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Abstract. In this article, we prove that infinite number of integers satsify Erdős-
Woods conjecture. Moreover, it follows that the number of natural numbers ≤ x
satisfies Erdős-Woods conjecture with k = 2 is at least cx/(log x) for some positive
constant c > 2.

1. Introduction

For a given natural number n ≥ 2, we let the radical of n

rad(n) = {p : p|n, p is a prime number}
to be the set of all distinct prime divisors of n. In 1981, the Erdős-Woods conjecture
was made by Woods [?] and is the following.

Conjecture 1. [?] There exists an integer k such that if

rad(n+ i) = rad(m+ i) holds for all i = 1, 2, · · · , k,
then n = m.

This conjecture is known as the Erdős-Woods conjecture, since Woods made this
conjecture after working on a number of problems and conjectures by Erdős of a
similar form in his Ph. D thesis [?].

Clearly, k = 1 this conjecture is not true. Also, it is not true for k = 2 as
Erdős gave following counter examples. Note that if n = 74 and m = 1214, then
rad(n+1) = {3, 5} = rad(m+1) and rad(n+2) = {2, 19} = rad(m+2); yet n < m.
Indeed, for any integer h ≥ 2, we have

rad(2h − 2) = rad(2h(2h − 2)), rad(2h − 1) = rad(2h(2h − 2) + 1).

So, k ≥ 3 is necessary in the Erdős - Wood’s conjecture to be true for all integers
n. The main question is whether k = 3 is sufficient or not?

In 1989, R. Balasubramanian, T. N. Shorey and M. Waldschmidt [?] proved that

log k ≤ c
√

(log n)(log log n),
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for a given n where c > 0 is an effectively computable constant. By assuming ABC
Conjecture, in 1993, M. Langevin [?] proved that k = 3 is sufficient for all integers
n > C where C is an absolute constant. Assuming the truth of the Hall’s conjecture,
it is known that k ≤ 20. Recently, in 2012, R. J. Rundle [?], in his thesis, he gave a
new proof of Langevin’s result.

In this article, we prove the following theorems.

Theorem 1. Let p ≥ 5 be a prime number. Then the Erdős-Wood’s conjecture is
true with k = 2 for n = p− 2.

Corollary 1.1. Let p ≥ 5 be a prime number. Then the Erdős-Wood’s conjecture
is true with k = 3 for n = p− 3.

Theorem 2. Let p and q be odd prime numbers such that p - (q − 1). Then the
Erdős-Wood’s conjecture is true with k = 2 for n = qp − 2.

Corollary 2.1. Let p and q be odd prime numbers such that p - (q − 1). Then the
Erdős-Wood’s conjecture is true with k = 3 for n = qp − 3.

Theorem 3. Let p be any prime number and s be any positive integer. Suppose that
ps − 1 is a square-free integer. Then there is no integer m > n = ps − 2 satisfying
rad(m+ 1) = rad(n+ 1) and rad(m+ 2) = rad(n+ 2).

Corollary 3.1. Let p be any prime number and s be any positive integer. Suppose
that ps−1 is a square-free integer. Then there is no integer m > n = ps−3 satisfying
rad(m+ i) = rad(n+ i) for i = 1, 2, 3.

Theorem 4. Let a ≥ 1 be any integer and p is any odd prime. If pa + 2 = qb, a
power of prime q, then n = pa− 1 satisfies the Erdős-Wood’s conjecture with k = 3.

Put a = 1 and b = a in Theorem 4. Then we have the following corollary.

Corollary 4.1. Let p be a prime such that p+ 2 = qa where q is a prime and a ≥ 1
is an integer. Then n = p− 1 satisfy Erdős-Wood’s conjecture with k = 3.

Remark. The above corollary includes the case that n = p − 1 where p is a twin
prime. Conjecturally, there are infinitely many twin prime exist; but, as of now, it
is unknown.
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2. Proof of Theorem 1 and Corollary 1.1

Proof of Theorem 1. Given that n = p − 2, where p ≥ 5 is an odd prime number.
Let

n+ 1 = p− 1 = qα1
1 qα2

2 · · · qαr
r ,

where q1, q2, ..., qr are distinct prime numbers and α1, α2, ..., αr are positive integers.
Suppose that there is an integer m such that

rad(m+ 1) = rad(n+ 1) = {q1, q2, . . . , qr}
and

rad(m+ 2) = rad(n+ 2) = {p}.
Then

m+ 1 = qa1
1 q

a2
2 · · · qar

r and m+ 2 = pα,

where α, a1, a2, ..., ar are positive integers. If α = 1, then n = m. So we assume
that α > 1. Now,

1 = (m+ 2)− (m+ 1) = pα − qa1
1 q

a2
2 · · · qar

r .

This implies that

qa1
1 q

a2
2 · · · qar

r + 1 = pα.

Since p = qα1
1 qα2

2 · · · qαr
r + 1 := `+ 1, we have

qa1
1 q

a2
2 · · · qar

r + 1 = (`+ 1)α

= `α + α`α−1 + · · ·+ α`+ 1

= `[`α−1 + α`α−2 + · · ·+ α] + 1.

Therefore, ` divides LHS. Hence for some non-negative integers b1, b2, · · · , br, we
have

qa1
1 q

a2
2 · · · qar

r

`
= qb11 q

b2
2 · · · qbrr .

Therefore

`α−1 + α`α−2 + · · ·+ α = qb11 q
b2
2 · · · qbrr .

Since α > 1 is an integer, we let α = qc11 q
c2
2 · · · qcrr B, where c1, c2, . . . , cr are nonneg-

ative integers and B is some positive integer such that qi - B. So

(1) `α−1 + (qc11 q
c2
2 · · · qcrr B)`α−2 + · · ·+ qc11 q

c2
2 · · · qcrr B = qb11 q

b2
2 · · · qbrr .

From this, we observe that for each i = 1, 2, · · · , r, we have

bi = 0⇔ ci = 0.

Next we show that for every j ≤ α− 1, we have

qcii |
(

α

j − 1

)
`α−j.
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Clearly, for each i = 1, 2, · · · , r, we have, qi|`. Let 1 ≤ j ≤ α − 1 be a fixed
integer. If α− j ≥ ci, then qcii divides `α−j and hence

qcii |
(

α

j − 1

)
`α−j.

Let α− j ≤ ci. Since (
α

j − 1

)
=

(
α

α− (j − 1)

)
,

we rewrite this as (
α

j − 1

)
=

α

α− (j − 1)

(
α− 1

α− j

)
.

Since 1 ≤ j ≤ α− 1,
(
α−1
α−j

)
is an integer. So if qi - (α, α− (j − 1)), then

qcii |
(

α

j − 1

)
.

If qi | (α, α − (j − 1)), then we denote the non-negative integer s = ordqi(R), if
qsi ‖R. Then

ordqi(α, α− (j − 1)) ≤ logqi(α− (j − 1)).

Therefore

q
ci−logqi

(α−(j−1))

i |
(

α

j − 1

)
.

This implies that

q
ci+[αi(α−j)−logqi

(α−(j−1))]

i |
(

α

j − 1

)
`α−j.

Now, to prove the claim, we need to prove that αi(α − j)− logqi(α − (j − 1)) ≥ 0.
If possible, we assume that

αi(α− j) < logqi(α− (j − 1)).

That is,

q
αi(α−j)
i < α− (j − 1).

Since qi ≥ 2, we get

2α−j < α− j + 1,

which is a contradiction to 1 ≤ j ≤ α−1. Therefore αi(α−j)−logqi(α−(j−1)) ≥ 0.
Thus,

qcii |
(

α

j − 1

)
`α−j for all j = 1, 2, · · · , α− 1.

Hence, from (1), we get

`α−1 + [qc11 q
c2
2 · · · qcrr ]A = qb11 · · · qbrr ,



ON ERDŐS-WOOD’S CONJECTURE 5

for some positive integer A such that (A, q1q2 · · · qr) = 1. Since α− 1 ≥ 1, it follows
from the above equation that

bi = ci for all i = 1, 2, · · · , r.
Then (1) implies that B = 1 and ` = 0, a contradiction. Hence the theorem. �

Proof of Corollary 1.1. Given that p ≥ 5 be a prime and n = p − 3. If there is an
integer m such that

rad(m+ 1) = rad(n+ 1), rad(m+ 2) = rad(n+ 2) = rad(p− 1),

and
rad(m+ 3) = rad(n+ 3) = {p}.

Note that n′ = n+1 = p−2. By Theorem 1, we know that n′ satisfies Erdős-Wood’s
conjecture with k = 2, we see that n+ 1 = m+ 1 and hence n = m. �

3. Proof of Theorem 2

Given that p and q are odd prime numbers such that p - (q − 1), and n = qp − 2.
Then let

n+ 1 = qp − 1 = qα1
1 qα2

2 · · · qαr
r ,

where q1, q2, · · · , qr are distinct prime numbers and α1, α2, · · · , αr are positive in-
tegers. Suppose that there is an integer m such that

rad(m+ 1) = rad(n+ 1) = {q1, q2, . . . , qr}
and

rad(m+ 2) = rad(n+ 2) = {q}.
Then let

m+ 1 = qa1
1 q

a2
2 · · · qar

r and m+ 2 = qα,

where α, a1, a2, ..., ar are positive integers. Therefore

qa1
1 q

a2
2 · · · qar

r + 1 = qα.

Without loss of generality, we assume that m > n. Then we get α > p. Let
α = ps+ x for some integer x such that 0 ≤ x < p. Then

qa1
1 q

a2
2 · · · qar

r + 1 = qps+x = (qp)sqx.

We shall prove that x = 0. Suppose x ≥ 1. Since

qp = qα1
1 qα2

2 · · · qαr
r + 1 := `+ 1,

we have

qa1
1 q

a2
2 · · · qar

r + 1 = qx(`+ 1)s

= qx
(
`s + s`s−1 + · · ·+ s`+ 1

)
= qx`[`s−1 + s`s−2 + · · ·+ s] + qx.
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This implies that

qx − 1 = [qa1
1 q

a2
2 · · · qar

r ]− qx`[`s−1 + s`s−2 + · · ·+ s].

From this we observe that
q1q2 · · · qr | qx − 1.

Therefore
q1q2 · · · qr | gcd(qx − 1, qp − 1) = q(x,p) − 1 = q − 1.

Then there exists an integer z such that

q − 1 = q1q2 · · · qrz.
That is,

q = 1 + q1q2 · · · qrz.
Since

qp − 1 = qα1
1 qα2

2 · · · qαr
r ,

we have
qα1
1 qα2

2 · · · qαr
r = (1 + q1q2 · · · qrz)p − 1.

This implies

qα1
1 qα2

2 · · · qαr
r = (q1q2 · · · qrz)p + · · ·+

(
p

2

)
(q1q2 · · · qrz) + p.

Since q1q2 · · · qrz divides LHS (as it divides q − 1) and all the terms except the
last term, we conclude that it divides p; but p - (q − 1). Hence this is impossible.
Therefore, x = 0. Thus, we let α = ps and hence

1 + qa1
1 q

a2
2 · · · qar

r = qα = qps = (qp)s = (`+ 1)s.

If s > 1, by the way of the proof of Theorem 1, we get a contradiction. So s = 1.
That is, m = n. This proves the theorem. �

4. Proof of Theorem 3 and Corollary 3.1

Proof of Theorem 3. Given that, for an prime p, the integer ps − 1 is square-free.
We let ps − 1 = 2εq1q2 · · · qr where qi’s are distinct odd primes and ε = 0 if p = 2
and ε = 1 if p ≥ 3.

Let n = ps − 2 be the given integer. Suppose there exists an integer m such that
m > n and

rad(m+ 1) = rad(n+ 1) = {2ε, q1, · · · , qr} and rad(m+ 2) = rad(n+ 2) = {p}.
Since m > n, we get m + 2 > n + 2 = ps and hence m + 2 = pα where α > s. By
letting m+ 1 = 2aqa1

1 · · · qar
r , we get

1 = m+ 2− (m+ 1) = pα − 2aqa1
1 . . . qar

r =⇒ pα = 2aqa1
1 . . . qar

r + 1,

where ai ≥ 1 and a ≥ 0 are integers.
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Claim. s divides α.

Suppose α = ts+ x where 1 ≤ x < s and for some integer t ≥ 1. Then

pα = pxpst = 2aqa1
1 · · · qar

r + 1.

Since ps = 2εq1q2 · · · qr + 1 := `+ 1, we see that

2aqa1
1 · · · qar

r + 1 = px(`+ 1)t = px`t + · · ·+ pxt`+ px.

Hence

px − 1 = 2aqa1
1 · · · qar

r − px`t − · · · − t`px.
Since ` divides the RHS, ` divides LHS. That is, (ps− 1) divides (px− 1), which is a
contradiction to the assumption that 1 ≤ x < s. Therefore, we get x = 0 and hence
α is a multiple of s.

Let α = sβ for some integer β ≥ 1. Therefore, we have m + 2 = (n + 2)β. That
is, we have

2aqa1
1 · · · qar

r + 1 = pα = (ps)β = (`+ 1)β

= `β + β`β−1 + · · ·+ β`+ 1.

=⇒ 2a−1qa1−1
1 · · · qar−1

r = `β−1 + β`β−2 + · · ·+ β

If a = 1 = a1 = a2 = · · · = ar, then, clearly, we have m + 1 = n + 1 and we are
done. Therefore, without loss of generality, we assume that a > 1 (if ai > 1 for some
i, then the same proof works analogously.) That is, 2 divides LHS of the equation.
Since 2|`, we see that 2|β also. Suppose 2c‖β for some integer c ≥ 1.

Claim. 2c divides
(
β
j

)
`β−j for every j = 1, 2, · · · , β.

Since 2|` and
(
β
j

)
is an integer, we see that 2c divides `β−j for all β − j ≤ c − 1.

Therefore, we consider j ≥ β − c. In this case, c ≥ β − j. Also, since(
β

j

)
=

(
β

β − j

)
=
β(β − 1)(β − 2) · · · (β − (β − j) + 1)

1 · 2 · . . . · (β − j)
.

Since β ≡ 0 (mod 2c), we see that β − 2y ≡ −2y (mod 2c) for all 2y ≤ β − j − 1.
Therefore, except the last term β − j (when it is even) in the denominator and the
first term β in the numerator, the power of 2 cancels each other. If β − j is even,
then the power of 2 dividing β− j cancels with the power of 2 dividing β. However,
in this case, the integer `β−j has extra 2β−j apart from the power of 2 of β/(β − j)
and both together we get 2c divides

(
β
j

)
`β−j. Hence the claim.

Suppose c ≤ a− 1 (other case c ≥ a− 1 is similar). Then, by canceling both the
sides 2c, we can make the RHS an odd integer. If c < a − 1, then LHS would be
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even, a contradiction to RHS is odd. This would imply that a − 1 = c. That is,
2a−1‖β. Now, we have,

qa1−1
1 · · · qar−1

r =
1

2a−1

(
`β−1 + · · ·+ β

)
.

If ai > 1 for some i, then, as qi|`, we see that qi|β also. Let qcii ‖β. Then by canceling
qcii both the sides, we conclude that ci = ai − 1. Otherwise, in the LHS, there will
be a factor of qi which will not divide the RHS, a contradiction. Hence we conclude
that

2a−1qa1−1
1 qa2−1

2 · · · qar−1
r divides β.

However, from the equation, it is clear that β is smaller than 2a−1qa1−1
1 qa2−1

2 · · · qar−1
r

which forces
β = 2a−1qa1−1

1 qa2−1
2 · · · qar−1

r .

This implies the other terms in the RHS must be zero which is possible only when
β − 1 = 0. That is, β = 1 and hence a = 1 = a1 = a2 = · · · = ar. Thus, m = n
follows. �

Proof of Corollary 3.1. If n = ps − 3, then n + 1 satisfies Theorem 3 and hence
n+ 1 = m+ 1 and hence the corollary. �

5. Proof of Theorem 4.

We need the following results which deals with the integral solutions of the expo-
nential Diophantine equation.

Theorem 4.1. (T. Nagell, [?]) The integral solutions of

2x + 3y = 5z

are given by (x, y, z) = (1, 1, 1) and (4, 2, 2).

Theorem 4.2. (R. Scott, [?], cf. Lemma 6 ) Let p, q ≥ 5 be two distinct primes.
Then the equation

px + 2y = qz

has at most one integral solution (x, y, z) ∈ N3.

For more related results we refer to Z. F. Cao [?].

Proof of Theorem 4. Given that n = pa − 1 where p is a prime and pa + 2 = qb for
some prime q.

Suppose there exists an integer m such that

rad(m+ 1) = rad(n+ 1) = {p}, rad(m+ 2) = rad(n+ 2) = rad(pa + 1)

and
rad(m+ 3) = rad(n+ 3) = {q}.
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Therefore, we get
m+ 1 = pα and m+ 3 = qβ

for some integers α ≥ 1 and β ≥ 1. Then

2 = m+ 3−m− 1 = qβ − pα =⇒ qβ = pα + 2.

By Theorem 4.2, the equation px+2y = qz has at most one integral solution (x, y, z).
Since by assumption that we have

2 = n+ 3− n− 1 = qb − pa =⇒ pa + 2 = qb,

we see that (x, y, z) = (a, 1, b) is one integral solution of the above equation. There-
fore, we conclude that α = a and β = b and so m = n. �
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