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Liouville numbers and Schanuel’s Conjecture

K. Senthil Kumar, R. Thangadurai, and M. Waldschmidt

Abstract. In this paper, using an argument of P. Erdős, K. Alniaçik, and

É. Saias, we extend earlier results on Liouville numbers, due to P. Erdős,

G.J. Rieger, W. Schwarz, K. Alniaçik, É. Saias, E.B. Burger. We also pro-
duce new results of algebraic independence related with Liouville numbers
and Schanuel’s Conjecture, in the framework of Gδ-subsets.

1. Introduction. For any integer q and any real number x ∈ R, we denote by

‖qx‖ = min
m∈Z

|qx−m|

the distance of qx to the nearest integer. Following Maillet [8,9] an irrational
real number ξ is said to be a Liouville number if, for each integer n ≥ 1, there
exists an integer qn ≥ 2 such that the sequence

(
un(ξ)

)
n≥1

of real numbers
defined by

un(ξ) = − log ‖qnξ‖
log qn

satisfies limn→∞ un(ξ) = ∞. If pn is the integer such that ‖qnξ‖ = |qnξ − pn|,
then the definition of un(ξ) can be written

|qnξ − pn| =
1

q
un(ξ)
n

·

An equivalent definition is to say that a Liouville number is a real number ξ
such that, for each integer n ≥ 1, there exists a rational number pn/qn with
qn ≥ 2 such that

0 <
∣
∣
∣
∣ξ − pn

qn

∣
∣
∣
∣ ≤ 1

qn
n

·

We denote by L the set of Liouville numbers. This set L is an uncountable,
dense subset of R having Lebesgue measure 0 and
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L =
⋂

n≥1

Un with Un =
⋃

q≥2

⋃

p∈Z

(
p

q
− 1
qn
,
p

q
+

1
qn

)
\

{
p

q

}
·

Each Un is dense since each p/q ∈ Q belongs to the closure of Un. Throughout
this article, a Gδ-subset of a topological space X is defined to be the count-
able intersection of dense open subsets of X. Baire’s theorem states that in
a complete or locally compact space X, any Gδ-subset is dense. Since R is
complete, we see that L is a Gδ-subset of R. The Gδ-subset is also defined as
a set having a complement which is meager. In our case, this complement L

c

is the set of non–Liouville numbers

L
c =

{
x ∈ R | there exists κ > 0 such that
∣
∣
∣
∣x− p

q

∣
∣
∣
∣ ≥ 1

qκ
for all

p

q
∈ Q with q ≥ 2

}
,

which has full Lebesgue measure.
In 1844, Liouville [7] proved that any element of L is a transcendental

number. A survey on algebraic independence results related with Liouville
numbers is given in [13].

In 1962, Erdős [6] proved that every real number t can be written as t = ξ+η
with ξ and η Liouville numbers. He gave two proofs of this result. The first one
is elementary and constructive: he splits the binary expansion of t into two
parts, giving rise to binary expansions of two real numbers ξ and η, the sum
of which is t. The splitting is done in such a way that both binary expansions
of ξ and η have long sequences of 0’s. The second proof is not constructive as
it relies on Baire’s Theorem. In the same paper, Erdős gives also in the same
way two proofs, a constructive one and another depending on Baire’s Theorem,
that every non-zero real number t can be written as t = ξη, where ξ and η are
in L. From each of these proofs, it follows that there exist uncountably many
such representations t = ξ + η (resp. t = ξη) for a given t. Many authors
extended this result in various ways: Rieger in 1975 [10], Schwarz in 1977 [11],
Alniaçik in 1990 [1], Alniaçik and Saias in 1994 [2], Burger in 1996 [4] and 2001
[5]. In [4], Burger extended Erdős’s result to a very large class of functions,
including f(x, y) = x+ y and g(x, y) = xy.

Recall [2] that a real function f : I → R is nowhere locally constant if, for
every nonempty open interval J contained in I, the restriction to J of f is
not constant. We define in a similar way a function which is nowhere locally
zero: for every nonempty open interval J contained in I, the restriction to J
of f is not the zero function.

The main result of [2], which extends the earlier results of [10] and [11],
deals with Gδ-subsets, and reads as follows (see [3, Exercise 1.6]):

Proposition 1. (Alniaçik–Saias) Let I be an interval of R with nonempty in-
terior, G a Gδ-subset of R, and (fn)n≥0 a sequence of real maps on I which
are continuous and nowhere locally constant. Then
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⋂

n≥0

f−1
n (G)

is a Gδ-subset of I.

As pointed out by the authors of [2], the proofs of several papers on this
topic just reproduce the proof of Baire’s Theorem. Here we use Baire’s Theo-
rem and deduce a number of consequences related with Liouville numbers in
the subsequent sections.

In Sect. 3, we deduce corollaries from Proposition 1.
In Sect. 4, we deduce from Proposition 2 some results of algebraic indepen-

dence for Liouville numbers related to Schanuel’s Conjecture.

2. Preliminaries. The following Proposition generalizes Proposition 1. We
replace the interval I by a topological space X, and we replace R by an
interval J .

Proposition 2. Let X be a complete, locally connected topological space, J an
interval in R, and N a set which is either finite or else countable. For each
n ∈ N , let Gn be a Gδ-subset of J and let fn : X → J be a continuous function
which is nowhere locally constant. Then

⋂
n∈N f−1

n (Gn) is a Gδ-subset of X.

Proof. Since N is at most countable, it is enough to prove for any n ∈ N that
f−1

n (Gn) is a Gδ-subset of X.
Since fn is continuous, f−1

n (Gn) is a countable intersection of open sets in
X. To prove it is a Gδ-subset of X, we need to prove that f−1

n (Gn) is dense
in X, using the assumption that fn is nowhere locally constant. Let V be
a connected open subset of X. Since fn is continuous, fn(V ) is a connected
subset of J . Since fn is nowhere locally constant, fn(V ) consists of at least
two elements. Therefore, there exists an interval (a, b) ⊂ J with non-empty
interior such that (a, b) ⊂ fn(V ). Since Gn is a dense subset of J , we have
(a, b) ∩Gn 
= ∅ and hence V ∩ f−1

n (Gn) 
= ∅, which proves Proposition 2. �

We close this section with the following lemmas and a corollary (quoted
in [2]).

Lemma 1. Let X be a (nonempty) complete metric space without isolated point,
and let E be a Gδ-subset of X. Let F be a countable subset of E. Then E\F
is a Gδ-subset of X.

Proof. We have

E\F =
⋂

y∈F

E\{y},

where each E\{y} is a Gδ-subset of X (since X has no isolated point). �

Using Baire’s theorem, we deduce the following corollary.

Corollary 1. Let X be a (nonempty) complete metric space without isolated
point, and let E be a Gδ-subset of X. Then E is uncountable.

The next auxiliary lemma will be useful in Sect. 3 (proof of Corollary 5).
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Lemma 2. Let I1, . . . , In be non-empty open subsets of R. For each i =
1, . . . , n, let Gi be a Gδ-subset of Ii. Then there exists (ξ1, . . . , ξn) ∈ G1 ×
· · · ×Gn such that ξ1, . . . , ξn are algebraically independent (over Q).

Proof. We prove Lemma 2 by induction on n. For n = 1, it follows from
Corollary 1 that the intersection of G1 with the set of transcendental numbers
is not empty.

Assume Lemma 2 holds for n− 1. There exists (ξ1, . . . , ξn−1) ∈ G1 × · · · ×
Gn−1 such that ξ1, . . . , ξn−1 are algebraically independent. The set of ξn ∈ In

which are transcendental over Q(ξ1, . . . , ξn−1) is a Gδ-subset of In, hence its
intersection with Gn is again a Gδ-subset: it is dense by Baire’s theorem, and
therefore not empty. �
3. Application of Proposition 1 to Liouville numbers. Since the set of Liou-
ville numbers is a Gδ-subset in R, a direct consequence of Proposition 1 and
Corollary 1 is the following:

Corollary 2. Let I be an interval of R with nonempty interior and (fn)n≥1 a
sequence of real maps on I which are continuous and nowhere locally constant.
Then there exists an uncountable subset E of I∩L such that fn(ξ) is a Liouville
number for all n ≥ 1 and all ξ ∈ E.

Define f0 : I → R as the identity f0(x) = x. The conclusion of the Corol-
lary 2 is that

E =
⋂

n≥0

f−1
n

(
L

)
,

a subset of I, is uncountable.
In this section we deduce consequences of Corollary 2. We first consider the

special case, where all fn are the same.

Corollary 3. Let I be an interval of R with nonempty interior and ϕ : I → R
a continuous map which is nowhere locally constant. Then there exists an un-
countable set of Liouville numbers ξ ∈ I such that ϕ(ξ) is a Liouville number.

One can deduce Corollary 3 directly from Proposition 1 by taking all fn = ϕ
(n ≥ 0) and G = L and by noticing that the intersection of the two Gδ-subsets
ϕ−1(L) and L is uncountable. Another proof is to use Proposition 1 with
f0(x) = x and fn(x) = ϕ(x) for n ≥ 1 and G = L.

Simple examples of consequences of Corollary 3 are obtained with I =
(0,+∞) and either ϕ(x) = t − x, for t ∈ R, or else with ϕ(x) = t/x, for
t ∈ R×, which yield Erdős above mentioned result on the decomposition of
any real number (resp. any nonzero real number) t as a sum (resp. a product)
of two Liouville numbers.

We deduce also from Corollary 3 that any positive real number t is the sum
of two squares of Liouville numbers. This follows by applying Corollary 3 with

I = (0,
√
t) and ϕ(x) =

√
t− x2.

Similar examples can be derived from Corollary 3 involving transcendental
functions: for instance, any real number can be written eξ + η with ξ and η
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Liouville numbers; any positive real number can be written eξ + eη with ξ and
η Liouville numbers.

Using the implicit function theorem, one deduces from Corollary 3 the
following generalization of Erdős’s result.

Corollary 4. Let P ∈ R[X,Y ] be an irreducible polynomial such that (∂/∂X)P

= 0 and (∂/∂Y )P 
= 0. Assume that there exist two nonempty open intervals
I and J of R such that, for any x ∈ I, there exists y ∈ J with P (x, y) =
0, and, for any y ∈ J , there exists x ∈ I with P (x, y) = 0. Then there
exist uncountably many pairs (ξ, η) of Liouville numbers in I × J such that
P (ξ, η) = 0.

Proof of Corollary 4. We use the implicit function Theorem (for instance The-
orem 2 of [4]) to deduce that there exist two differentiable functions ϕ and ψ,
defined on nonempty open subsets I ′ of I and J ′ of J , such that P

(
x, ϕ(x)

)
=

0 and P
(
ψ(y), y

)
= 0 for x ∈ I ′ and y ∈ J ′, and such that ϕ◦ψ is the identity

on J ′ and ψ ◦ ϕ is the identity on I ′. We then apply Corollary 3. �

Erdős’s result on t = ξ + η for t ∈ R follows from Corollary 4 with
P (X,Y ) = X + Y − t, while his result on t = ξη for t ∈ R× follows with
P (X,Y ) = XY − t. Also, the above mentioned fact that any positive real
number t is the sum of two squares of Liouville numbers follows by applying
Corollary 4 to the polynomial X2 + Y 2 − t.

One could also deduce, under the hypotheses of Corollary 4, the existence
of one pair of Liouville numbers (ξ, η) with P (ξ, η) = 0 by applying Theorem
1 of [4] with f(x, y) = P (x, y) and α = 0. The proof we gave produces an
uncountable set of solutions.

We extend Corollary 4 to more than 2 variables as follows:

Corollary 5. Let 	 ≥ 2, and let P ∈ R[X1, . . . , X�] be an irreducible polyno-
mial such that (∂/∂X1)P 
= 0 and (∂/∂X2)P 
= 0. Assume that there exist
nonempty open subsets Ii of R (i = 1, . . . , 	) such that, for any i ∈ {1, 2} and
any (	−1)–tuple (x1, . . . , xi−1, xi+1, . . . , x�) ∈ I1 ×· · ·×Ii−1 ×Ii+1 ×· · ·×I�,
there exists xi ∈ Ii such that P (x1, . . . , x�) = 0. Then there exist uncountably
many tuples (ξ1, ξ2, . . . , ξ�) ∈ I1 × I2 × · · · × I� of Liouville numbers such that
P (ξ1, ξ2, . . . , ξ�) = 0.

Proof. For 	 = 2, this is Corollary 4. Assume 	 ≥ 3. Using Lemma 2, we
know that there exists a (	−2)–tuple of Q–algebraically independent Liouville
numbers (ξ3, . . . , ξ�) in I3 × · · · × I�. We finally apply Corollary 4 to the
polynomial P (X1,X2, ξ3, . . . , ξ�) ∈ R[X1,X2]. �

In [5], using a counting argument together with an application of Bézout’s
Theorem, Burger proved that an irrational number t is transcendental if and
only if there exist two Q–algebraically independent Liouville numbers ξ and η
such that t = ξ + η. Extending the method of [5], we prove:

Proposition 3. Let F (X,Y ) ∈ Q[X,Y ] be a nonconstant polynomial with
rational coefficients and t a real number. Assume that there is an uncountable
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set of pairs of Liouville numbers (ξ, η) such that F (ξ, η) = t. Then the two
following conditions are equivalent.

(i) t is transcendental.
(ii) there exist two Q–algebraically independent Liouville numbers (ξ, η) such

that F (ξ, η) = t.

Proof of Proposition 3. Assume t is algebraic. Therefore there exists P (X) ∈
Q[X]\{0} such that P (t) = 0. For any pair of Liouville numbers (ξ, η) such
that F (ξ, η) = t, we have P (F (ξ, η)) = 0. Since P ◦ F ∈ Q[X,Y ]\{0}, we
deduce that the numbers ξ and η are algebraically dependent.

Conversely, assume that for any pair of Liouville numbers (ξ, η) such that
F (ξ, η) = t, the numbers ξ and η are algebraically dependent. Since Q[X,Y ]
is countable and since there is an uncountable set of such pairs of Liouville
numbers (ξ, η), there exists a nonzero polynomial A ∈ Q[X,Y ] such that
A(X,Y ) and F (X,Y ) − t have infinitely many common zeros (ξ, η). We use
Bézout’s Theorem. We decompose A(X,Y ) into irreducible factors in Q[X,Y ],
where Q is the algebraic closure of Q. One of these factors, sayB(X,Y ), divides
F (X,Y ) − t in Q(t)[X,Y ], where Q(t) denotes the algebraic closure of Q(t).

Assume now that t is transcendental. Write F (X,Y )−t = B(X,Y )C(X,Y ),
where C ∈ Q(t)[X,Y ]. The coefficient of a monomial XiY j in C is

(
∂i+j

∂Xi∂Y j

)(
F (X,Y ) − t

B(X,Y )

)
(0, 0),

hence C ∈ Q[t,X, Y ] and C has degree 1 in t, say C(X,Y ) = D(X,Y ) +
tE(X,Y ), with D and E in Q[t,X, Y ]. Therefore B(X,Y )E(X,Y ) = −1,
contradicting the fact that B(X,Y ) is irreducible. �

Here is a consequence of Corollary 2, where a sequence of (fn) is involved,
not only one ϕ like in Corollary 3.

Corollary 6. Let E be a countable subset of R. Then there exists an uncount-
able set of positive Liouville numbers ξ having simultaneously the following
properties.

(i) For any t ∈ E, the number ξ + t is a Liouville number.
(ii) For any nonzero t ∈ E, the number ξt is a Liouville number.
(iii) Let t ∈ E, t 
= 0. Define inductively ξ0 = ξ and ξn = etξn−1 for n ≥ 1.

Then all numbers of the sequence (ξn)n≥0 are Liouville numbers.
(iv) For any rational number r 
= 0, the number ξr is a Liouville number.

Proof of Corollary 6. Each of the four following sets of continuous real maps
defined on I = (0,+∞) is countable, hence their union is countable. We enu-
merate the elements of the union, and we apply Corollary 2.

The first set consists of the maps x �→ x+ t for t ∈ E .
The second set consists of the maps x �→ xt for t ∈ E , t 
= 0.
The third set consists of the maps ϕn defined inductively by ϕ0(x) = x,

ϕn(x) = etϕn−1(x) (n ≥ 1).
The fourth set consists of the maps ϕr(x) = xr for any rational number

r 
= 0. �
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In [8], Maillet gives a necessary and sufficient condition for a positive Li-
ouville number ξ to have a p–th root (for a given positive integer p > 1) which
is also a Liouville number: among the convergents in the continued fraction
expansion of ξ, infinitely many should be p–th powers. He provides explicit
examples of Liouville numbers having a p–th root which is not a Liouville
number.

Let I be an interval of R with nonempty interior and ϕ : I → I a continu-
ous bijective map (hence ϕ is nowhere locally constant). Let ψ : I → I denote
the inverse bijective map of ϕ. For n ∈ Z, we denote by ϕn the bijective map
I → I defined inductively as usual: ϕ0 is the identity, ϕn = ϕn−1◦ϕ for n ≥ 1,
and ϕ−n = ψn for n ≥ 1.

Here is a further consequence of Corollary 2.

Corollary 7. Let I be an interval of R with nonempty interior and ϕ : I → I
a continuous bijective map. Then the set of elements ξ in I such that the orbit
{ϕn(ξ) | n ∈ Z} consists only of Liouville numbers in I is a Gδ-subset of I,
hence is uncountable.

Proof of Corollary 7. In Proposition 2, take X = I, N = Z, Gn = L ∩ I, and
fn = ϕn for each n ∈ Z. �
4. Algebraic independence. Schanuel’s Conjecture (see [12] § IV. 1) states
that, given Q–linearly independent complex numbers x1, . . . , xn, the transcen-
dence degree over Q of the field

Q(x1, . . . , xn, e
x1 , . . . , exn) (1)

is at least n. One may ask whether the transcendence degree is at least n+ 1
when the following additional assumption is made: for each i = 1, . . . , n, one
at least of the two numbers xi, exi is a Liouville number.

We will show that for each pair of integers (n,m) with n ≥ m ≥ 1, there
exist uncountably many tuples ξ1, . . . , ξn consisting of Q–linearly independent
real numbers, such that the numbers ξ1, . . . , ξn, eξ1 , . . . , eξn are all Liouville
numbers, and the transcendence degree of the field (1) is n+m.

For L a field andK a subfield of L, we denote by trdegKL the transcendence
degree of L over K.

Theorem 1. Let n ≥ 1 and 1 ≤ m ≤ n be given integers. Then there exist
uncountably many n-tuples (α1, . . . , αn) ∈ L

n such that α1, . . . , αn are linearly
independent over Q, eαi ∈ L for all i = 1, 2, . . . , n and

trdegQQ(α1, . . . , αn, e
α1 , . . . , eαn) = n+m.

Remark. Theorem 1 is tight when n = 1: the result does not hold for m = 0.
Indeed, since the set of α in L such that α and eα are algebraically depen-
dent over Q is countable, one cannot get uncountably many α ∈ L such that
trdegQQ(α, eα) = 1.

We need an auxiliary result (Corollary 8). Corollary 8 will be deduced from
the following Proposition 4.

Proposition 4. (1) Let g1, g2, . . . , gn be polynomials in C[z]. Then the two
following conditions are equivalent.
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(i) For 1 ≤ i < j ≤ n, the function gi − gj is not constant.
(ii) The functions eg1 , . . . , egn are linearly independent over C(z).

(2) Let f1, f2, . . . , fm be polynomials in C[z]. Then the two following condi-
tions are equivalent.

(i) For any nonzero tuple (a1, . . . , am) ∈ Zm, the function a1f1 + · · · +
amfm is not constant.

(ii) The functions ef1 , . . . , efm are algebraically independent over C(z).

Since the functions 1, z, z2, . . . , zm, . . . are linearly independent over C, we
deduce from (2):

Corollary 8. The functions

z, ez, ez2
, . . . , ezm

, . . .

are algebraically independent over C.

For the proof of Proposition 4, we introduce the quotient vector space
V = C[z]/C and the canonical surjective linear map s : C[z] → V with
kernel C. Assertion (i) in (1) means that s(g1), . . . , s(gn) are pairwise distinct,
while assertion (i) in (2) means that s(f1), . . . , s(fm) are linearly independent
over Q.

Proof of (1). (ii) implies (i). If g1 − g2 is a constant c, then (eg1 , eg2) is a zero
of the linear form X1 − ecX2.

(i) implies (ii). We prove this result by induction on n. For n = 1, there is
no condition on g1, the function eg1 is not zero, hence the result is true. Assume
n ≥ 2 and assume that for any n′ < n, the result holds with n replaced by n′.
Let A1, . . . , An be polynomials in C[z], not all of which are zero; consider the
function

G(z) = A1(z)eg1(z) + · · · +An(z)egn(z).

The goal is to check that G is not the zero function. Using the induction
hypothesis, we may assume Ai 
= 0 for 1 ≤ i ≤ n. Define hi = gi − gn

(1 ≤ i ≤ n) and H = e−gnG:

H(z) = A1(z)eh1(z) + · · · +An−1(z)ehn−1(z) +An(z).

From hi − hj = gi − gj , we deduce that s(h1), . . . , s(hn−1) are distinct in V.
Write D = d/dz, and let N > degAn, so that DNAn = 0. Notice that for
i = 1, . . . , n− 1 and for t ≥ 0, we can write

Dt
(
Ai(z)ehi(z)

)
= Ait(z)ehi(z),

where Ait is a nonzero polynomial in C[z]. By the induction hypothesis, the
function

DNH(z) = A1,N (z)eh1(z) + · · · +An−1,N (z)ehn−1(z)

is not the zero function, hence G 
= 0. �
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Proof of (2). (ii) implies (i). If there exists (a1, . . . , am) ∈ Zm\{(0, . . . , 0)}
such that the function a1f1+· · ·+amfm is a constant c, then for the polynomial

P (X1, . . . , Xm) =
∏

ai>0

Xai
i − ec

∏

ai<0

X
|ai|
i ,

we have P (ef1 , . . . , efm) = 0, therefore the functions ef1 , . . . , efm are alge-
braically dependent over C (hence over C(z)).

(i) implies (ii). Consider a nonzero polynomial

P (X1, . . . , Xm) =
d1∑

λ1=0

· · ·
dm∑

λm=0

pλ1,...,λm
(z)Xλ1

1 · · ·Xλm
m ∈ C[z,X1, . . . , Xm],

and let F be the entire function F = P (ef1 , . . . , efm). Denote by {g1, . . . , gn}
the set of functions λ1f1 + · · · + λmfm with pλ1,...,λm


= 0. For 1 ≤ i ≤ n, set

Ai(z) = pλ1,...,λm
(z) ∈ C[z],

where (λ1, . . . , λm) is defined by gi = λ1f1 + · · · + λmfm, so that

F (z) = A1(z)eg1(z) + · · · +An(z)egn(z).

The assumption (i) of (2) on f1, . . . , fm implies that the functions g1, . . . , gn

satisfy the assumption (i) of (1), hence the function F is not the zero function.
�

Remark. We deduced (2) from (1). We can also deduce (1) from (2) as follows.
Assume that (ii) in (1) is not true, meaning that the functions eg1 , . . . , egn are
linearly dependent over C(z): there exist polynomials A1, . . . , An, not all of
which are zero, such that the function

G(z) = A1(z)eg1(z) + · · · +An(z)egn(z)

is the zero function. Consider a set f1, . . . , fm of polynomials such that s(f1),
. . . , s(fm) is a basis of the Q–vector subspace of V spanned by s(g1), . . . , s(gn).
Dividing if necessary all fj by a positive integer, we may assume

s(gi) =
m∑

j=1

λijs(fj) (1 ≤ i ≤ n)

with λij ∈ Z. This means that

ci = gi −
m∑

j=1

λijfj (1 ≤ i ≤ n)

are constants. Consider the polynomial

P (X1, . . . , Xm) =
n∑

i=1

Ai(z)eci

m∏

j=1

X
λij

j .
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From P (ef1 , . . . , efm) = G = 0 and from (2), we deduce that this polynomial
is 0, hence the monomials

m∏

j=1

X
λij

j (1 ≤ i ≤ n)

are not pairwise distinct: there exists i1 
= i2 with

λi1j = λi2j for 1 ≤ j ≤ m.

Therefore gi1 − gi2 = ci1 − ci2 , hence s(gi1) = s(gi2), which means that (i) in
(1) is not true.

Proof of Theorem 1. Let n and m be integers such that 1 ≤ m ≤ n. We shall
prove the assertion by induction on m ≥ 1. Assume m = 1. We prove the result
for all n ≥ 1. For each nonzero polynomial P (X0,X1, . . . , Xn) ∈ Q[X0, . . . , Xn]
in n+ 1 variables with rational coefficients, define a function

fP : R → R by fP (x) = P (x, ex, . . . , exn

).

Using Corollary 8, we deduce that the set Z(fP ) of all real zeros of fp, as the
real zero locus of a non-zero complex analytic map fP , is discrete in R, hence
that its complement is open and dense in R. From Proposition 1 and Baire’s
theorem, it follows that the set

E =
{
α ∈ L | eαj ∈ L for j = 1, . . . , n

}
∩

⋂

P∈Q[X0,...,Xn]\{0}
(R\Z(fP ))

is a Gδ-subset of R. Therefore, by Corollary 1 , E is uncountable. For any α ∈
E, the numbers α, eα, eα2

, . . . , eαn

are in L and are algebraically independent
over Q. Since α is a Liouville number, α2, . . . , αn are also Liouville numbers,
and α, α2, . . . , αn are linearly independent over Q. From

trdegQQ(α, α2, . . . , αn, eα, . . . , eαn

) = n+ 1

we conclude that the assertion is true for m = 1 and for all n ≥ 1.
Assume that 1 < m ≤ n. Also, suppose the assertion is true for m− 1 and

for all n ≥ m − 1. In particular, the assertion is true for m − 1 and n − 1.
Hence, there are uncountably many n − 1 tuples (α1, . . . , αn−1) ∈ L

n−1 such
that α1, . . . , αn−1 are linearly independent over Q, eα1 , . . . , eαn−1 are Liouville
numbers, and

trdegQQ(α1, . . . , αn−1, e
α1 , . . . , eαn−1) = n+m− 2. (2)

Choose such an (n − 1)-tuple (α1, . . . , αn−1). Consider the subset E of R
which consists of all α ∈ R such that α, eα are algebraically independent over
Q(α1, . . . αn−1, e

α1 , . . . , eαn−1).
If P (X,Y ) ∈ Q(α1, . . . , αn−1, e

α1 , . . . , eαn−1)[X,Y ] is a polynomial, define
an analytic function f(z) = P (z, ez) in C. Since z, ez are algebraically in-
dependent functions over C (by Corollary 8), if P is a nonzero polynomial,
f is a nonzero function. Therefore, the set of zeros of f in C is countable.
Since there are only countably many polynomials P (X,Y ) with coefficients in
the field Q(α1, . . . αn−1, e

α1 , . . . , eαn−1), we conclude that R\E is countable.
Therefore F = E ∩ L is uncountable. For each α ∈ F , the two numbers α, eα
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are algebraically independent over Q(α1, . . . , αn−1, e
α1 , . . . , eαn−1). From (2)

we deduce

trdegQQ(α1, . . . , αn−1, α, e
α1 , . . . , eαn−1 , eα) = n+m.

This completes the proof of Theorem 1. �
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ments and suggestions. In particular he pointed out that most results in our
paper are not specific to Liouville numbers: they hold with any Gδ–subet of R
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