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Unique representation of integers with base A

A. Mukhopadhyay, R. Thangadurai, and G. K. Viswanadham

Abstract. For a given A ⊆ N, we introduce the concept of representing
every positive integer uniquely with base A. We also study the order of
magnitude of the function RA(n), where RA(n) is the number of digits
that are needed to represent n with base A.
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1. Introduction. Let A ⊂ N be an infinite subset of the set of positive integers
and m be the least element of A. Put SA = {1, 2, . . . ,m − 1}. For any positive
integer n0, let a(n0) ∈ A be the largest integer ≤ n0. Put n1 = n0 − a(n0) and
a(n1) ∈ A be the largest integer ≤ n1. Then by letting n2 = n1 − a(n1), we
proceed as above until we arrive at nr = nr−1 − a(nr−1) with a(ni) ∈ A for
all i = 0, 1, 2, . . . , r − 1 and either nr ∈ A or nr ∈ SA. Thus, we get

n0 = a(n0) + a(n1) + · · · + a(nr), (1)

where a(ni) ∈ A for all i = 0, 1, 2, . . . , r − 1 and a(nr) belongs to either A
or SA. Clearly, the above procedure implies that this representation is unique
with respect to the base A. Since r depends on n0 and A, we write r = RA(n0).
Clearly, RA(n0) is the number of digits of n0 to the base A.

Example 1. (1) Let p be any prime number and A be the set of all positive
powers of A, i.e.

A = {pk | k ∈ N ∪ {0}}.
Then in our notation SA = ∅ and hence the representation of integers as
in (1) is the usual representation of integers with base p. It is easy to see
that RA(n) � log n for all n and RA(n) � log n for infinitely many n,
where the implied constants in both the cases may depend on the prime
p.
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(2) Let A be the set of all prime numbers. Then by the definition SA =
{1}. This particular case was first considered by Pillai [8], who proved
that RA(n) = o(log n). In the same paper, he proved that RA(n) �
log log n, under the validity of the Riemann hypothesis. Later Luca and
Thangadurai [7] proved that RA(n) � log log n by using the celebrated
theorem of Hohesiel [6] rather than the Riemann hypothesis.

Now it is natural to ask, for a given subset A of N, what is the order of
RA(n) for all n sufficiently large?

The following lemma discards some uninteresting subsets A of N.

Lemma 1. Let A = {ak | k ≥ 1} ⊆ N. Then

lim sup
k→∞

(ak − ak−1) = ∞

as k → ∞ if and only if

lim sup
n→∞

RA(n) = ∞.

Thus, the problem we consider is trivial in the following cases:

(1) Let A be a subset of positive integers with bounded gaps. Then we have

RA(n) ≤ C

for some positive constant C.
(2) Let A be the set of all integers which are non-negative integral powers of

a fixed positive integer m. Then we can see that

RA(n) �m log n

for all n and

RA(n) �m log n

for infinitely many n.

Remark 1. (1) In view of the Lemma 1, we can always assume that ak −
ak−1 → ∞ as k → ∞. That is, we consider those subsets A of N such
that the elements of A have arbitrarily long gaps. For instance, if A is
chosen to be the set of all primes, then we get lim sup RA(n) = ∞.

(2) The constant C appearing in this paper may not be the same everywhere.

Definition 1. For a function f : R≥0 → R≥0, we define the composition of f
to itself n-times, fn, to be f

(
fn−1

)
with f1(x) = f(x).

Let f : R≥0 → R≥0 be any function such that f(x) < x for all x ∈ R≥0

and x0 ∈ R≥0 be a given real number. We define a function tx0 : N → R≥0 as

tx0(n) =
{

n if n ≤ x0

� if n > x0 and f �(n) < x0 < f �−1(n).

In answering the above question, we prove the following results.
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Theorem 1. Let f : R≥0 → R≥0 be an increasing function such that f(x) < x
for all x ∈ R≥0. Suppose that there exists an x0 such that, for each integer
n ≥ x0, the interval (n − f(n), n] contains at least one element of A. Then

RA(n) � tx0(n).

As an application of the above theorem, we have the following corollaries.

Corollary 1. Suppose A satisfies the hypothesis of Theorem 1 with f(x) = xθ

for some 0 < θ < 1. Then

RA(n) � log log n,

where the implied constant may depend on θ.

Corollary 2. Suppose A satisfies the hypothesis of Theorem 1 with f(x) = δx
for some 0 < δ < 1. Then

RA(n) � log n,

where the implied constant may depend on δ.

Corollary 3. For each real number t ≥ 1, we let ft(x) = x/logt x. If A satisfies
the hypothesis of Theorem 1 with f = ft for each t, then

RA(n) = o(log n).

The theorem below gives a lower bound for the function RA(n), and as an
application of this theorem, we get Corollaries 4 and 5.

Theorem 2. Let f : R≥0 → R≥0 be an increasing function such that f(x) < x.
Suppose there exists x0 such that for all x ≥ x0, the interval (1, x] contains
a subinterval IA,x of length f(x) such that A ∩ IA,x = ∅. Then for infinitely
many positive integers n, we have

RA(n) ≥ Ctx0(n)

for some absolute constant C.

Corollary 4. If A satisfies the hypothesis of Theorem 2 with f(x) = xθ for
some θ ∈ (0, 1), then

RA(n) � log log n

for infinitely many n.

Corollary 5. If A satisfies the hypothesis of Theorem 2 with f(x) = x/M for
some M > 12, then

RA(n) � log n

for infinitely many n.

In Sect. 3, we provide some examples to illustrate the above results.
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2. Proofs. Proof of Lemma 1. Suppose we assume that

lim sup
k→∞

(ak − ak−1) = ∞.

We have to show that for any integer r ≥ 1, there is a n such that RA(n) ≥
r. Let m be a given integer. By our assumption, we can find an integer N
sufficiently large such that

aN+1 − aN > m + 1. (2)

Let n = m + aN . By (2), we conclude that a(n) = aN . Therefore,

RA(n) = RA(m) + 1.

Now the result follows inductively.
Conversely, suppose lim sup RA(n) = ∞. We want to prove that

lim supk→∞(ak − ak−1) = ∞. Suppose not, that is, there exists a constant
M > 0 such that ak − ak−1 ≤ M for every k. Then, for any n ∈ N, we have
n − a(n) ≤ M , so that RA(n) ≤ M + 1 for all n, which is a contradiction. �

Proof of Theorem 1. Let n = n1 ≥ x0 be an integer. Then, by the assumption
we have a(n1) ∈ (n1 − f(n1), n1]. Therefore a(n1) > n1 − f(n1). Thus the
chain of inequalities

n2 = n1 − a(n1) < n1 − n1 + f(n1) = f(n1);
n3 = n2 − a(n2) < f(n2) < f(f(n1)) = f2(n1);
n4 < f3(n1);
. . . . . . . . .

n�+1 < f �(n1)

holds as long as n� ≥ x0. We now let � be the integer such that n�+2 < x0 ≤
n�+1. We then have

f �(n1) ≥ x0.

Now, we put

b = max
1≤m<n0

RA(m).

Then, RA(n1) = RA(n) ≤ b + 1 + �. Thus,

RA(n1) ≤ Ct(n1),

where C is a constant which may depend on x0. �

Proof of Corollary 1. Given that f(x) = xθ for some θ ∈ (0, 1), we have
fm(x) = xθm

for any integer m ≥ 1. By hypothesis, there exists x0 such that
for every integer n ≥ x0, the interval (n − nθ, n] contains an element of A.
Therefore, by Theorem 1, it is enough to find the function t(n) as a function
of x. For a given x, let � be the largest positive integer such that x0 ≤ xθ�

. By
applying logarithms on both sides, we get

θ� log x ≥ log x0,
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which implies that

� log θ + log log x ≥ log log x0.

Since θ ∈ (0, 1), we get

� ≤ log log x − log log x0

log(1/θ)
� log log x.

�

Proof of Corollary 2. Let � be the largest positive integer such that x0 ≤ xδ�.
Therefore,

� log
(

1
δ

)
≤ log x,

so that

� ≤ log x

log
(
1
δ

) .

Hence, we get � � log x. �

Proof of Corollary 3. Let t be fixed and n be a sufficiently large integer. We
have

n = n1;

n2 = n1 − a(n1) ≤ n1 −
(

n1 − n1

(log n1)t

)
≤ n1

(log n1)t
;

n3 ≤ n2

(log n2)t
≤ n1

(log n1)t(log n2)t
≤ n1

(log n2)2t
;

· · · · · · · · ·
nr+1 ≤ n

(log n1)t · · · (log nr)t
≤ n

(log nr)rt
.

Suppose r is the number of iterations, we need to get below x0, then

x0 ≤ n

(log nr)rt
.

This implies

r ≤ c
log n

t
.

Since t is arbitrary, we get

RA(n) = o(log n).

�

Proof of Theorem 2. Let x ≥ x0 be a sufficiently large real number. By our
assumption there exists c(x) ∈ A such that the interval (c(x), d(x)] does not
contain any element of A and d(x)−c(x) ≥ f(x). Now applying the assumption
to the interval (1, d(x)− c(x)], there exists a c1(x) ∈ A such that (c1(x), d1(x)]
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does not contain any element of A and d1(x) − c1(x) ≥ f(d(x) − c(x)) ≥
f(f(x)) = f2(x). Continue as above until we arrive at a stage

f t−1(x) ≥ x0 ≥ f t(x).

Now let n0 = c(x) + c1(x) + · · · + ct−1(x). We claim that

a(n0) = c(x);
a(n1) = c1(x);

· · ·
a(nt−1) = ct−1(x).

Hence, RA(n0) = tx0(x) ≥ tx0(n0).
Now we will prove the above claim. Since di(x) ≤ di−1(x) − ci−1(x), we

have

c(x) ≤ n0 ≤ c(x) + c1(x) + c2(x) + · · · + ct−2(x) + dt−2 − ct−2(x)
≤ c(x) + c1(x) + · · · + ct−3(x) + dt−3(x) − ct−3(x)

· · · · · · · · ·
≤ c(x) + d1(x)
≤ c(x) + d(x) − c(x)

and since the interval (c(x), d(x)] does not contain any element of A, we
get that a(n0) = c(x). Similarly, one can prove the other equalities. Hav-
ing constructed one integer n0 with RA(n0) ≥ Ct(n0), replacing x by suffi-
ciently large numbers, we can construct infinitely many integers n satisfying
RA(n) ≥ Ct(n). This completes the proof of the theorem. �

Note: The proofs of the Corollary 4 and Corollary 5 are similar to that of
Corollaries 1 and 2.

3. Examples.

(1) Let A be the set of all prime numbers.
(a) By the Bertrand postulate, we know that every interval

(
x
2 , x

]
con-

tains a prime number. Hence, by Corollary 2 with f(x) = x/2, we
get RA(n) � log n.

(b) By the prime number theorem, we know that every interval(
x − x/ logt x, x

]
contains a prime number for all x ≥ x0 and for

all t ≥ 0. Hence, by Corollary 3, we have

RA(n) = o(log n), as n → ∞.

(c) Hoheisel [6] proved that there exist absolute constants θ ∈ (0, 1)
and N0 such that for every integer n ≥ N0, the interval (n − nθ, n]
contains a prime number. Therefore by Corollary 1, we get

RA(n) � log log n.

(d) Cramér’s conjecture [4] asserts that for all x > x0 the interval
[x, x + c log2 x] contains a prime number for some constant c > 0.



Vol. 105 (2015) Unique representation 125

By assuming this conjecture and taking f(x) = c log2 x in Theorem
1, we can arrive at t(n) � logk n and hence we get

RA(n) � logk n;

for every fixed positive integer k and logk is k iterations of the log
function.

(2) Let A be the set of all primes p of the form m2 + n2 + 1. In Wu [11], it
is proved that every interval (x, x + x115/121] for all x ≥ x0 contains a
prime of the form p = m2 + n2 + 1. Therefore, by Corollary 1, we get

RA(n) � log log n.

(3) Let A be the set of all square-full numbers (n is called k-full number if
p | n, then pk | n) and put SA = {1, 2, 3}. Then one can easily observe
the following: for each x ≥ 1, the interval ((

√
x − 1)2, x] contains at least

one square, namely, [
√

x]2, we conclude that there is a constant c1 ≥ 2.5
such that for every x ≥ 1, the interval [x−c1

√
x, x] contains a square-full

number. So by Corollary 1, we have

RA(n) � log log n.

Bateman and Grosswald [2] proved that for any x ≥ x0 the interval
[x/2, x] contains a subinterval I of length x1/3 which contains no square-
full number. Therefore, for infinitely many n

RA(n) ≥ C log log n.

If A is the set of all cube-full numbers, then by the result in [10], we get

RA(n) � log log n.

(4) Let A be the set of all square-free numbers. Filaseta and Trifonov [5]
proved that there exists a constant C > 0 such that for x sufficiently large
the interval (x, x + Cx1/5 log x] contains a square-free number. Hence by
Corollary 1, we get

RA(n) � log log n.

(5) For a fixed δ > 0, let

A =
{

n ∈ N : μ(n) �= 0, and if p|n, then p ≤ exp(logδ n)
}

.

Then Charles [3] proved that every interval [x, x+x1/2+ε] for x ≥ x0 and
for every ε > 0 contains an element of A if δ is very close to 1. Since A
satisfies the hypothesis of Corollary 1, we have

RA(n) � log log n.

(6) Let B = {bk}k≥1 denote a sequence of integers satisfying
∑

1
bk

< ∞ and
(bi, bj) = 1 for i �= j. Then the B-free integers are those positive integers
which are divisible by none of the bk. Let A = AB be the set of all B-free
numbers. In [12], Zhai proved that every interval (x − x33/79, x] contains
a B-free number for all sufficiently large x. By Corollary 1, we get

RA(n) � log log n.
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(7) A number n is called ‘Deficient’ if the sum of divisors of n is less than 2n.
A = {n : n is deficient}. It is proved in [9] that there is always a deficient
number between x and x + log2 x for large enough x. Therefore, for any
fixed k, we get

RA(n) � logk n.

4. Champions. In this section, for each A ⊆ N, we define a sequence of integers
called champions and we study some of its properties.

Definition 2. Let A ⊆ N. We say that an integer m is a A-champion if
RA(n) < RA(m) for all n < m.

The proposition below was first stated in Pillai [8] when A is the set of all
prime numbers, and he did not provide its proof. Now we prove the general
case as follows.

Proposition 1. Let A ⊆ N and {tr}r≥1 be the sequence of A-champions. Then
we have the following:
(1) t1 = 1.
(2) (Recurrence formula) tr = a(tr) + tr−1.
(3) RA(tr) = r.

Proof. (1) Trivial.
(2) If tr − a(tr) < tr−1, then

RA(tr − a(tr)) < RA(tr−1) ( Since tr−1 is a champion).

Hence
RA(tr) − 1 < RA(tr−1). (3)

Since tr is a champion and tr−1 < tr, we have RA(tr−1) + 1 ≤ RA(tr),
which gives a contradiction to (3). Hence

tr−1 + a(tr) ≤ tr.

If tr−1 + a(tr) < tr, then since RA(tr−1) < RA(tr−1 + a(tr)) < RA(tr)
there will be a champion t such that tr−1 < t < tr, a contradiction to
the fact that tr is the immediate successor of tr−1. Hence the recurrence
formula holds.

(3) By the above recurrence formula and by induction, the proof follows.
�

The Proposition below asserts that the sequence tr may grow very rapidly
with r.

Proposition 2. Let A ⊆ N and {tr}r≥1 be as in the above proposition.
(1) Suppose A satisfies the hypothesis of Theorem 1 with f(x) = xθ for some

0 < θ < 1. Then tr ≥ eecr

with some positive constant c.
(2) Suppose A satisfies the hypothesis of Theorem 1 with f(x) = δx for some

0 < δ < 1. Then

tr ≥ ecr

with some positive constant c.
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Proof. (1) If A is as in the hypothesis, then by Corollary 1, we have that

RA(n) � log log n.

By (3) of the above proposition, we have RA(tr) = r. Hence

r = RA(tr) � log log tr,

by which we get that

tr ≥ eecr

.

(2) The proof is similar to the one above. �

Example 2. Let A be set of all prime numbers. In [1], it is proved that any
interval (x − x0.525, x] contains a prime number for sufficiently large x. From
this we can deduce that RA(n) ≤ 2 log log n for sufficiently large n. Hence we
see that in this case the sequence satisfies

tr ≥ eer/2

for sufficiently large r.
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