ON ERDOS-WOOD’S CONJECTURE
S. SUBBURAM AND R. THANGADURAI

ABSTRACT. In this article, we prove that infinite number of integers satsify Erdés-
Woods conjecture. Moreover, it follows that the number of natural numbers < z
satisfies Erd6s-Woods conjecture with k = 2 is at least cz/(log x) for some positive
constant ¢ > 2.

1. INTRODUCTION
For a given natural number n > 2, we let the radical of n
rad(n) = {p : p|n,p is a prime number}
to be the set of all distinct prime divisors of n. In 1981, the Erdds-Woods conjecture
was made by Woods [?] and is the following.
Conjecture 1. [?] There exists an integer k such that if
rad(n +1i) = rad(m + i) holds for all i =1,2,--- |k,

then n = m.

This conjecture is known as the Erdds-Woods conjecture, since Woods made this

conjecture after working on a number of problems and conjectures by Erdds of a
similar form in his Ph. D thesis [?].

Clearly, £ = 1 this conjecture is not true. Also, it is not true for £ = 2 as
Erdos gave following counter examples. Note that if n = 74 and m = 1214, then
rad(n+1) = {3,5} = rad(m+1) and rad(n+2) = {2,19} = rad(m+2); yet n < m.
Indeed, for any integer h > 2, we have

rad(2" —2) = rad(2"(2" — 2)), rad(2" — 1) = rad(2"(2" - 2) + 1).

So, k > 3 is necessary in the Erdds - Wood’s conjecture to be true for all integers
n. The main question is whether £ = 3 is sufficient or not?

In 1989, R. Balasubramanian, T. N. Shorey and M. Waldschmidt [?] proved that
log k < ¢y/(logn)(loglogn),
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for a given n where ¢ > 0 is an effectively computable constant. By assuming ABC
Conjecture, in 1993, M. Langevin [?] proved that k& = 3 is sufficient for all integers
n > C where C is an absolute constant. Assuming the truth of the Hall’s conjecture,
it is known that & < 20. Recently, in 2012, R. J. Rundle [?], in his thesis, he gave a
new proof of Langevin’s result.

In this article, we prove the following theorems.

Theorem 1. Let p > 5 be a prime number. Then the Erdos-Wood’s conjecture is
true with k =2 forn =p— 2.

Corollary 1.1. Let p > 5 be a prime number. Then the Erdds-Wood’s conjecture
1s true with k =3 forn =p — 3.

Theorem 2. Let p and q be odd prime numbers such that p ¥ (¢ — 1). Then the
Erdés-Wood’s conjecture is true with k = 2 for n = ¢ — 2.

Corollary 2.1. Let p and q be odd prime numbers such that pt (¢ — 1). Then the
Erdos-Wood’s conjecture is true with k = 3 for n = ¢ — 3.

Theorem 3. Let p be any prime number and s be any positive integer. Suppose that
p® — 1 is a square-free integer. Then there is no integer m > n = p° — 2 satisfying
rad(m + 1) = rad(n + 1) and rad(m + 2) = rad(n + 2).

Corollary 3.1. Let p be any prime number and s be any positive integer. Suppose
that p®—1 is a square-free integer. Then there is no integer m > n = p®—3 satisfying
rad(m +1i) = rad(n + 1) for i = 1,2, 3.

Theorem 4. Let a > 1 be any integer and p is any odd prime. If p® +2 = ¢°, a
power of prime q, then n = p* — 1 satisfies the Erdds-Wood’s conjecture with k = 3.

Put a =1 and b = a in Theorem 4. Then we have the following corollary.

Corollary 4.1. Let p be a prime such that p+ 2 = q* where q is a prime and a > 1
is an integer. Then n = p — 1 satisfy Erdds-Wood’s conjecture with k = 3.

Remark. The above corollary includes the case that n = p — 1 where p is a twin
prime. Conjecturally, there are infinitely many twin prime exist; but, as of now, it
is unknown.
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2. PROOF OF THEOREM 1 AND COROLLARY 1.1

Proof of Theorem 1. Given that n = p — 2, where p > 5 is an odd prime number.
Let

— — 491,02 (e
ntl=p-l=q¢'¢"q",
where q1, ¢o, ..., ¢, are distinct prime numbers and a;, «s, ..., a, are positive integers.

Suppose that there is an integer m such that

radim+1) =radin+1) ={q1,q,--.,¢}

and
rad(m +2) = rad(n + 2) = {p}.
Then
m+1=4q{"¢? - g and m + 2 = p%,
where «, ay, as, ..., a, are positive integers. If a = 1, then n = m. So we assume

that a > 1. Now,
l=(m+2)—(m+1)=p" —q"¢z* - ¢
This implies that
qillq(212 .. q;}r + 1 :pa'
Since p = ¢7"¢5* - - q@" + 1 :={ + 1, we have
@'y’ g+ 1 = (0+1)°
= (“+al T+ al+ 1
et + ol - 4 al + 1.

Therefore, ¢ divides LHS. Hence for some non-negative integers by, by, --- ,b., we
have

a'e’ g |
Therefore

ga—l_’_aéa—2+_”+a:ql{1qu_”q?TJr‘

Since o > 1 is an integer, we let a = ¢{'¢5* - - - ¢&" B, where ¢y, ca, ..., ¢, are nonneg-
ative integers and B is some positive integer such that ¢; t B. So
(1) O (s g BT g5 g B =g g g
From this, we observe that for each i = 1,2,--- ,r, we have
b, =0 ¢; =0.

Next we show that for every 7 < a — 1, we have

* e,
j—1

¢
4q;
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Clearly, for each ¢ = 1,2,--- ,r, we have, ¢;|{. Let 1 < j7 < a— 1 be a fixed
integer. If « — j > ¢;, then ¢ divides £*~7 and hence

()
G lGon)
(jfl):ﬁ@:;)'

Since 1 <j < a—1, (Zj) is an integer. So if ¢; { (o, — (j — 1)), then

ci
q;

Let a — 7 < ¢;. Since

we rewrite this as

If g; | (a,a — (5 — 1)), then we denote the non-negative integer s = ord,,(R), if
¢ ||R. Then

ordqi(a,a - (] B 1)) < logqi(a - (] - 1))

G N
q; i)

cotlos(=p)-logn fo=G=0] (@ Y s
7 ,] _ 1 .

Now, to prove the claim, we need to prove that a;(a — j) —log, (o — (j — 1)) > 0.
If possible, we assume that

(o —j) < 10gqi(04 -(—1)).

Therefore

This implies that

That is,
qiai(afj) < o — (] i 1)
Since ¢; > 2, we get
2 <a—j+1,
which is a contradiction to 1 < j < a—1. Therefore a;(a—j)—log, (a—(j—1)) > 0.
Thus,
. a » »
qicl|(. )f“]foraﬂszQ,...’a_l_
j—1
Hence, from (1), we get

O+ g g A =gt g
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for some positive integer A such that (A, ¢1¢q2---¢,) = 1. Since a — 1 > 1, it follows
from the above equation that

bij=c;foralli=1,2,--- r.

Then (1) implies that B =1 and ¢ = 0, a contradiction. Hence the theorem. 0J

Proof of Corollary 1.1. Given that p > 5 be a prime and n = p — 3. If there is an
integer m such that
rad(m + 1) = rad(n + 1), rad(m + 2) = rad(n + 2) = rad(p — 1),
and
rad(m + 3) = rad(n + 3) = {p}.
Note that n” = n+1 = p—2. By Theorem 1, we know that n’ satisfies Erd6s-Wood’s
conjecture with £ = 2, we see that n +1 =m + 1 and hence n = m. 0

3. PROOF OF THEOREM 2

Given that p and ¢ are odd prime numbers such that p{ (¢ — 1), and n = ¢¥ — 2.
Then let
nt+l=¢"—1=4qi"¢" - q",
where ¢, g2, - ,q, are distinct prime numbers and «q, as, -+ , , are positive in-
tegers. Suppose that there is an integer m such that

radim+1) =rad(n+1) ={q1, ¢, ..., ¢}

and
rad(m +2) = rad(n + 2) = {q}.
Then let
m+1=4q{"q¢3*--q¢" and m + 2 = ¢°,
where «, ay, as, ..., a, are positive integers. Therefore

q'qy g +1=q"

Without loss of generality, we assume that m > n. Then we get o > p. Let
a = ps + z for some integer = such that 0 < z < p. Then

0'es’ g +1=g""" = (") q".
We shall prove that x = 0. Suppose x > 1. Since
¢ =d"q® g+ 1=+ 1
we have
@'gt g+ 1 = ¢t (E+1)°
= ¢ (st + 50+ 1)
= ¢+ 857 8]+ "
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This implies that
¢ —1=1[q"gs* - g ] = U+ T4 8]
From this we observe that
q192 - qr | q° — 1.
Therefore
Qg2 G | ged(q” — 1,7 —1) =¢"P —1=¢q—1.
Then there exists an integer z such that

9—1=qq ¢z

That is,
qg=14+qq- ¢z
Since
¢ —1=q"¢* q",
we have

ar'gs* gy =1+ qga- - qe2)’ — L.
This implies

o (07 (0% p
e = (g R)P -+ (2)(q1q2~~qr2) +p.

Since q1qz - - ¢,z divides LHS (as it divides ¢ — 1) and all the terms except the
last term, we conclude that it divides p; but p 1 (¢ — 1). Hence this is impossible.
Therefore, x = 0. Thus, we let o = ps and hence

1+q?1q32 "'qu = qa = qps = (qp)s = <€—|— 1)8

If s > 1, by the way of the proof of Theorem 1, we get a contradiction. So s = 1.
That is, m = n. This proves the theorem. O

4. PROOF OF THEOREM 3 AND COROLLARY 3.1

Proof of Theorem 3. Given that, for an prime p, the integer p® — 1 is square-free.
We let p* — 1 = 2°¢1q2 - - - ¢ where ¢;’s are distinct odd primes and € = 0 if p = 2
and e =1if p > 3.

Let n = p® — 2 be the given integer. Suppose there exists an integer m such that
m > n and
radim+1) =rad(n+1) ={2%¢q, -+, ¢} and rad(m + 2) = rad(n + 2) = {p}.

Since m > n, we get m 4+ 2 > n + 2 = p* and hence m + 2 = p® where a > s. By
letting m + 1 = 2%}* - - - g%, we get

l=m+2—(m+1)=p%—2%"...¢" = p* =2%"...q¢" +1,

where a; > 1 and a > 0 are integers.
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Claim. s divides a.

Suppose a = ts + x where 1 < z < s and for some integer ¢ > 1. Then
pr=ppt =2 g+ 1
Since p® = 2°q1qo - - - g + 1 := £ + 1, we see that
20qH gt + 1 =p (L + 1) =p"l + -+ "t + P
Hence
pr=1=2%0" g = ptl — e — U
Since ¢ divides the RHS, ¢ divides LHS. That is, (p® — 1) divides (p” — 1), which is a

contradiction to the assumption that 1 < x < s. Therefore, we get x = 0 and hence
« is a multiple of s.

Let a = s/ for some integer 3 > 1. Therefore, we have m + 2 = (n + 2)°. That
is, we have

200 g 41 = p° = (ps)ﬁ = (0 + 1)5
= P+ 807 4 B+ L.
— 20 lgml L germl = Bl L 3P 13
Ifa=1=a, =ay =--- = a,, then, clearly, we have m + 1 = n + 1 and we are
done. Therefore, without loss of generality, we assume that a > 1 (if a; > 1 for some

i, then the same proof works analogously.) That is, 2 divides LHS of the equation.
Since 2|¢, we see that 2|3 also. Suppose 2¢||3 for some integer ¢ > 1.

Claim. 2¢ divides (?)Eﬁﬂ' for every j =1,2,---, 0.

Since 2|¢ and (f) is an integer, we see that 2¢ divides £°~7 for all 3 —j < ¢ — 1.
Therefore, we consider j > (3 — c¢. In this case, ¢ > § — j. Also, since

(ﬁ) _ ( 3 ) _BE-1)E-2)---(F-(F-j)+1)
J f—J 1-2-...-(B—)) .

Since § = 0 (mod 2°), we see that § — 2y = —2y (mod 2°) for all 2y < 5 — j — 1.
Therefore, except the last term 3 — j (when it is even) in the denominator and the
first term [ in the numerator, the power of 2 cancels each other. If g — j is even,
then the power of 2 dividing  — j cancels with the power of 2 dividing . However,
in this case, the integer ¢°~7 has extra 2°77 apart from the power of 2 of 3/(8 — j)
and both together we get 2¢ divides (f) (%= Hence the claim.

Suppose ¢ < a — 1 (other case ¢ > a — 1 is similar). Then, by canceling both the
sides 2¢, we can make the RHS an odd integer. If ¢ < a — 1, then LHS would be
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even, a contradiction to RHS is odd. This would imply that a — 1 = ¢. That is,
2971 3. Now, we have,
al— ar— 1 —
q’ 1"'er IZF(EB 1+"'+6).
If a; > 1 for some i, then, as ¢;|¢, we see that ¢;| also. Let ¢;*||5. Then by canceling
¢;" both the sides, we conclude that ¢; = a; — 1. Otherwise, in the LHS, there will

be a factor of ¢; which will not divide the RHS, a contradiction. Hence we conclude
that

2a71q?1_1q32_1 PPN qraril leldeS ﬁ

However, from the equation, it is clear that (3 is smaller than 2"_1q§”_1q‘2’2_1 ceegort
which forces

B=20""g g g
This implies the other terms in the RHS must be zero which is possible only when
8 —1=0. Thatis, 6 =1 and hence a =1 =a; =ay = --- = a,. Thus, m =n
follows. [

Proof of Corollary 3.1. If n = p® — 3, then n + 1 satisfies Theorem 3 and hence
n+ 1= m+ 1 and hence the corollary. 0

5. PROOF OF THEOREM 4.

We need the following results which deals with the integral solutions of the expo-
nential Diophantine equation.
Theorem 4.1. (T. Nagell, [?]) The integral solutions of
2"+ 3V =57
are gwen by (z,y,z) = (1,1,1) and (4,2,2).
Theorem 4.2. (R. Scott, [?], cf. Lemma 6 ) Let p,q > 5 be two distinct primes.
Then the equation
pm + W — qz

has at most one integral solution (x,y, z) € N3,
For more related results we refer to Z. F. Cao [?].

Proof of Theorem 4. Given that n = p® — 1 where p is a prime and p® + 2 = ¢® for
some prime q.
Suppose there exists an integer m such that
rad(m + 1) = rad(n + 1) = {p},rad(m + 2) = rad(n + 2) = rad(p® + 1)

and
rad(m + 3) = rad(n + 3) = {q}.
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Therefore, we get
m+1=p* andm—l—?):qﬁ
for some integers a« > 1 and # > 1. Then
2=m+3-m—-1=¢"—p* = ¢’ =p*+2.

By Theorem 4.2, the equation p*+2Y = ¢* has at most one integral solution (z, y, 2).
Since by assumption that we have

2:n+3—n—1:qb—pa:>pa+2:qb7

we see that (x,y,2) = (a, 1,b) is one integral solution of the above equation. There-
fore, we conclude that a = a and = b and so m = n. O
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