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Abstract. In this paper we prove that if Q(x,y) = ax? + bxy + cy® is an integral binary
quadratic form with a nonzero, nonsquare discriminant d and if Q represents an arithmetic
progression {kn + ¢ :n =0,1,..., R — 1}, where k and ¢ are positive integers, then there
are absolute constants C; > 0 and L; > 0 such that R < C,£(k*|d|)*'. Moreover, we prove
that every nonzero integral binary quadratic form represents a nontrivial 3-term arithmetic
progression infinitely often.

Let Q(x, y) = ax? + bxy + cy? be an integral binary quadratic form of discriminant
d = b> — 4ac # 0. Recently, A. Alaca, S. Alaca, and K. S. Williams [1] proved that
Q represents an arithmetic progression of infinite length if and only if d is a perfect
square, that is, d = m? for some nonzero integer m. Suppose from now on that d is not
a perfect square so that Q cannot represent an arithmetic progression of infinite length.
We address the question “How long can an arithmetic progression represented by Q
be?” Making use of the ideas used by Alaca, Alaca, and Williams in the proof of their
theorem [1], we obtain an upper bound for the length of any arithmetic progression
represented by Q.

We require the following result.

Proposition 1. Let N = 0 (mod 4) be a nonzero integer which is not a perfect square.
Then there exist absolute constants C > 0 and L > 0 for which there is a prime p # 2

satisfying
I N
p

Proof. As N =0 (mod 4) is not a perfect square there is an integer a satisfying

N
(_>:—1, where 1 <a <|N|—1,
a

see for example [2, p. 298]. Clearly (a, |N|) = 1 so, by Linnik’s theorem [5], there
are absolute constants C > 0 and L > 0 such that the least prime p in the arithmetic
progression

{INlk+a: k=0,1,2,...}

satisfies

p < CIN|".
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Since p belongs to this arithmetic progression, we have p = a (mod |N|) and, by [2,

Lemma 2.3, p. 291] we deduce
N\ (NY {
p) \a)
. N
Finally, as N =0 (mod 4) and (—) = —1, we see that p # 2. [ |
P

Remark. By a deep result of Xylouris [8], one has L < 5.2. Xylouris’s work is a
refinement of that of Heath-Brown [4], who showed that L satisfies L < 5.5.

In this short note we prove the following result.

Theorem 1. Let Q(x,y) = ax> + bxy + cy* be an integral binary quadratic form
with discriminant d = b> — 4ac # 0. Suppose that d is not a perfect square and that
Q represents an arithmetic progression {kn +£€ :n =0,1,..., R — 1}, where k and ¢
are positive integers. Then there are absolute constants Cy > 0 and L > 0 such that
R < CL(k*|d|)*r.

Proof. Set N = 4k>d so that N is a nonzero integer with N = 0 (mod 4) which is not

a perfect square. By the Proposition 1, there are absolute constants C > 0 and L > 0
for which there is a prime p # 2 satisfying

N
p < CINI%, (—) =-1.
P

4 2
k d) = —1 and thus

Hence (

d
d, p) = (k,p) =1, (—) =-—1.
P

If plac, then

<b2—4ac) <b2>
—1l={—)=(—)=0 or 1,
V4 14

which is impossible. Hence (ac, p) = 1.

As (k, p) = 1, there exists an integer f with 1 < ¢ < p?suchthatkt =1 (mod p?).
Define the integer u by u = (kt — 1)/ p? so that kt = 1 + up?. As kt > 1, we see that
u > 0. Furthermore, as up®> < kt < kp* we have u < k. Hence

kt:1+up2, 1§t<p2, 0<u<k.

We now construct an integer n with 1 < n < C3¢|N|*" such that p|(kn + £) and

p* 1 kn +£).

December 2014] NOTES 933



If p > £, we choose n = t(p — £). Note that 1 < n < p>. Since p < C|N|, it is
clear that n < C3|N|?L < C3¢|N|?E. Also, we see that

kn+0=kt(p—0)+L=0+up>)(p—0) +£=p(+up®—upt),

so that p|(kn + £) and p?  (kn + £) as required.

If p<¢and p1t¢, then we choose n = £t(p — 1). Note that 1 < n < ¢p?
< C3¢|N*L. Moreover, we have

kn+0=ktt(p—1)+€=L0+up®)(p—1)+L£=~Lp(l +up® — up)

so that p|(kn + £) and p? | (kn + €).

If p < ¢ and p||¢, then we choose n = tsp, where the positive integer s = £/p is
not divisible by p. Clearly 1 < n < £p* < C3¢|N|*". Here

kn+ € =ktsp+ €= (1 +up®)sp +sp = sp2 + up?),

so that p|(kn + £) and (as p # 2 and p 1 s) p>  (kn + £).

Finally, if p < ¢ and p?|¢, we choose n = tp. Note that 1 <n < p* < C3|N*t
< C3¢|N*L. In this case we have

kn+€=ktp+€=0+up’)p+£=p+up*+ (£/p)),

so that p|(kn + £) and (as p|(¢/p)) p* 1 (kn + £).

This completes the construction of an integer n satisfying 1 < n < C3¢|N|3L such
that p|(kn + €) and p* { (kn + €).

Next we show that the integer kn 4 £ is not represented by Q. Suppose on the
contrary that the integer kn + £ is represented by Q. Then there exist integers x and y
such that kn + € = ax? + bxy + cy?. Since p|(kn + £), we have ax> + bxy + cy?> =0
(mod p). Therefore, since

4a(ax® + bxy + cy?) = ax + by)* — (b* — dac)y?,

we see that (2ax + by)? = dy* (mod p). If p { y then d = ((2ax + by)z)* (mod p)
for some integer z such that yz = 1 (mod p). This contradicts that (%) =—1.1If ply
then p|(2ax + by) so p|2ax. But p # 2 and p { a hence p|x. Therefore, p? divides
ax?® + bxy + cy* = kn + ¢, contradicting p* 1 (kn + £). This completes the proof that
the integer kn + ¢ is not represented by Q.

Since all the integers ¢,k + ¢,2k + ¢, ..., (R — 1)k + £ are represented by Q,
we must have n > R — 1, that is, R < n. But n < C3¢|N]** so R < C3¢|4k>d|*"
= CL(k*|d|)"", where L, and C; are absolute constants satisfying L; = 3L > 0 and
C, = C32 > 0. [ ]

Remark. There is no loss of generality in assuming that Q represents an arithmetic
progression of positive integers since if Q only represents an arithmetic progression
of negative integers then — Q represents an arithmetic progression of positive integers.
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The least length of a nontrivial arithmetic progression is 3. Does every nonzero in-
tegral binary quadratic form represent an arithmetic progression of length 3? Two deep
results of Weber [7] and Green [3] positively answer the above question in the partic-
ular case when the integral binary quadratic form is positive-definite. In 1882, Weber
[7] proved that if Q is a primitive integral binary quadratic form which is positive-
definite, then the set of primes that are represented by Q has positive relative density.
In 2006 Green [3] proved that any subset of primes having positive relative density has
a 3-term arithmetic progression. Thus, by putting these two deep results together, we
see that every primitive, positive-definite, integral binary quadratic form represents a
3-term arithmetic progression. In this paper we shall prove in an elementary way that
any nonzero integral, binary quadratic form represents a nontrivial arithmetic progres-
sion of length 3 infinitely often.

Theorem 2. Every nonzero integral binary quadratic form represents a nontrivial
arithmetic progression of length 3 infinitely often.

Proof. Let Q(x,y) = ax* + bxy + cy? be a nonzero, integral binary quadratic form.
Since Q is nonzero, at least one of the integers a, b, and c is nonzero. We consider the
following cases.

Case 1: a # 0.
Let x be a positive integer. Then, as

002x*—1,0) = a(@x* —4x> + 1),
Q2x>4+2x +1,0) = a(dx* + 8x> + 8x +4x + 1)
=a(@x* —4x* + 1) + a(8x® + 12x> + 4x),

and

Q@2x* 4+ 4x +1,0) = a(4x* + 16x> +20x> + 8x + 1)
=a(4x* —4x> + 1) + 2a(8x> + 12x* + 4x),

Q represents a nontrivial arithmetic progression of length 3 infinitely often.
Case2:a =0

In this case, Q(x, y) = bxy + cy? and its discriminant is d = b°.
Subcase (i): b # 0

Since d is a nonzero perfect square, by the result of Alaca et al. [1], the form
Q(x, y) represents an infinite arithmetic progression in positive integers and hence
it represents a nontrivial arithmetic progression of length 3 infinitely often.
Subcase (ii): b =0

In this case we have Q(x, y) = cyz, where ¢ # 0, as a = b = 0. Then, taking x to
be any integer and proceeding similarly as in the first case, we deduce that Q(x, y)
represents infinitely many nontrivial arithmetic progressions of length 3. ]

Remark. The statement of Theorem 2 is not true in general if we replace 3 by a larger

integer. For example, Q(x, y) = x> does not represent an arithmetic progression of
length 4 as there do not exist 4 squares in arithmetic progression (see [6, pp. 21-22]).

ACKNOWLEDGMENTS. We are grateful to the referees for going through the paper very carefully and
modifying it to a much nicer form.

December 2014] NOTES 935



REFERENCES

1.

2.

A. Alaca, S. Alaca, K. S. Williams, Arithmetic progressions and binary quadratic forms, Amer. Math.
Monthly 115 (2008) 252-254.

R. Ayoub, An Introduction to the Analytic Theory of Numbers. Mathematical Surveys, Number 10, Ameri-
can Mathematical Society, Providence, Rhode Island, 1963, http://dx.doi.org/10.1090/surv/010.
B. Green, Roth’s theorem in the primes, Ann. Math. 161 (2005) 1609-1636, http://dx.doi.org/10.
4007/annals.2005.161.1609.

D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions and the least prime in an
arithmetic progression, Proc. London Math. Soc. (3) 62 (1992) 265-338, http://dx.doi.org/
10.1112/plms/s3-64.2.265.

Y. V. Linnik, On the least prime in an arithmetic progression /. The basic theorem, Rec. Math. (Mat.
Sbornik) N. S. 15 no. 57 (1944) 139-178.

L. J. Mordell, Diophantine Equations. Pure and Applied Mathematics, Vol. 30, Academic Press, London,
1969.

H. Weber, Beweis des Satzes, da®B jede eigentlich primitive quadratische Form un endliche viele
Primzahlen darzustellen f&hig ist, Math. Ann. 20 (1882) 301-329.

T. Xylouris, Uber die Linniksche Konstante, Diplomarbeit, Universitat Bonn, 2009. (arXiv:0906.2749v1
[math.NT] 15 Jun 2009).

Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, India
pallabdey@hri.res.in

Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, India
thanga@hri.res.in

936 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



