral, binary quadratic form represents a nontrivial arithmetic progres-
sion of length 3 infinitely often.

Theorem 2. Every nonzero integral binary quadratic form represents a nontrivial
arithmetic progression of length 3 infinitely often.

Proof. Let Q(x, y) = ax2 + bxy + cy2 be a nonzero, integral binary quadratic form.
Since Q is nonzero, at least one of the integers a, b, and c is nonzero. We consider the
following cases.
Case 1: a �= 0.

Let x be a positive integer. Then, as

Q(2x2 − 1, 0) = a(4x4 − 4x2 + 1),

Q(2x2 + 2x + 1, 0) = a(4x4 + 8x3 + 8x2 + 4x + 1)

= a(4x4 − 4x2 + 1) + a(8x3 + 12x2 + 4x),

and

Q(2x2 + 4x + 1, 0) = a(4x4 + 16x3 + 20x2 + 8x + 1)

= a(4x4 − 4x2 + 1) + 2a(8x3 + 12x2 + 4x),

Q represents a nontrivial arithmetic progression of length 3 infinitely often.
Case 2: a = 0

In this case, Q(x, y) = bxy + cy2 and its discriminant is d = b2.
Subcase (i): b �= 0

Since d is a nonzero perfect square, by the result of Alaca et al. [1], the form
Q(x, y) represents an infinite arithmetic progression in positive integers and hence
it represents a nontrivial arithmetic progression of length 3 infinitely often.
Subcase (ii): b = 0

In this case we have Q(x, y) = cy2, where c �= 0, as a = b = 0. Then, taking x to
be any integer and proceeding similarly as in the first case, we deduce that Q(x, y)

represents infinitely many nontrivial arithmetic progressions of length 3.

Remark. The statement of Theorem 2 is not true in general if we replace 3 by a larger
integer. For example, Q(x, y) = x2 does not represent an arithmetic progression of
length 4 as there do not exist 4 squares in arithmetic progression (see [6, pp. 21–22]).
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