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ON THE DIOPHANTINE EQUATION az? + by + ¢ = zyz
S. SUBBURAM, R. THANGADURAI

Abstract: Consider the diophantine equation az® + by + ¢ = xyz, where a,b and ¢ are positive
integers such that ged(a,c) = 1 and c is square-free. Let (z,y, 2) be a positive integral solution
of the equation. In this paper, we shall give an upper bound for z,y and z in terms of the given
inputs a, b and ¢. Also, we apply our results to investigate the divisors of the elements of the
sequence {an® + c} in residue classes.
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1. Introduction

Consider the diophantine equation
az® + by +c—ayz =0, (1)

where z, y and z are unknown positive integers and, a, b and c are fixed positive
integers such that ged(a,c) = 1 and c is square-free. This equation has been
studied by many authors including Mohanty [4], Utz [10], Mohanty-Ramasamy
[5] and [6], Luca-Togbé [3], Togbé [9], Subburam [7], Subburam-Thangadurai [8],
etc.. In 1996, Mohanty-Ramasamy in [6] proved that there are only finitely many
integral solutions to (1).

Let N(a,b, c) denotes the number of positive integral solutions (z,y, z) of equa-
tion (1). By the result of Mohanty-Ramasamy in [6], it is known that N(a,b,c)
exists and it is finite. Recently, Subburam-Thangadurai [8] produced upper bounds
for z, y and z, where (x,y, z) is a positive integeral solution of equation 1 when
a =1 = c and investigated the divisors of the element of the sequence {n® + 1} in
residue classes modulo n. In this paper, we give upper bounds for z, y and z of
equation (1) in terms of a,b and ¢. Also, by an application of this result, we study
the divisors of the elements of the sequence {an®+ c} in residue classes modulo n.

Theorem 1. Any positive integral solution (z,y,z) of (1) satisfies
z < abc® [a®b3 B (a®b?ct + aPbett + 1) + 1] + 2,
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y < ac® [a®b* A (a®b?c? + a®be't 4 1) + 1]
and )
z < ac® {abc® [a®bPP(a®b*® + a®be' +1)° + 1] + ¢} + be+ 2.
From Theorem 1, we write the following corollary.

Corollary 1. Let M = max{a,b,c}. Then any positive integral solution (x,y, z)
of (1) satisfies
max{z,y, 2} < 37 M.

Theorem 2. We have

Z Z 1= N(a,b,c).

n=1 d|an®+c
d=-b (mod n)
In 1984, H. W. Lenstra [2| proved:

For every real number oo > 1/4, there exists a constant k(«) with the follow-
ing property. If r,s and N are integers such that 0 < r < s < N, s > N¢
and ged(r,s) = 1, then there are at most k(a) positive divisors of N which are
congruent to r modulo s.

Also, in the same paper, he showed that if a > 1/3, then x(«) = 11. In 2007,
Coppersmith et al [1] showed that if o > 0.331, then x(a) = 32. From this result,
we can prove that if n > 2%8 max{a, b}*® and b are any positive integers, then

Z 1<32.

d|an3+c
=—-b (mod n)

As an immediate consequence of Theorems 1 and 2, we get the following corollary.

Corollary 2. Let M = max{a,b,c}. Then we have

Z 1=0 and i Z 1< 3B¥M,

d|an3+c m=1 d|am?+c
d=-b (modn) d=-b (modm)

where n is any integer with n > 3*M%.

2. Preliminaries

Let (z,y,2) be any positive integral solution of equation (1). In this section, we
shall prove some lemmas which are useful to prove the main results.

Lemma 1. If ged(c,z) = 1, then ged(b,z) = 1.
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Proof. If ged(b, ) = d for some integer d, then, by equation (1), we see that d | ¢
and hence d | ged(z, ¢) = 1. This proves the lemma. |

Lemma 2. Let ged(z,c) = d. Then we get the positive integers x1 = x/d, y1 =
ged(b,d)y/d and z; = zd/ged(b,d) with ged(z1,c/d) = ged(ad?,c/d) = 1, such
that (X,Y, Z) = (x1,y1, 21) satisfies the equation

b c
PX3+———V+-=XYZ 2
AT ) T @)

Proof. Let d = ged(z,¢). Then by letting

T, = and c1 =

x c
d d’
from (1), we get,
o, by
ar1x” + — + ¢ = T1Y=%.

d

Therefore
by _ 2
7d = T1Yyz —ar1xr —Cy.

2 — ¢ is an integer, by/d is a positive integer. Therefore d | by.

Since z1yz — arix
This implies that
d

ged6,d) |V

Let dy = ged(b,d) and y; = ged(b, d)y/d. So, the tuple (x1,y1, z1) satisfies
2.3, b
ad”ry + Ra +a =ziyi2,

where z; = zd/ged(b,d). Since ged(a,c¢) = 1 and ¢ is square-free, we have
ged(ad?,¢1) = 1 and ¢; is square-free. |

In the above lemma, if we include the condition ¢ | b, then we have the following
result. This gives the converse part also.

Lemma 3. Consider equation (1) with ¢ | b. Let ged(x,¢) = d. Then we get
the positive integers w1,y and z with ged(ad?,c/d) = ged(wy,c/d) = 1, such that
(X,Y,2) = (x1,y, 2) salisfy the equation

b
ad®X® + 2y + S = XY Z. (3)
d d
Conversely, if (z,y,z) is a positive integral solution of equation (3), for some
divisor d of ¢ such that ged(x,c/d) = 1, then (dx,y,z) is a positive solution of
equation (1).
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Remark 1. Lemma 2 suggests that we can always take a positive solution (z,y, z)
of equation (1) with ged(z,c¢) = 1. In this case, if the solution (z,y, z) satisfies
x < fi(a,b,¢), y < fa(a,b,c) and z < f3(a,b,c) for some polynomial functions
fi’s in a, b and ¢ with positive coefficients, then, in the general case, the solution
(2',1y,2") of equation (1) satisfies ' < cfi(ac?,b,c), ¥y < cfa(ac?, b,c) and 2’ <
cfs(ac? b, c).

Remark 2. Since y|(ax® + ¢) and (zz — b)|(az® + ¢), an upper bound of z gives
immediately upper bounds for  and z via y < az® + ¢ and z < ax? + ¢+ b.

Lemma 4. Assume that ged(x,c) = 1. Then there exist positive integers | and r
with xl = by + ¢, such that (X,Y,Z) = (I,y,r) satisfy the equation

cX? 4+ abc®Y +ac® = XY Z. (4)

Proof. Since ged(z,c) = 1, by Lemma 1, we have ged(x,b) = 1. As az®+by+c =
xyz, we see that = | (by +c¢) and y | (ax® + ¢). Therefore, let [ = (by + ¢)/z. Then
y | (zl—c). As,y | (ax®+c), we have y | (cI®+ac?). Therefore y | (cl®>+abc*y+ac?).
Also, as [ | (by + ¢), we conclude that [ | (cI® + abc?y + ac?).

Let A = ged(l,y). Then, as y | (zl — ¢), we have X | ¢ and hence A | ged(y, ¢).
Since ged(x,¢) = 1 and X | ged(y,c), we get A | a. Hence A | ged(a,c) = 1.
Therefore ged(l,y) = 1. Then there exists a positive integer r such that

cl® + abc®y + ac® = lyr.
This proves the lemma. |

Lemma 5. Assume that ged(z,c) = 1. Then there exists a positive integral solu-
tion (I(x),y,1(2)) of equation (4) satisfying the following;
i) zl(z) =by + c.
i) If cl(z) = =z, then I(z) > b.
iii) If ax > l(z), then z > b.
) If x 2 (ac+2)/(2a — 1) and l(z) > © + 2, then z < ab.
) If l(z) = ¢+ 2 and x > I(z) + 2, then I(2) < abc?.

Proof. By Lemma 4, there exist positive integers I(x) and I(z) such that
cl(x)® 4+ abc*y + ac® = I(x)yl(z)

and
zl(z) = by +c.

This proves (7).
Since zl(z) = by + ¢ and = < cl(z), we have ¢ < cl(z)? — by. Suppose that
[(z) < b. Then we get,

c<c(z)? —by < cx)? —1(2)y = —(abc*y + ac®) /I(x) < 0,

which is a contradiction. This proves (ii).
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Since zl(x) = by + c and ax > I(z), we have ¢ < ax? — by. Suppose that z < b.
Then we get

c<ar? —by<ax® —zy=—(by+c)/z <0,
which is a contradiction. This proves (7i).

Now, we put y = (zl(x) — ¢)/b in ax® + by + ¢ = xyz. Then we get,
2
e + () h
zl(x) — ¢
Therefore, to prove (iv), it is enough to prove that if

2
z}ach and
20 — 1

l(z) > x +2,

ar?® + I(z) u
(Sore) <
Suppose that (az? +1(x))/(xl(x) — ¢) > a. Then I(z) < (az? +ac)/(ax — 1). Since

x> (ac+2)/(2a — 1), we have (ax? + ac)/(ax — 1) < x + 2. Hence, I(z) < z + 2
which is a contradiction. Therefore,

l(x) 2 c+2and x> l(x) + 2.
We prove that [(z) < abc?. Putting by = [(z)x — ¢ in

then,

Now, we shall assume that

cl(x)® + abc*y + ac® = I(z)yl(2),

l 2
I(z) = Uz)* +ace be.
zl(z) —c
Therefore, to prove (v), it is enough to prove that
l 2
(x)* + acx < ac
zl(xz) — ¢

Assume that (I(z)? + acz)/(zl(x) — ¢) > ac. Then, we get,

we get,

< (I(x)*+¢)/(I(x) —1).

Since z > l(z) + 2, we get

I(z)+2 < (I(x)®+¢)/(I(x) = 1)

and hence

l(z) <c+2,
a contradiction. Hence (v) follows. This proves the lemma.

5
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Lemma 6. For any non-zero integers x, a and c, we have

ged(az® +x —1,2° —x — ¢ divides |a*c® — 3ac —a — c’

and
ged(az® + 2+ 1,22 + 2 — ¢ divides |a202+3ac+afc} .

Proof. Let d = ged(az?+x—1,2%2—z—c). Thend | (az?+x—1) and d | (22 —z—c).
It is clear that if ¢ | A and ¢ | B for any integers ¢, A and B, then ¢ | A— B. From
this argument, we have the first assertion. To get the second assertion, replace x
by —z and a by —a in the first assertion and get the result. |

3. Proof of Theorem 1

Proof. Let (z,y, z) be any positive integral solution of equation (1). By Remark 1,
it is enough to assume that ged(z,¢) = 1. Therefore, by Lemma 1, we have
ged(z,b) = 1.

Case 1: z < ab. Since az® + ¢ = (zz — b)y, we get (vz —b) | (ax® + ¢). Since

22(ax® + ¢) = (zz — b)(az®2? + abrz + ab?) + (c2® + ab®),
we see that (vz — b) | (cz® + ab®). Therefore
(xz — b) < (c2® + ab?).
From this, we observe that
z < 2?4+ ab® + b < ab® + ca’b? + b. (5)

and
y < alab® + ca®b® +b)% +c. (6)

Case 2: z > ab, l(x) > ¢+ 2 and x > I(x) + 2. Then, by Lemma 5, we have
I(z) < abc?. Therefore, by replacing a by ¢, b by abc? and ¢ by ac® in Case 1, we
get,

y < c(c(abc?)® + ac®(abc?)? + abc?)? + ac®.

Thus, we get,
y < ac®[a?b3ct (a2 4 a?be” + 1) 4 1]. (7)

Since zl(z) = by + ¢, we get,
z < abc?[a?b3ct (a*b?® + a®be” + 1)° + 1] +c. (8)
Therefore, by Remark 2, we get

z < a{abc®[a®bPc* (a®b*c® + a’bc” +1)% + 1] + 0}2 +b+ec (9)
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Case 3: z > ab and, I(r) < ¢+ 2 or x < I(x) + 2. Suppose that
l(z) <c+2.
Then, by Remark 2, we have
y < c(c+2)° +ac’.
Since x < by + ¢, we have
x < ble(e+2)% +ac®] +c.
Next we shall assume that © < [(x) + 2. By Lemma 4, there exists a positive

integral solution (I(x),y,{(z)) of equation (4) satisfying zi(z) = by + c. Since
z > ab, by Lemma 5, we conclude that either

< ac+ 2
20 — 1

or l(z) <z+2.

Consider the case I(z) — 2 < = < l(z) + 2. Suppose that = = [(z). Since
zl(x) = by + ¢, we get #2 = by + c. Hence, y = (22 — ¢)/b. Put this y in
ax® 4+ by + ¢ = zyz. Then we have

b 1
L x(ax + 1)

2 —¢c

Since ged(z,c) = 1, ged(z,2? — ¢) = 1. Hence 22 — ¢ < b(ax + 1). That is,
z(x —ab) < b4+c. Iz > ab, then z < b+ ¢. Otherwise x < ab. Hence,
x < max{b+ ¢, ab}.

Suppose that = I(x) + 1. Since zl(z) = by + ¢, by + ¢ = z(x — 1) and so

y = (2% — x — ¢)/b and putting this value in equation (1), we get
blaz? +x — 1)
== ° '/ 10
‘ 22—z —c (10)
By Lemma 6, we see that
ged(ax? + o — 1,22 — 2 — ¢) divides |a*c® —3ac—a —¢].

Therefore, by equation (10), we get,

mQ—m—c<b|a202—3ac—a—c’.

Thus, we get,
22—z — ¢ < |a®bc?® — 3abe — ab — cb).

Hence, we arrive at,
z < |a?be® — 3abe — ab — cb| + c.
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Suppose that I(z) = x + 1. Since zl(z) = by + ¢, by + ¢ = z(x + 1) and so
y = (22 + 2 — ¢)/b. Put this value of y in equation (1), we get

blax? +x +1)
2+x—c

By Lemma 6, we get,
x2+x—c<b|a202+3ac+a—c’.

Therefore, we get
z < [blac® + 3ac+ a — ¢ + /2.

By Remarks 1 and 2, and equations (10), (11) and (12), we get the bounds.
This proves the theorem. |

4. Proof of Theorem 2

Let n be any positive integer. Let d be a positive divisor of an® + ¢ such that

= —b (mod n). Then there exists a positive integer m such that d = mn — b.
Since (mn—"b) | (an®+-c), there is a positive integer y such that an3+c = (mn—b)y
which in turn satisfies an® + by + ¢ = myn. That is, for a positive divisor d of
an® + ¢ with d = —b (mod n), we get a positive integral solution (n,y, m) of (1).
Indeed, for any two distinct positive divisors d; and ds, di = —b (mod n) and
dy = —b (mod n), of an® + ¢, we get distinct positive integral solutions of (1).
Therefore, we get,

o0

S Y 1<Nabo.

n=1 d|an3+c

d=-b (mod n)

For the other inequality, let (n,y, z) be a positive integral solution of (1). Then
we see that (nz — b) divides an® + ¢ and nz — b is positive as y and an® + ¢ are
positive. By letting d = nz — b, we get a positive divisor of an® + ¢ which is = —b
(mod n). Thus, we get,

N(mb,c)éi Z 1.

n=1 d|an®+c
=-b (mod n)

These inequalities prove the theorem.
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