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ABSTRACT. Following earlier work by E. Maillet 100 years ago, we introduce
the definition of a Liouwville set, which extends the definition of a Liouville
number. We also define a Liouville field, which is a field generated by a
Liouville set. Any Liouville number belongs to a Liouville set S having the
power of continuum and such that QU'S is a Liouville field.

1. INTRODUCTION
For any integer ¢ and any real number x € R, we denote by

lgzl = min |gz — m|

the distance of gz to the nearest integer. Following E. Maillet [Bl4], an irrational
real number ¢ is said to be a Liouville number if, for each integer n > 1, there exists

an integer ¢, > 2 such that the sequence (un (5))n>1 of real numbers defined by

log lgall
log gn
satisfies lim w,(§) = oo. If p, is the integer such that ||g,&|| = |£¢n — pnl, then
n—oo

un(§) =

the definition of u,(§) can be written:

1
qnn(i)

An equivalent definition is to say that a Liouville number is a real number & such
that, for each integer n > 1, there exists a rational number p,, /g, with ¢, > 2 such
that
Pl oL

dn a5
We denote by L the set of Liouville numbers. Following [2], any Liouville number
is a transcendental number.

We introduce the notions of a Liouwville set and a Liouville field. They extend
what was done by E. Maillet in Chap. III of 3.
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Definition. A Liouville set is a subset S of L for which there exists an increasing
sequence (gn)n>1 of positive integers having the following property: for any £ € S,
there exists a sequence (bn)n>1 of positive rational integers and there exist two
positive constants 1 and ko such that, for any sufficiently large n,

1

It would not make a difference if we were requesting these inequalities to hold
for any n > 1: it suffices to change the constants x; and xo.

Definition. A Liouwille field is a field of the form Q(S) where S is a Liouville set.

From the definitions, it follows that, for a real number £, the following conditions
are equivalent:
(¢) € is a Liouville number.
(73) & belongs to some Liouville set.
(7i7) The set {¢} is a Liouville set.
(iv) The field Q(€) is a Liouville field.

If we agree that the empty set is a Liouville set and that Q is a Liouville field,
then any subset of a Liouville set is a Liouville set, and also (see Theorem [I)) any
subfield of a Liouville field is a Liouville field.

Definition. Let ¢ = (¢,)n>1 be an increasing sequence of positive integers and let
u = (un)n>1 be a sequence of positive real numbers such that u,, — co as n — co.
Denote by S, ., the set of £ € L such that there exist two positive constants x; and

ko and there exists a sequence (b")n>1 of positive rational integers with

1< b, < gt and ||b,€]] <

R2Un
n

(un)n>1 = (1,2,3,...) with u, = n (n > 1). For

Denote by n the sequence u =
= (qn)n>1 of positive integers, we denote by S, the set

any increasing sequence ¢
Sg,ﬂ.

Hence, by definition, a Liouville set is a subset of some S;. In section [2] we prove
the following lemma:

Lemma 1. For any increasing sequence q of positive integers and any sequence u
of positive real numbers which tends to infinity, the set Sq, is a Liouville set.

Notice that if (m,)n>1 is an increasing sequence of positive integers, then for
the subsequence ¢ = (¢, )n>1 of the sequence g, we have Sy, D Sg -

Example. Let u = (uy,),>1 be a sequence of positive real numbers which tends to
infinity. Define f: N — R~ by f(1) =1 and

fn) =wuz - upr (n22),
so that f(n 4+ 1)/f(n) = u, for n > 1. Define the sequence ¢ = (¢n)n>1 by
¢n = [27(|. Then, for any real number ¢ > 1, the number

Z Ltf("

belongs to Sg,. The set {§ | t > 1} has the power of continuum, since &, < &,
for t1 > to > 1.
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The sets Sy, have the following property (compare with Theorem I3 in [3]):

Theorem 1. For any increasing sequence q of positive integers and any sequence
u of positive real numbers which tends to infinity, the set QU Sq . 15 a field.

We denote this field by K, ., and by K, for the sequence u = n. From Theorem|[I]
it follows that a field is a Liouville field if and only if it is a subfield of some Ky
Another consequence is that, if S is a Liouville set, then Q(S)\ Q is a Liouville set.

It is easily checked that if

lim inf =2 > 0,
n—00 u?’L
then K, is a subfield of K, .. In particular if

2
liminf = > 0,
n—oo N

then K,y is a subfield of K, while if

. Unp
limsup — < 400,
n—oo N

then K, is a subfield of K ,.

If R e Q(Xy,...,Xy) is a rational fraction and if &,...,& are elements of a
Liouville set S such that n = R(&1,...,&) is defined, then Theorem [I] implies that
7 is either a rational number or a Liouville number, and in the second case SU {n}
is a Liouville set. For instance, if, in addition, R is not constant and &1,...,&; are
algebraically independent over Q, then 7 is a Liouville number and S U {n} is a
Liouville set. For £ = 1, this yields:

Corollary 1. Let R € Q(X) be a rational fraction and let & be a Liouville number.
Then R(&) is a Liouville number and {£, R(§)} is a Liouwville set.

We now show that S, , is either empty or else uncountable and we characterize
such sets.

Theorem 2. Let q be an increasing sequence of positive integers and u = (Un)n>1
be an increasing sequence of positive real numbers such that up+1 > un + 1. Then
the Liouville set Sy, s nonempty if and only if

lo
lim sup 208 dn+1.
n—oo Unloggn

Moreover, if the set Sq. is nonempty, then it has the power of continuum.

> 0.

Let ¢ be an irrational real number which is not a Liouville number. By a result
due to P. Erdds [I], we can write ¢t = £ 4+ n with two Liouville numbers £ and 7. Let
q be an increasing sequence of positive integers and u be an increasing sequence of
real numbers such that & € Sq.u- Since any irrational number in the field K, is in
Sg.u, it follows that the Liouville number 7 = ¢ — £ does not belong to S 4.

~ One defines a reflexive and symmetric relation R between two Liouville numbers
by &Rn if {£,n} is a Liouville set. The equivalence relation which is induced by R
is trivial, as shown by the next result, which is a consequence of Theorem [2

Corollary 2. Let & and n be Liouville numbers. Then there exists a subset ¥ of L
having the power of continuum such that, for each such o € ¥, both sets {&, o} and
{n, 0} are Liouville sets.
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In 3], E. Maillet introduces the definition of Liouville numbers corresponding
to a given Liouville number. However this definition depends on the choice of a
given sequence ¢ giving the rational approximations. This is why we start with a
sequence ¢ instead of starting with a given Liouville number.

The intersection of two nonempty Liouville sets may be empty. More generally,
we show that there are uncountably many Liouville sets S, with pairwise empty
intersections. N

Proposition 1. For 0 < 7 < 1, define Q(T) as the sequence (q,(f))nzl with
g =l (> 1),
Then the sets Sy, 0 < 7 < 1, are nonempty (hence uncountable) and pairwise
disjoint. -
To prove that a real number is not a Liouville number is most often difficult.
But to prove that a given real number does not belong to some Liouville set S is

easier. If ¢’ is a subsequence of a sequence g, one may expect that Sy may often
contain strictly S Here is an example:

Proposition 2. Define the sequences q, ¢’ and q" by
n=2" @, =qn=2%"" and g =g =20"""" (n>1),

s0 that q is the increasing sequence deduced from the union of ¢' and q". Let X, be
a sequence of positive integers such that

. . n
lim A\, =00 and lim — =0.
n—o0o n—oo M

Z (2n—1)!
n>1

belongs to S¢ but not to Sq. Moreover

S2 = Sg/ N Sg//.

Then the number

When ¢ is the increasing sequence deduced from the union of ¢’ and ¢”, we
always have Sy C Sy NSyr. Proposition [ gives an example where S, # ) and
Sqr # 0, Whlle Sq is the empty set. In the example from Proposition IZL the set Sy
001n01des with S N S ». This is not always the case.

Proposition 3. There exist two increasing sequences q' and q" of positive integers
with union q such that Sq is a strict nonempty subset of Sg: N Sqrr.

Also, we prove that given any increasing sequence g, there exists a subsequence
q' of g such that S, is a strict subset of S,/. More generally, we prove

Proposition 4. Let u = (un)n>1 be a sequence of positive real numbers such that
for every n > 1, we have \/un1 < up +1 < upyq. Then any increasing sequence
g of positive integers has a subsequence ¢’ for which Sy ,, strictly contains Sq.. In
particular, any increasing sequence q of positive integiers has a subsequence ¢ for
which Sy strictly contains Sq. - -
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Proposition 5. The sets Sy, are not Gs-subsets of R. If they are nonempty, then
they are dense in R.

The proof of Lemma [T]is given in section 2 the proof of Theorem [Ilin section [3]
the proof of Theorem 2]in section[d] the proof of Corollary Rlin section[Bl The proofs
of Propositions [} 2 B] and [ are given in section [f] and the proof of Proposition
is given in section [

2. PROOF OF LEMMA [II

Proof of Lemmal[ll. Given g and u, define inductively a sequence of positive integers
(my)n>1 as follows. Let mq be the least integer m > 1 such that u,, > 1. Once

mi,...,My_1 are known, define m,, as the least integer m > m,_; for which
Um > n. Consider the subsequence ¢ of ¢ defined by ¢;, = ¢,,. Then Sy, C Sy,
hence S, 4 is a Liouville set. O

Remark 1. In the definition of a Liouville set, if assumption (I is satisfied for some
K1, then it is also satisfied with k; replaced by any k] > k1. Hence there is no loss
of generality to assume x; > 1. Then, in this definition, one could add to () the
condition ¢, < b,. Indeed, if, for some n, we have b, < ¢, then we set

[

qn < b, < gn + by < 2¢,.

Denote by a,, the nearest integer to b,¢ and set

al, = ﬁ)]—:—‘ .

Then, for k) < ko and, for sufficiently large n, we have

so that

/ I B n L
né = ah = L}J bné = an] < & = (g

Hence condition () can be replaced by
1
dn < bp < g and [[b€]| < P
n

Also, one deduces from Theorem [Z] that the sequence (b")n>1 is increasing for

sufficiently large n. Note also that in the same way we can assume that

1
Gn < bn < qﬁl and ||b7l§H < —un

n K2Unp °
n

3. PROOF OF THEOREM [II

We first prove the following:

Lemma 2. Let g be an increasing sequence of positive integers and u = (Un)n>1
be an increasing sequence of real numbers. Let £ € Sy . Then 1/§ € S, 4.
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3220 K. SENTHIL KUMAR, R. THANGADURAI, AND M. WALDSCHMIDT

As a consequence, if S is a Liouville set, then, for any £ € S, the set SU{1/£} is
a Liouville set.

Proof of Lemma[2l Let ¢ = (gn)n>1 be an increasing sequence of positive integers
such that, for sufficiently large n,

where b, < ¢Ft. Write ||b,£]| = |b,§ — ay| with a,, € Z. Since £ ¢ Q, the sequence
(lan|)n>1 tends to infinity; in particular, for sufficiently large n, we have a, # 0.

Writing
1 b, —b, an,
s-= =2 (e-),

one easily checks that, for sufficiently large n,

Ianlé ) < Jan| =/ and 1< an| <0} < g3

O

Proof of Theorem[Il Let us check that for £ and ¢ in QU S, ,, we have { — & €
QUS,, and £§ € QUS, . Clearly, it suffices to check -

(1) For £ in S, and ¢’ in Q, we have & — ¢’ €S, and €€’ € S,

(2) For £in'S,,, and ¢ in S, with € —¢ ¢ Q, we have € — &' €S,

(3) For £ in S, and & in S, , with £¢' € Q, we have £¢/ € Sy,

The idea of the proof is as follows. When & € Sq.u 18 approximated by a,, /b,
and when ¢ = r/s € Q, then & — ¢ is approximated by (sa,, — rby) /by, and &€’ by
Ty /Sb,. When £ € S, ,, is approximated by a, /b, and £’ € S, ,, by al, /b, then
¢ — ¢ is approximated by (a,b, — al,by,)/bnb!, and £€' by anal,/b,b.,. The proofs
which follow amount to writing down carefully these simple observations.

Let & = £—¢ and £ = £¢’. Then the sequence (a]’) and (b!!) are corresponding
to &”. Similarly (a}) and (b)) correspond to &*.

Here is the proof of (1). Let { € S, and &' =1/s € Q, with r and sin Z, s > 0.
There are two constants k; and ko and there are sequences of rational integers
(an)n>1 and (b”)n>1 such that

1<b, <g* and 0<’bn§—an|§L-

quun
Let k1 > k1 and Ko < k2. Then,

/!

b, = b} = sby,
1

n = SGn — Tbn,
*k

ap,

=ra,.

Then one easily checks that, for sufficiently large n, we have

1
0< !biié” —a;;‘ = S‘bnf_an’ < T
n

0 < [b76" = ap| = 7] [bn — an] < —
n
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Here is the proof of (2) and (3). Let  and ¢’ be in Sy . There are constants
K}, K, kY and &Y and there are sequences of rational integers (a)
(a] )n>1 and (b),) such that

n n>1

n>1’ (bn)nZI’

!’ 1
1<b, < gt and 0< |bpd —an| < ——,
2Un
n

1
K U
n

Define 71 = r} + £ and let £o > 0 satisfy Ko < min{rx5, k5 }. Set
b = b5 = by,

"
n

1<V, <gil and 0<|b,& —d|<

/ !
= anb,, — bpa,,,

* /
= OnGy,.

a
a

Then for sufficiently large n, we have
bp&" —an =10, (bng - an) — by, (b/ngl - a‘/n)

and
b;f* - a;kz = bn§ (b;zgl - a:z) + a’;z (bn§ - an)a

hence

|bZ§H - a/é — qﬁzuﬂ
and

* * * 1
b —an| < 0
dn

Also we have
1<b/<g¢f and 1<b: <gh.

The assumption & — &' € Q (respectively £&' € Q) implies b//¢” # a! (respectively,
br&* # a)). Hence £ — & and & are in S, . This completes the proof of (2) and
3).
( )It follows from (1), (2) and (3) that QU S, is a ring.

Finally, if £ € QUS, 4, is not 0, then 1/£ € QUS%E, by Lemmal[2l This completes
the proof of Theorem [ O

Remark 2. Since the field K, , does not contain irrational algebraic numbers, 2 is
not a square in Ky ,,. For £ G_Sq&, it follows that n = 22 is an element in S, ,, which
is not the square of an element in S, ,. According to [I], we can write V2 = &6
with two Liouville numbers &, &; then the set {&;, &} is not a Liouville set.

Let N be a positive integer such that IV cannot be written as a sum of two squares
of an integer. Let us show that, for o € S 4, the Liouville number No? € Sq,u is noOt

the sum of two squares of elements in S, ,,. Dividing by o2, we are reduced to show
that the equation N = &2 + (¢/)? has no solution (&,£’) in S, X Squ. Otherwise,
we would have, for suitable positive constants k1 and ks,

a 1
5_—n§ Fotn+1° 1§bn§qzl>
bn qnz n
!
!/ a 1 /
-l 1<K <A,
n n
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henee APEd (@)?] _ 20¢]
a2|  2l¢l+1 al, 206" + 1
52 T2 < KoUn+1’ (EI)Q T 2| = T raun+l
by | ™ an (b7,) an
and
2 2
2 enz (@abl)” + (aby) 2(1¢| + €]+ 1)
5 + (6 ) 2 S Fotnt+1 :
(bnb},) gn*""

Using ¢2 + (¢')2 = N, we deduce
2 2 2
[N (bnbl,)” = (anb),)” = (apb,)”| < 1.
The left hand side is an integer, hence it is 0:

N (bab,)* = (anbl)® + (al,bn)”.

This is impossible, since the equation x? + y?> = N2z? has no solution in positive

rational integers.

Therefore, if we write N = £2 + (¢')? with two Liouville numbers ¢, ¢, which is
possible by the above mentioned result from P. Erdés [1], then the set {£,£'} is not

a Liouville set.

4. PROOF OF THEOREM

We first prove the following lemma which will be required for the proof of part

(1) of Theorem [2

Lemma 3. Let £ be a real number, n, q and q' be positive integers with n > 2.
Assume that there exist rational integers p and p’ such that p/q #p'/q and

1 1
g€ —pl < P ld'¢ —p'| < W
Then we have
either ¢ +1>¢"“ or q> (¢ )"
Proof of Lemma[3. From the assumptions we deduce
r
i,g lpg lptzl <le_?
qq qq q

/

P 1 1
§—=1<

+ q |~ qun-i-l + (ql)un+2’

hence
g ()T < () gt

If ¢ < ¢, we deduce

q Up+1
¢ <q + (?) <q +1.

Assume now ¢ > ¢’. Since the conclusion of Lemma [Blis trivial if ¢’ = 1, we assume

¢’ > 2. Since n > 2, we have u,, > 2. From
qun(q/)unJrl < (q/)un+2 _|_qun+1 < (q/)2qun _|_qun+1

we deduce
(@) = () <q
From
(@) =) <q
we deduce
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which implies

?+déq
Finally,
q
(q")" < i ¢ <q
|
1
Proof of Theorem[2l  Suppose lim sup O8dnt1 _ 0. Then, we get
n—oo Unloggy
1
lim —edntl _ g

n—00 Uy log gy
Suppose Sy, # 0. Let £ € Squ. From Remark [T it follows that there exists a
sequence (bn)n>1 of positive integers and there exist two positive constants k; and

ko such that, for any sufficiently large n,
Gn < b < gyt and [[bag]l < g, """

Let ng be an integer > k1 such that these inequalities are valid for n > ng and such
that, for n > ng, ¢}, < g4~ (by the assumption). Since the sequence (gn)n>1 is

increasing, we have ¢;i* < ¢,7, for n > ng. From the choice of ng we deduce
K Unp, U,
anrl < qnirl <4y < bn

and

bn < apt < apty < by
for any n > ng. Denote by a, (respectively a,i1) the nearest integer to &b,
(respectively to £b,41). Lemma [ with ¢ replaced by b,, and ¢’ by b,,11 implies that

for each n > ny,
an _ Qny1
bn bn+1
This contradicts the assumption that & is irrational. This proves that S, , = 0.

Conversely, assume

li log gn+1
imsup ————
n—oo Unlogqn
Then there exists ¥ > 0 and there exists a sequence (Ng);>1 of positive integers
such that

> 0.

Jun, -1
an, > qNgjl

for all £ > 1. Define a sequence (c¢)¢>1 of positive integers by
9Ce S qn, < 20e+1.

Let e = (er)e>1 be a sequence of elements in {—1,1}. Define

€r
fg = 278.
>1
It remains to check that & € S, . and that distinct e produce distinct &..
Let k1 =1 and let k2 be in the interval 0 < ko < . For sufficiently large n, let

£ be the integer such that Ny_1 <n < Np. Set

—1 a
co— cp_1—cC n
by, =271, an:§ ep2% =17, Tn:b_'
h=1 "
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3224 K. SENTHIL KUMAR, R. THANGADURAI, AND M. WALDSCHMIDT

‘We have

1 e 2
5 <=l = |- 5| S 5
h>t

Since ko < ¥, n is sufficiently large and n < N, — 1, we have

K2UN,—1

4g2"" <dqy, 1" <aw,,

hence
2 4 1

20 gy,
for sufficiently large n. This proves & € S, and hence S, , is not empty.
Finally, if e and ¢’ are two elements of {—1, +1}N for which e;, = e forl<h</{
and, say, e, = —1, €, = 1, then

£—1
Z €h

gg < < gg'a
h=1

K2Un
n

2¢n

hence & # £/ This completes the proof of Theorem ]

5. PrRoor or COROLLARY

The proof of Corollary 2l as a consequence of Theorem [2] relies on the following
elementary lemma.

Lemma 4. Let (an)n>1 and (by)n>1 be two increasing sequences of positive inte-
gers. Then there exists an increasing sequence of positive integers (qn)n>1 satisfying
the following properties:

(1) The sequence (gan)n>1 s a subsequence of the sequence (ap)p>1-

(13) The sequence (qan+1)n>0 s a subsequence of the sequence (by)n>1.

(#i1) For n > 1, gpy1 > 7.

Proof of Lemmal. We construct the sequence (g, )n,>1 inductively, starting with
q1 = by and with ¢o the least integer a; satisfying a; > b;. Once g, is known for
some n > 2, we take for g,11 the least integer satisfying the following properties:
e gni1 € {a1,az,...}if nisodd, goy1 € {b1,bo,...} if n is even.

® dn+1 Z qz- O

Proof of Corollary2l Let £ and n be Liouville numbers. There exist two sequences
of positive integers (a,)n>1 and (b, )n>1, which we may assume to be increasing,
such that

langll < a,™ and ||bunl| <b,"
for sufficiently large n. Let ¢ = (¢n)n>1 be an increasing sequence of positive inte-
gers satisfying the conclusion of Lemma [l According to Theorem [2 the Liouville
set S, is not empty. Let o € S;. Denote by ¢’ the subsequence (g2, g4, - - -, G2n, - - )
of ¢ and by q" the subsequence (41,93, - q2n+1,---). Wehave p €S, =Sy NSyn.
Since the sequence (an)p>1 is increasing, we have ¢o, > ay, hence §_€ qu. Aléo7
since the sequence (by),>1 is increasing, we have ga, 41 > by, hence 1 € _Squ. Fi-
nally, £ and o belong to the Liouville set S,/, while 1 and ¢ belong to the Liouville
set Sq//. O
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6. PROOFs oF ProposiTIiONS [, 2l Bl AND (]

Proof of Proposition[Il The fact that for 0 < 7 < 1 the set S
follows from Theorem [2] since

q(» 1s not empty

(r)
lim —10g Int1 _
n—00 4, IOg q7(_LT)

In fact, if (e,)n>1 is a bounded sequence of integers with infinitely many nonzero

terms, then
en
Z —(T) S SE(T).
n>1 4n

Let 0 <7y < 79 < 1. For n > 1, define
gan = g =21 and gonga = g =27

n

One easily checks that (¢m)m>1 is an increasing sequence with

1 1
08 P2nt1 — 0 and 98 @tz — 0.
nlog qa2n nloggan1
From Theorem [2 one deduces Sqry NSy = 0. O
Proof of Proposition[2l For sufficiently large n, define
an = Z 2(2n)!7(2m71)!)\m'
m=1
Then ) . 5
an
ey < ~
2n+1)Ap 2m—1)!\,, 2n+1)Ap
qgn A d2n m>n+1 2( ) qgn A

The right inequality with the lower bound A1 > 1 proves that £ € Sy/.

Let x; and kg be positive numbers, n a sufficiently large integer, s an integer in
the interval gon+1 < 5 < qgflﬂ and 7 an integer. Since A\,41 < kon for sufficiently
large n, we have

2n+1)Ap41 kon(2n+1) _  gon Kamn
4o <Gz, = dgpy1 <87

Therefore, if r/s = a,,/q2n, then

r 1 1
-3)-
s

Qn
> .
(2n+1))\n+1 ghan
dan,

f__

q2n

On the other hand, for r/s # a,,/qon, we have

an r

q2n S

1 2
>

e
sl = = Qe gPTDAn

_‘5_a_n

q2n

Since \,, — 00, for sufficiently large n we have

1 2 1 2 DAn
Agons < 4q2nq§;+1 _ 4%2_’“( n+1) < q;nnJr )An41

hence
2 1

< .
(2n+1)>\n+1 -
om 2QQn3

Further

Kkon—1

—1
202n < Qony1 < Qopy <8
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Therefore

T 1 1
P N
s 2qon S sh2n

which shows that § € Sg». ]

Proof of PropositionBl Let (As)s>0 be a strictly increasing sequence of positive
rational integers with Ay = 1. Define two sequences (n},),>1 and (n} ),>1 of positive
integers as follows. The sequence (n},)x>1 is the increasing sequence of the positive
integers n for which there exists s > 0 with Aoy < n < Aggp1, while (n}))p>1 is
the increasing sequence of the positive integers n for which there exists s > 0 with
A2s41 < < Agsyo.

For s > 0 and A3s < m < Aggt1, set

k=mn—Aas + Aos—1 — Ao + -+ Ar.
Then n = nj.
For s > 0 and Agg41 <1 < Aggyo, set
h=mn—Assy1+Aas —Aogs—1+--- = A + 1.

Then n = nj.

For instance, when A\; = s + 1, the sequence (n},)r>1 is the sequence (1,3,5...)
of odd positive integers, while (n}),>1 is the sequence (2,4,6...) of even positive
integers. Another example is Ay = s!, which occurs in the paper [I] by P. Erdés.

In general, for n = \os, we write n = nﬁf(s) where

k(s) = Aos—1 — Aas—2 + -+ A < Aoy

Notice that Ao — 1 = n) with h = Ayg — k(s).
Next, define two increasing sequences (d,)n>1 and ¢ = (¢, )n>1 of positive inte-
gers by induction, with d; = 2,

s — {kdn if n = nl,

hd, ifn=n}

for n > 1 and ¢, = 2%. Finally, let ¢ = (¢;)r>1 and ¢" = (q},)n>1 be the two
subsequences of g defined by

G =an, k>1, g =qu, h>1
Hence g is the union of these two subsequences. Now we check that the number
1
-y

n>1 dn

belongs to Sy (1Sy~. Note that by Theorem Rl that Sy # () as Sy # 0 and Sy # 0.

Define
n
iy = 3 20,
m=1
Then
1 a 1 2
<t-I= > —<
dn+1 dn mSnal dm dn+1
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If n = nj, then

[ 2
f - . ‘ < )
‘ @, | (q)"
while if n = nj/, then
Aptt 2
‘5 - /; ‘ Nk
ap (a5,)

This proves that £ € S¢ N Sy
Now, we choose A\, = 22" for s > 2 and we prove that & does not belong to Sg.
Notice that Aos_1 = Vas. Let n = Mgy = n%(s). We have k(s) < v/Ags and

S R S
Qi1 gF® T gy

n

dn

Let k1 and ko be two positive real numbers and assume s is sufficiently large.
Further, let u/v € Q with v < ¢f*. If u/v = a, /gy, then

‘5 ’ ‘ S 1 N 1
i
On the other hand, if u/v # a, /g, then
[ _lg_a_n
v qn dn
with
‘u | 1 - 1 - 2
U G| T vge T ogntt T gy
and
1
n
’5 nl "
Hence,
1 1
€3 o
This proves Proposition [l O

Proof of Propositionldl Let u = (un)n>1 be a sequence of positive real numbers
such that \/u,11 < Uy +1 < upq1. We prove more precisely that for any sequence
g such that ¢,41 > ¢~ for all n > 1, the sequence ¢’ = (¢2m+1)m>1 has Sgru #
§q »- This implies the proposition, since any increasin?g sequence has a subsequence
satisfying ¢n+1 > gi»

Assuming gp41 > gp» for all n > 1, we define

Q- qn for even n,
" qkﬁJ for odd n.

‘We check that the number
1
€= i
n>1

satisfies { € Sy, and £ & Sy u-
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Set b,, = dids---d,, and

so that
a 1
R Y
n m>n+1 m
It is easy to check from the definition of d,, and ¢, that we have, for sufficiently
large n,
bn S @1 n <4y 7 a0 < g
and
1 <e_ an < 2 .
dn+1 bn dnJrl
For odd n, since dy 11 = gnt1 > ¢, we deduce
an 2
- <=
S
hence £ € Sy 4.
For even n, we plainly have
a 1 1
b |~ s gh

Let k1 and k2 be two positive real numbers, and let n be sufficiently large. Let s
be a positive integer with s < ¢t and let r be an integer. If r/s = a,, /b, then

r QA 1
‘5 s‘ ‘f b, qgntm
Assume now r/s # a, /b,. From
- an < 2 < 1
bn| — qr\_L‘/u,,LJrlJ - 2q7l‘§1+2a
we deduce
1 1 T an r an T 1
qﬁ“LQS;S g—a <’§_g‘+‘§_a S‘E_;’—’_W’
hence
T N 1 1
12 > e
This completes the proof that £ € S u- O

7. PROOF OF PROPOSITION

Proof of Propositionl. If S, , is nonempty, let v € Sy . By Theorem [l v+ Q is
contained in S, ,,, hence S, , is dense in R. B

Let ¢ be an irrational real number which is not Liouville. Hence t € K, ,, and
therefore, by Theorem [ S, N (t + Sy.) = 0. This implies that S, is not a G
dense subset of R. - - - O
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