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ON THE DIOPHANTINE EQUATION ax3 + by + c = xyz

S. Subburam, R. Thangadurai

Abstract: Consider the diophantine equation ax3 + by + c = xyz, where a, b and c are positive
integers such that gcd(a, c) = 1 and c is square-free. Let (x, y, z) be a positive integral solution
of the equation. In this paper, we shall give an upper bound for x,y and z in terms of the given
inputs a, b and c. Also, we apply our results to investigate the divisors of the elements of the
sequence {an3 + c} in residue classes.
Keywords: ?.

1. Introduction

Consider the diophantine equation

ax3 + by + c− xyz = 0, (1)

where x, y and z are unknown positive integers and, a, b and c are fixed positive
integers such that gcd(a, c) = 1 and c is square-free. This equation has been
studied by many authors including Mohanty [4], Utz [10], Mohanty-Ramasamy
[5] and [6], Luca-Togbé [3], Togbé [9], Subburam [7], Subburam-Thangadurai [8],
etc.. In 1996, Mohanty-Ramasamy in [6] proved that there are only finitely many
integral solutions to (1).

Let N(a, b, c) denotes the number of positive integral solutions (x, y, z) of equa-
tion (1). By the result of Mohanty-Ramasamy in [6], it is known that N(a, b, c)
exists and it is finite. Recently, Subburam-Thangadurai [8] produced upper bounds
for x, y and z, where (x, y, z) is a positive integeral solution of equation 1 when
a = 1 = c and investigated the divisors of the element of the sequence {n3 + 1} in
residue classes modulo n. In this paper, we give upper bounds for x, y and z of
equation (1) in terms of a, b and c. Also, by an application of this result, we study
the divisors of the elements of the sequence {an3+ c} in residue classes modulo n.

Theorem 1. Any positive integral solution (x, y, z) of (1) satisfies

x 6 abc6
[
a2b3c8(a2b2c11 + a2bc11 + 1)3 + 1

]
+ c2,
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y 6 ac6
[
a2b3c8(a2b2c9 + a2bc11 + 1)3 + 1

]
and

z 6 ac3
{
abc5

[
a2b3c8(a2b2c9 + a2bc11 + 1)3 + 1

]
+ c
}2

+ bc+ c2.

From Theorem 1, we write the following corollary.

Corollary 1. Let M = max{a, b, c}. Then any positive integral solution (x, y, z)
of (1) satisfies

max{x, y, z} 6 39M128.

Theorem 2. We have
∞∑
n=1

∑
d | an3 + c

d ≡ −b (mod n)

1 = N(a, b, c).

In 1984, H. W. Lenstra [2] proved:
For every real number α > 1/4, there exists a constant κ(α) with the follow-

ing property. If r, s and N are integers such that 0 6 r < s < N , s > Nα

and gcd(r, s) = 1, then there are at most κ(α) positive divisors of N which are
congruent to r modulo s.

Also, in the same paper, he showed that if α > 1/3, then κ(α) = 11. In 2007,
Coppersmith et al [1] showed that if α > 0.331, then κ(α) = 32. From this result,
we can prove that if n > 248 max{a, b}48 and b are any positive integers, then∑

d | an3 + c
d ≡ −b (mod n)

1 6 32.

As an immediate consequence of Theorems 1 and 2, we get the following corollary.

Corollary 2. Let M = max{a, b, c}. Then we have

∑
d | an3 + c

d ≡ −b (mod n)

1 = 0 and
∞∑
m=1

∑
d | am3 + c

d ≡ −b (mod m)

1 6 38M128,

where n is any integer with n > 34M66.

2. Preliminaries

Let (x, y, z) be any positive integral solution of equation (1). In this section, we
shall prove some lemmas which are useful to prove the main results.

Lemma 1. If gcd(c, x) = 1, then gcd(b, x) = 1.



On the diophantine equation ax3 + by + c = xyz 3

Proof. If gcd(b, x) = d for some integer d, then, by equation (1), we see that d | c
and hence d | gcd(x, c) = 1. This proves the lemma. �

Lemma 2. Let gcd(x, c) = d. Then we get the positive integers x1 = x/d, y1 =
gcd(b, d)y/d and z1 = zd/gcd(b, d) with gcd(x1, c/d) = gcd(ad2, c/d) = 1, such
that (X,Y, Z) = (x1, y1, z1) satisfies the equation

ad2X3 +
b

gcd(b, d)
Y +

c

d
= XY Z. (2)

Proof. Let d = gcd(x, c). Then by letting

x1 =
x

d
and c1 =

c

d
,

from (1), we get,

ax1x
2 +

by

d
+ c1 = x1yz.

Therefore
by

d
= x1yz − ax1x2 − c1.

Since x1yz − ax1x2 − c1 is an integer, by/d is a positive integer. Therefore d | by.
This implies that

d

gcd(b, d)
| y.

Let d1 = gcd(b, d) and y1 = gcd(b, d)y/d. So, the tuple (x1, y1, z1) satisfies

ad2x31 +
b

d 1
y1 + c1 = x1y1z1,

where z1 = zd/gcd(b, d). Since gcd(a, c) = 1 and c is square-free, we have
gcd(ad2, c1) = 1 and c1 is square-free. �

In the above lemma, if we include the condition c | b, then we have the following
result. This gives the converse part also.

Lemma 3. Consider equation (1) with c | b. Let gcd(x, c) = d. Then we get
the positive integers x1, y and z with gcd(ad2, c/d) = gcd(x1, c/d) = 1, such that
(X,Y, Z) = (x1, y, z) satisfy the equation

ad2X3 +
b

d
Y +

c

d
= XY Z. (3)

Conversely, if (x, y, z) is a positive integral solution of equation (3), for some
divisor d of c such that gcd(x, c/d) = 1, then (dx, y, z) is a positive solution of
equation (1).
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Remark 1. Lemma 2 suggests that we can always take a positive solution (x, y, z)
of equation (1) with gcd(x, c) = 1. In this case, if the solution (x, y, z) satisfies
x 6 f1(a, b, c), y 6 f2(a, b, c) and z 6 f3(a, b, c) for some polynomial functions
fi’s in a, b and c with positive coefficients, then, in the general case, the solution
(x′, y′, z′) of equation (1) satisfies x′ 6 cf1(ac

2, b, c), y′ 6 cf2(ac
2, b, c) and z′ 6

cf3(ac
2, b, c).

Remark 2. Since y|(ax3 + c) and (xz − b)|(ax3 + c), an upper bound of x gives
immediately upper bounds for y and z via y 6 ax3 + c and z 6 ax2 + c+ b.

Lemma 4. Assume that gcd(x, c) = 1. Then there exist positive integers l and r
with xl = by + c, such that (X,Y, Z) = (l, y, r) satisfy the equation

cX3 + abc2Y + ac3 = XY Z. (4)

Proof. Since gcd(x, c) = 1, by Lemma 1, we have gcd(x, b) = 1. As ax3+by+c =
xyz, we see that x | (by+ c) and y | (ax3 + c). Therefore, let l = (by+ c)/x. Then
y | (xl−c). As, y | (ax3+c), we have y | (cl3+ac3). Therefore y | (cl3+abc2y+ac3).
Also, as l | (by + c), we conclude that l | (cl3 + abc2y + ac3).

Let λ = gcd(l, y). Then, as y | (xl − c), we have λ | c and hence λ | gcd(y, c).
Since gcd(x, c) = 1 and λ | gcd(y, c), we get λ | a. Hence λ | gcd(a, c) = 1.
Therefore gcd(l, y) = 1. Then there exists a positive integer r such that

cl3 + abc2y + ac3 = lyr.

This proves the lemma. �

Lemma 5. Assume that gcd(x, c) = 1. Then there exists a positive integral solu-
tion (l(x), y, l(z)) of equation (4) satisfying the following;

(i) xl(x) = by + c.
(ii) If cl(x) > x, then l(z) > b.
(iii) If ax > l(x), then z > b.
(iv) If x > (ac+ 2)/(2a− 1) and l(x) > x+ 2, then z 6 ab.
(v) If l(x) > c+ 2 and x > l(x) + 2, then l(z) 6 abc2.

Proof. By Lemma 4, there exist positive integers l(x) and l(z) such that

cl(x)3 + abc2y + ac3 = l(x)yl(z)

and
xl(x) = by + c.

This proves (i).
Since xl(x) = by + c and x 6 cl(x), we have c 6 cl(x)2 − by. Suppose that

l(z) 6 b. Then we get,

c 6 cl(x)2 − by 6 cl(x)2 − l(z)y = −(abc2y + ac3)/l(x) < 0,

which is a contradiction. This proves (ii).
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Since xl(x) = by+ c and ax > l(x), we have c 6 ax2 − by. Suppose that z 6 b.
Then we get

c 6 ax2 − by 6 ax2 − zy = −(by + c)/x < 0,

which is a contradiction. This proves (iii).
Now, we put y = (xl(x)− c)/b in ax3 + by + c = xyz. Then we get,

z =

(
ax2 + l(x)

xl(x)− c

)
b.

Therefore, to prove (iv), it is enough to prove that if

x >
ac+ 2

2a− 1
and l(x) > x+ 2,

then, (
ax2 + l(x)

xl(x)− c

)
6 a.

Suppose that (ax2 + l(x))/(xl(x)− c) > a. Then l(x) < (ax2 + ac)/(ax− 1). Since
x > (ac + 2)/(2a − 1), we have (ax2 + ac)/(ax − 1) 6 x + 2. Hence, l(x) < x+ 2
which is a contradiction. Therefore,(

ax2 + l(x)

xl(x)− c

)
6 a.

Now, we shall assume that

l(x) > c+ 2 and x > l(x) + 2.

We prove that l(z) 6 abc2. Putting by = l(x)x− c in

cl(x)3 + abc2y + ac3 = l(x)yl(z),

we get,

l(z) =

(
l(x)2 + acx

xl(x)− c

)
bc.

Therefore, to prove (v), it is enough to prove that(
l(x)2 + acx

xl(x)− c

)
6 ac.

Assume that (l(x)2 + acx)/(xl(x)− c) > ac. Then, we get,

x < (l(x)2 + c)/(l(x)− 1).

Since x > l(x) + 2, we get

l(x) + 2 < (l(x)2 + c)/(l(x)− 1)

and hence
l(x) < c+ 2,

a contradiction. Hence (v) follows. This proves the lemma. �
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Lemma 6. For any non-zero integers x, a and c, we have

gcd(ax2 + x− 1, x2 − x− c) divides
∣∣a2c2 − 3ac− a− c

∣∣
and

gcd(ax2 + x+ 1, x2 + x− c) divides
∣∣a2c2 + 3ac+ a− c

∣∣ .
Proof. Let d = gcd(ax2+x−1, x2−x−c). Then d | (ax2+x−1) and d | (x2−x−c).
It is clear that if q | A and q | B for any integers q, A and B, then q | A−B. From
this argument, we have the first assertion. To get the second assertion, replace x
by −x and a by −a in the first assertion and get the result. �

3. Proof of Theorem 1

Proof. Let (x, y, z) be any positive integral solution of equation (1). By Remark 1,
it is enough to assume that gcd(x, c) = 1. Therefore, by Lemma 1, we have
gcd(x, b) = 1.

Case 1: z 6 ab. Since ax3 + c = (xz − b)y, we get (xz − b) | (ax3 + c). Since

z3(ax3 + c) = (xz − b)(az2x2 + abxz + ab2) + (cz3 + ab3),

we see that (xz − b) | (cz3 + ab3). Therefore

(xz − b) 6 (cz3 + ab3).

From this, we observe that

x 6 cz2 + ab3 + b 6 ab3 + ca2b2 + b. (5)

and
y 6 a(ab3 + ca2b2 + b)3 + c. (6)

Case 2: z > ab, l(x) > c + 2 and x > l(x) + 2. Then, by Lemma 5, we have
l(z) 6 abc2. Therefore, by replacing a by c, b by abc2 and c by ac3 in Case 1, we
get,

y < c(c(abc2)3 + ac5(abc2)2 + abc2)3 + ac3.

Thus, we get,
y 6 ac3[a2b3c4(a2b2c5 + a2bc7 + 1)3 + 1]. (7)

Since xl(x) = by + c, we get,

x 6 abc3[a2b3c4(a2b2c5 + a2bc7 + 1)3 + 1] + c. (8)

Therefore, by Remark 2, we get

z 6 a
{
abc3[a2b3c4(a2b2c5 + a2bc7 + 1)3 + 1] + c

}2
+ b+ c. (9)
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Case 3: z > ab and, l(x) < c+ 2 or x < l(x) + 2. Suppose that

l(x) < c+ 2.

Then, by Remark 2, we have

y 6 c(c+ 2)3 + ac3.

Since x 6 by + c, we have

x 6 b[c(c+ 2)3 + ac3] + c.

Next we shall assume that x < l(x) + 2. By Lemma 4, there exists a positive
integral solution (l(x), y, l(z)) of equation (4) satisfying xl(x) = by + c. Since
z > ab, by Lemma 5, we conclude that either

x <
ac+ 2

2a− 1
or l(x) < x+ 2.

Consider the case l(x) − 2 < x < l(x) + 2. Suppose that x = l(x). Since
xl(x) = by + c, we get x2 = by + c. Hence, y = (x2 − c)/b. Put this y in
ax3 + by + c = xyz. Then we have

z =
bx(ax+ 1)

x2 − c
.

Since gcd(x, c) = 1, gcd(x, x2 − c) = 1. Hence x2 − c 6 b(ax + 1). That is,
x(x − ab) 6 b + c. If x > ab, then x 6 b + c. Otherwise x 6 ab. Hence,
x 6 max{b+ c, ab}.

Suppose that x = l(x) + 1. Since xl(x) = by + c, by + c = x(x − 1) and so
y = (x2 − x− c)/b and putting this value in equation (1), we get

z =
b(ax2 + x− 1)

x2 − x− c
. (10)

By Lemma 6, we see that

gcd(ax2 + x− 1, x2 − x− c) divides
∣∣a2c2 − 3ac− a− c

∣∣ .
Therefore, by equation (10), we get,

x2 − x− c 6 b
∣∣a2c2 − 3ac− a− c

∣∣ .
Thus, we get,

x2 − x− c 6 |a2bc2 − 3abc− ab− cb|.

Hence, we arrive at,
x 6 |a2bc2 − 3abc− ab− cb|+ c.
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Suppose that l(x) = x + 1. Since xl(x) = by + c, by + c = x(x + 1) and so
y = (x2 + x− c)/b. Put this value of y in equation (1), we get

z =
b(ax2 + x+ 1)

x2 + x− c
.

By Lemma 6, we get,

x2 + x− c 6 b
∣∣a2c2 + 3ac+ a− c

∣∣ .
Therefore, we get

x 6 [b|a2c2 + 3ac+ a− c|+ c]1/2.

By Remarks 1 and 2, and equations (10), (11) and (12), we get the bounds.
This proves the theorem. �

4. Proof of Theorem 2

Let n be any positive integer. Let d be a positive divisor of an3 + c such that
d ≡ −b (mod n). Then there exists a positive integer m such that d = mn − b.
Since (mn−b) | (an3+c), there is a positive integer y such that an3+c = (mn−b)y
which in turn satisfies an3 + by + c = myn. That is, for a positive divisor d of
an3 + c with d ≡ −b (mod n), we get a positive integral solution (n, y,m) of (1).
Indeed, for any two distinct positive divisors d1 and d2, d1 ≡ −b (mod n) and
d2 ≡ −b (mod n), of an3 + c, we get distinct positive integral solutions of (1).
Therefore, we get,

∞∑
n=1

∑
d | an3 + c

d ≡ −b (mod n)

1 6 N(a, b, c).

For the other inequality, let (n, y, z) be a positive integral solution of (1). Then
we see that (nz − b) divides an3 + c and nz − b is positive as y and an3 + c are
positive. By letting d = nz − b, we get a positive divisor of an3 + c which is ≡ −b
(mod n). Thus, we get,

N(a, b, c) 6
∞∑
n=1

∑
d | an3 + c

d ≡ −b (mod n)

1.

These inequalities prove the theorem.
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