ON NORM FORM DIOPHANTINE EQUATIONS

S. SUBBURAM AND R. THANGADURAI

ABSTRACT. Let R be a principal ideal domain. In this article, we study the principal ideals of
a quadratic extension ring R[vVd] = {a + bVd : a,b € R} where d € R such that Vd ¢ R. As
an application, we solve some norm form diophantine problems.

1. INTRODUCTION

Let R be a principal ideal domain. Let d be an element of R such that the polynomial X2 —d
is irreducible in R[X]. Then

RIVd| = {z +yVd:z,y € R}

is an integral domain under the usual addition and multiplication. Also, R[v/d] is a R-module
with a basis {1,v/d}. Let R be the principal ideal generated by the element z of R. We denote
gedg (z,y) the greatest common divisor of the ideals R and yR, in R. For any x and y in Z,
the set of all rational integers, ged(z,y) = gedy(x, y).

Consider the equation X2 — dY? = m with d,m € R. Let (a,b) and (u,v), a,b,u,v € R
and gedg (a,db) = gedg(u, dv) = R, be solutions of X2 — dY? = m. Then we call (a,b) is an
associate of (u,v) in R[\/E], if a + bv/d is an associate of u + vv/d or u — vV/d.

In 1801, C. F. Gauss proved: Let p be any prime in Z. Then the equation X?+Y? = p has a
solution (z,y) in Z x Z if and only if there is an element n in Z such that n?+1 € pZ. Moreover,
such solution is unique up to its associates in Z[v/—1] (see [2]). Note that Z and Z[\/—1] are
principal ideal domains. In this paper, we have the following general theorem.

Theorem 1. Let R and R[\/ﬁ] be principal ideal domains and let p be any prime element of R
such that gedg (d, p) = R. Then the equation X2 —dY? = up has a solution (z,y) in R x R for
some unit u in R if and only if there is an element n € R such that n®> —d € pR. Moreover,
such solution is unique up to its associates in R[Vd].

Since Q[X], the set of all rational polynomials in variable X, is a principal ideal domain, we
have the following corollary.

Corollary 1.1. Let d be a rational number which is not a perfect square in Q and let f be any
irreducible polynomial in Q[X]. Then the equation Y? — dZ? = uf has a solution (f1, f2) in
Q[X] x Q[X] for some non-zero u in Q if and only if there is an element g € Q[X] such that
g% —d € fQ[X]. Moreover, such solution is unique up to its associates in Q(v/d)[X].

In 1940, I. Niven [5] proved that a Gaussian integer of the form a4 2bi is expressible as a sum
of two squares of Gaussian integers if and only if not both a/2 and b are odd integers. In 2011,
D. Wei in [9] proposed a method for determining which integers can be written as a sum of two
integral squares for quadratic fields Q(,/p) and Q(y/—p), where p is a prime.
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Let K be a number field, Ok be its ring of integers and d € Ok such that O and OK[\/g]
are principal ideal domains. If we put R = Ok in Theorem 1, then we have,

Corollary 1.2. Let K be a number field, Ok be its ring of integers and d € Ok such that
Ok and (’)K[\/&] are principal ideal domains. Let p be any prime element in Ok such that
gedo,. (d,p) = Ok. Then the equation X2 —dY? = up has a solution (z,y) in O x O for
some unit w in O if and only if there is an element n € Ok such that n®> —d € pOx. Moreover,
such solution is unique up to its associates in O [Vd].

Legendre, Gauss and Ramanujan studied diagonal integral quadratic forms of 3 or 4 variables.
Here we apply our method to study diagonal integral quadratic forms in 4 variables as follows.
Let (- | p) denotes the Legendre symbol.

Corollary 1.3. Let F' be a quadratic extension over Q and let p be a prime element in Z as
well as in Of, the ring of integers of F'.
(i) (a)Let F = Q(v/=3). If there exists an element n € O such that n?> — 2 € pOp, then
the equation X? — X3 — 2Y + 2Y# = +p has a rational integer solution.
(b) If p=5,11 (mod 12) and p = 1,7 (mod 8), then the equation X? — X2 —2YP+2Y$ =
+p has a rational integer solution.
(i) (a) Let F = Q(y/—11). If there exists an element n € Of such that n?> — 2 € pOp, then
the equation X? — 3X3 — 2Y{ 4+ 6Y$ = £p has a rational integer solution.
(b) If (p | 11) = —1 and p = 1,7 (mod 8), then the equation X? —3X3 —2Y2+6Y3 = +p
has a rational integer solution.

In 2007, N. Saradha and A. Srinivasan [8] while studying solutions of some generalized Ra-
manujan - Nagell equation, they proved the following. For any square-free rational integer d > 1
and for any odd prime p, the equation X2 + dY? = p has at most one solution (z,y), > 0 and
y > 0, in integers. In this paper, we prove the following theorem.

Theorem 2. Let p be a prime element in R such that gcdg(d,p) = R. Then the equation
X2 _dy?=p
has at most one solution (x,y) € R X R up to its associates in R[v/d).

In order to prove the above results, we need to study principal ideals structure dealt in
Theorem 3. Let E be the quotient field of R. Throughout the article, the elements ni, na, my
and ms are in R such that n; —I—ngx/g and mq +meoVd are linearly independent over E. Also the
submodule a of R[\/&] is of the form a = (ny —|—n2\/g)7€69 (mq +maVd)R. Here ming —nimg # 0.
Theorem 3. Let a be an ideal in R[\/&] with gedg (1, ng, m1,ma) = R. Then

a = (a+bVd)R[Vd]
for some a,b € R if and only if a® — db?> = u(ming — nyma) for some unit u in R, with

bmy — ama,amy — bdma,bny — ang, any — dbng € (ming — nimeg)R.

The following corollary is an improvement of the results obtained by C. S. Queen [10] where she
gave a simple characterization of principal ideal domains and as an application, it was proved
that if p = 5 (mod 8) is any prime, then Z[/2p] is not a principal ideal domain. However
Corollary 3.1 covers much more classes of real quadratic fields.
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Corollary 3.1. Let p =5 (mod 8) be any prime. Let d = pn be a square-free positive integer
for some integer n, such that d = 2,3 (mod 4). Then Z[\/d] is not a principal ideal domain.

Theorem 4. Let d be a square-free integer, p any odd prime, a > 1 an integer and k =
+2, 44, +p® or +2p®. Then the equation X?> —dY? = k has at most one integral solution (z,y),
ged(x, dy) = 1, up to its associates in Z[\/d|.

2. PRELIMINARIES

We shall start with some lemmas.

Lemma 1. The additive subgroup a is an ideal in R[\/d] if and only if
m% - m%d, n% - n%d, dmaong — nimy € (ngmq — mang)R.

Proof. Tt is clear that a is an ideal in R[V/d] if and only if for any element a + bv/d of R[v/d]
and for any x,y € R, there exist z1 and y; in R such that

[(n1 4+ noVd)x + (my + maVd)y)(a + bVd) = (n1 4+ noVd)z + (m1 + maVd)y,.

This is equivalent to

(n1x+miy)a—+ db(nox +moy) = niz1 +miy1 and (n1x+miy)b+ a(nex +may) = naxy +mayi.
That is,

ni[(niz +miy)b + a(naz + may)] — n2[(n1x + miy)a + db(naz + may)] € (mang — namy)R

and

mi[(niz + miy)b + a(nox + may)] — ma[(niz + miy)a + db(nox + may)] € (man1 — nom1)R,
as x1,y; € R. Thus, we have that a is an ideal in R[V/d] if and only if

b(n% — n%d)x + b(nimy — dmana)y € (many — nami)R

and
yb(m? — m3d) + bz(nymy — dmansg) € (mani — ngmy)R

for any b, x, y € R. This proves the result. O

Remark. Suppose the ideal a = (a + bvV/d)R[Vd] for some a + bv/d € a. Then gedg(a,b) = R
if and only if gedg (n1,n2, mi,my) = R. This can be easily proven.

Proof of Theorem 3. Tt is clear that for some a,b € R, a = (a+bvVd)R[Vd] if and only if (i) and
(ii) hold:
(i) For any z; + y1Vd € R[Vd], there exist unique x and y in R such that (a + bvV/d)(z1 +
y1Vd) = (n1 + naVd)x + (mq + maVd)y;
(ii) For any z,y € R, there exist unique z1 and y; in R such that (ny + navVd)x + (my +

maVd)y = (a + bVd)(z1 + y1Vd).
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In the above observation, (i) is equivalent to the following; for any x1,y1 € R, there exist
unique = and y in R such that
n1x + myy = axy + bdyr and nox + moy = bx1 + ay;.
That is (i) is equivalent to, for any x1,y; € R,
(amg — bmy)x1 + (dbmg — amy)y1, (ang — bny)zy + (dbng — any)y; € (many — nami)R.
So (i) holds if and only if
bmy — amg, amy — bmad, any — bny, dbng — any € (ming — nyme)R.
Now we shall consider (ii). Since a + bv/d, a — bv/d # 0 and R[V/d] is an integral domain,
a® — b2 d # 0.
Then (ii) holds if and only if for any z,y € R, there exist unique z; and y; in R such that
n1x + myy = axq + bdyi, and nex + moy = br1 + ay.
So (ii) is equivalent to the following; for any z,y € R,
(ang —bny)x + (amg —bma)y € (a> —b2d)R and (any — dbny)x + (am1 — dbma)y € (a? — db*)R.
That is,
ani — dbno, amy — dbme, any — bny, ame — bmq € (a2 — db2)R
and hence a(ming — nims), b(ming — nims) € (a® — db*)R. Since gedg (a,b) = R, we have,
(ming — nima)R C (a® — db*)R. (1)
Now, since bmj — amg, am; — bmad € (ming — nima)R,
ma(a® — db*), m1(a® — db®) € (ming — nyma)R.
Similarly, since ang — bny, dbng — any € (ming — nyma)R, we have
n1(a? — db*), na(a?® — db*) € (ming — nymsa)R.
So gedg (n1, n2, my,ma)(a? — db?) C (ming — nymsa)R. Therefore
(a® — db*>)R C (ming — nima)R. (2)
From (1) and (2), we have a® — db* = u(mina — nyms) for some unit u € R. This proves the

theorem. 0O

The following lemma gives a link explicitly between the generators of a principal ideal and
the integral solutions of the equation z? — dy? = k.

Lemma 2. Let k = 2? — dy? be an element in R for some z,y € R with gedg (v, dy) = R. If
(1) kn =m? —d for somen,m € R
(2) mx +dy,my +x € kR or mx —dy, my — x € kR,

then there exists a principal ideal P in R[v/d] such that
P =nR+ (m+ Vd)R.
Moreover, if P = (a -+ bV/d)R[Vd] for some a,b € R, then

( b)_<mx+dy my+x> or (mx—dy x—my)
CUE\TE Tk ko k)
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Proof. Since (m? —d) € nR, by Lemma 1, we see that P = nR + (m + vd)R is an ideal in
R[Vd]. Therefore, it is enough to prove that P is a principal ideal.

First we shall prove that if mx 4 dy, my + = € k'R, then P is the principal ideal generated by
a + bv/d, where

mz + dy my—i—x)

<a’b):( Kk

Since P =nR + (m + \/&)R, by putting n1 =n, ng =0, m; = m and mg = 1 in Theorem 3, we
see that it is enough to prove the following conditions;

bm — a,am —bd € nR, and a® — db* = n,

because it is clear that

k k k
Since n = (m? — d)/k, we have that
<m:p+dy>2 _d (my+m>2 -
k k N

That is, a® — db® = n. So we need only to check the conditions bm — a,am — bd € nR. Now,
consider

2, _
bm—a:m(my+x) B (mx + dy) _m7y dy

k k k

Similarly, we have am —bd € nR. Thus P is the principal ideal in R[v/d], generated by a4+ bv/d.
Since (z,y) € R x R is a solution of X2 —dY? = k with ged g (z,dy) = R, (z, —y) € Rx R is

also a solution of the equation with ged g (2, —dy) = R. Therefore the above statement is true
for (z, —y) also. This proves the lemma. O

=ny € nR.

Lemma 3. Let k be an element in R and let (x1,y1) and (x2,y2) in R X R be two solutions of
the equation

22 —dy? =k

with gedg (21, dy1) = gedp (22, dys) = R. If kn = m? — d for some m,n € R and if one of the
following four is true.

(1) may + dy1, my1 + x1 € kR, mxa + dya, mya + x2 € kR;
(2) mxy — dy1, my; — x1 € kR, mxa — dya, mya — x2 € kR;
(3) mxy + dy1, my1 + x1 € kR, mxa — dya, mys — x2 € kR;
(4) mzxy — dyr, my1 — x1 € kR, mxs + dy2, mys + x2 € kR,

then (x1,y1) is an associate of (x2,y2) in R[Vd].

Proof. Since mxy + dyy, my; +x1 € kR or mz; — dy1, my; —x1 € kR, by Lemma 2, for the pair
(z1,y1), we can associate a principal ideal

mx1 +dyr  myy + a1
+ Vid ) RIVd] or
P=nR+(m+ VAR = E k k >[]

mx1 — dyp n T — myn \/Zi) RIVd
k k
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Similarly, by Lemma 2 again, for the other pair (x2,y2), we have,

mxo +dy2  mys + T2
Vd ) RIVd] or
P=nR+(m+ VAR = E L ) v

mxoy — dys n To — myo ﬂ) RIVd
k k

because mxo + dy2, mys + 9 € kR or mxy — dys, mys — x2 € kR. So there are four possibilities
for P. Without loss of generality we can assume that

P=nR+ (m+ VAR = (mxl tdy | M H“\/&) R[Vd]

Y

k k
and

k k
Since any two generators of a principal ideal are associates, we conclude that

d d
<m$12— Y1 +mylk+$1\/g> and <m$22— y2+my2k+932\/&>

are associates. Therefore, there exists a unit a + bvd in R[\/&] such that
(max1 + dy1) + (my1 + x1) Vd = (a+bVd) ((me + dy2) + (mya + x2) \/;Z) .
This implies that

P:nR+(m+\/&)R:(mx2+dy2+my2+$2\/8>7€[\/8].

x4 y1Vd = (a+ b\/&) (:1;2 +y2\/&) .

This proves the lemma. o

Lemma 4. Let p be a prime element in R such that gcdp (d, p) = R, and p = 2% — dy? for some
x,y € R. Then there exist n,m € R such that

(a) pn =m? — d;

(b) mx + dy, my +x € pR or mx — dy,my — x € pR.
Proof. Let p = 22 — dy? be prime in R such that gcdg(d,p) = R, for some z,y € R. First we
shall prove that there exists an element a@ € R such that ya = 1 (mod p). Since p is prime in
R, the ideal pR is a maximal ideal in R. So, R/pR is a field. Since gedy(z,dy) = R, we have
y + pR # pR. So, for the element y + pR € R/pR, there exists a unique element o + pR in
R/pR such that (y + pR)(a + pR) = 1 + pR. That is, ya — 1 € pR. Since 22 = dy? (mod p),
we see that (za)? = d(ya)? (mod p). Therefore, (za)? = d (mod p), because ya — 1 € pR. By
letting m = za, we have pn = m? — d for some n € R. Thus, we have

(m? — d)z* = m?2? — da?® = m?*2® — d(p + dy?) = (max + dy)(mzx — dy) — dp.

So, (mz + dy)(max — dy) € pR. This implies that ma + dy € pR or mz — dy € pR, because pR
is prime ideal in R. If mz + dy € pR, then

mxy + dy* = mxy + 2> —p = z(my +z) — p € pR.

This gives that z(my + =) € pR. That is, x € pR or my + = € pR. Since gedp(z,dy) = R,
x ¢ pR. This means that my + = € pR.

From this, we have that if ma — dy € pR, then my — x € pR, since (z,—y) € R x R is also a
solution of X2 — dY? = p. This proves the lemma. O

Lemma 5. If R[\/ﬁ] s a principal ideal domain and if ny, na, my1 and ma satisfy
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(1) gedg(ny,ng,mi,ma) =R;
(2) m? — m3d,n? — n3d,dmans — nymy € (namy — mani)R,
then the equation
22— dy? = u(ngmi — many)
has a solution (z,y) € R x R, gedg(x,dy) =R, for some unit u in R.

Proof. Since m? — m3d,n? — n3d,dmans — nymy € (ngmy — moni)R, by Lemma 1, a = (ng +

noVd)R @ (my +maVd)R is an ideal in R[V/d]. Since R[v/d] is a principal ideal domain, we see
that a = (a + bv/d)R[Vd], for some a,b € R. By the remark followed by Lemma 1, we see that
gedg (a,b) = R. So, by Theorem 3, we have that a? — db? = u(ngmq — maon;) for some unit u in
R. O

Let m #£ 0 be in R. Put no = 1, my = m, mo = 0 in Lemma 5. Then we have the following
corollary.

Corollary 6. Let R[Vd] be a principal ideal domain and let m # 0 be an element in R. If
n? —d € mR for some n € R, then the equation x> — dy* = um has a solution (z,y) € R X R,
gedg (z,dy) = R, for some unit u in R.

Lemma 7. Let R[\/g] be principal ideal domain and let p be a prime element in R such that
gedgp (d,p) = R. Then n? —d € pR for some n € R if and only if the equation x* — dy? = up
has a solution (z,y) € R X R for some unit u in R.

Proof follows from Corollary 6 and Lemma 4.

Lemma 8. Let d be a square-free integer and let k = x> — dy® be an integer for some integers
x and y with ged(x,dy) = 1. For any integer m, we have,

(1) if k|(mzx + dy), then k|(my + z);

(2) if k|(mzx — dy),then k|(my — x).
Proof. We have k = 22 — dy? with ged(z, dy) = 1. Therefore, ged(z, k) = 1. If k|(max +dy), then
k|(mzy + dy?) = may — k + 22 = z(my + z) — k and hence k|z(my + ). Since ged(z, k) = 1,
Kk|(my + ), as desired. Since k = 22 — d(—y)?, by (1), we have (2). O

Lemma 9. Let d be a square-free integer and let k = x> — dy? be an integer for some integers
x and y with gcd(x, dy) = 1. Then there exist integers m and n such that kn = m? — d.

Proof. Given that k = 22 — dy?. Then 2? = dy?(mod k). This implies that(zy~!)? = d(mod k).
From this, we see that there exist integers n and m = (zy~!) such that kn = m? — d. O

Lemma 10. Let d be a square-free integer and let k = +2,+4, £p® or £2p® for any odd prime
p and any integer a > 1. Suppose that the equation x> — dy*> = k has an integral solution (x,vy)
such that ged(z,dy) = 1. Let m be an integer such that k|(m? —d). Then either k|(mx + dy) or
kl(max — dy) is true.

Proof. Given that k = +2, +4, +p® or £2p® and x? — dy? = k for some integers = and y with
ged(z, dy) = 1. Let m be an integer such that k|(m? — d). Note that

(m? — d)2* = (max + dy)(ma — dy) — dk.

Since k|(m? — d), we see that k|[(mz + dy)(mzx — dy)].
If 2 | k, then z, d, y and m are odd, since ged(z,dy) = 1. That is, mz and dy are odd.
Therefore 4 divides one of the even numbers (mx + dy) and (mz — dy).
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Next we shall show that if p® | k, then p® | (max + dy) or p® | (mx — dy). Suppose that
p|(mx 4+ dy) and p|(mz — dy). So p|2mz. Since p is an odd prime with ged(p, m) = 1, we have
plz. So p|dy and hence p | ged(z, dy), which is a contradiction to ged(z, dy) = 1. So p®|(maz+dy)
or p*|(mx — dy), since p®|[(mz + dy)(mz — dy)]

From these, we conclude that k|(mz + dy) or k|(mz — dy). O

3. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 2. Suppose that there are two solutions (z1,y1) and (x2,y2) in R satisfying
the equation 22 —dy? = p. Since p is a prime element in R such that gedg (d, p) = R, by Lemma
4, we have pn = m? — d for some n,m € R and one of the following four is true

(1) mxy + dy1, my1 + 1 € pR, mxa + dyz, mys + 2 € pR;

(2) mx1 +dyr, my1 + z1 € pR, mas — dyz, mys — x2 € PR;

(3) mxy — dy1, my; — x1 € pR, mxa + dya, myz + 2 € pR;

(4) mxy — dy1, my; — x1 € pR, mxa — dyz, mya — 2 € pR.
So, by Lemma 3, we have that (z1,%) is an associate of (x2,y2) in R[v/d]. This proves the
theorem. O

Proof of Theorem 1. Proof follows from Lemma 7 and Theorem 2. O

4. PROOF OF COROLLARY 1.3.

It is well known (see for instance, [3]) that if D is a square-free integer D = 1(mod4) and

H = Q(+/D), then

OHZZ@ 7.

1+vD
2
Also, if D is a square-free integer with D = 1(mod4) and H = Q(v/2,V/D), then
1 D 2 2D
+2\f 7 V2 +2\/ Z.

Oy =ZdV2UL®

and for D = —1, -3, —11, the class number of O is 1 (see for instance, [6]). Also, it is known
that the class number of Q(v/—D) is 1 for D = 2, 3.

To prove (i) of (a), we let H = Q(v/2,+/—3). Then, we have

Oy =7ZdV2U® 1+2\/?32@ ‘/5+2‘/j62.
If F =Q(yv/-3), then,
If R = Op(vV2) = O © Opv/2, then

R=ZOV2IZe 1+;/j32@ ﬂz\/jﬁz.

Therefore, O = R and we see that the class number of Op is 1. Therefore the class number of
Or(v/2) is 1 and the class number of OF is also 1. By Theorem 1, we have the following: For
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any prime element p € O, the equation 22 — 2y? = £p has a solution (z,y) with z, y € O if
and only if there is an element n € Op such that n? — 2 € pOp. Let

14+v/=3 1+/-3
.’L':$1+T.’L'2 andy:yl—i—?yg

for some integers x1, 2,41 and yo. Then 4+p = x? — 2y? is equivalent to that
1+v=3 \* 1+v=3
tp= T1+ 22 —2 nmt——o 2

Since p is a rational prime, we get,
1 1
1‘% + x120 — 51‘% — 2y% — 21192 + y% = +p and 122 + 51‘% — 291Yy2 — y% =0.

When we subtract the above two equations, we have

x3 — 23 — 2y + 2y5 = £p.

This proves the result.

(b) Let F and H be as in (i) (a). Since p = 1,7 (mod 8), we get 2 is a square modulo p.
Therefore there exists n such that n? — 2 € pOp. Since p = 5,11 (mod 12), we see that p is
a non-square modulo 3. Therefore p is a prime element in Op. Therefore the assertion follows
from (i) (a).

Proof of (ii) is similar to the proof of (i) by taking H = Q(v/2,v/—11) and F = Q(/—3). O

5. PROOF OF COROLLARY 3.1.

First we treat the case when d = pn where d = 2 (mod 4), even integer. Let a = (6 +v/d)Z +

(4+ \/&)Z Since n1 = 6,n9 = 1,m1 = 4 and mo = 1, we see that
ming —maony = —2
and
m3 —mad =16 — d,n? — n3d = 36 — d, and dmgny — miny = d — 24.
Hence 2 divides ged(16 — d,36 — d,d — 24), as d is even and so a is an ideal. If it is a principal
ideal, by Theorem 3, there exist integers a and b such that
a’ — b’d = +(ming — nimg) = +2,

but this is impossible as p = 5 (mod 8). Hence, Z[/d] is not a principal ideal domain.

Next, assume that d = pn where d = 3 (mod 4), odd case. Let a = (5 + 3vVd)Z + (1 +Vd)Z
be an additive subgroup of Z[v/d]. Since miny — nyms = —2 and we see that 2| ged(1 — d, 25 —
9d,3d — 5) , as d is odd. Therefore, a is an ideal in Z[\/&] If possible, a is a principal ideal.
Then, by Theorem 3, there exist integers a and b such that

a? — pnb?® = £2.
Then we have,
a’ = +2 (mod p)
which is impossible as +2 are non-square modulo p with p = 5 (mod 8). Hence a is not a

principal ideal and so Z[v/d] is not a principal ideal domain.
O
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6. PROOF OF THEOREM 4

Suppose that there are two integral solutions (z1,y1) and (x2,%2) to the equation 2% —dy? = k,
such that ged(xy,dy;) = ged(za,dys) = 1 and (x1,y1) is not an associate of (z2,y2) in Z[V/d).
By Lemma 9, there exist integers m and n such that kn = m? — d. Also, by Lemma 10, the
following is true:

(1) k|(mxy +dyy) or k | (mz1 — dy1)

(2) k|(mxo + dy2) or k | (mzy — dya).
Therefore, by Lemma 8, we have one of the following

(1) mxy + dy1, my1 + 1 € kZ, mxo + dya, mys + x2 € kZ;

(2) ma1 +dy1, my1 + x1 € KZ, mas — dyz, mys — 2 € KZ;

(3) mxy — dy1, my1 — x1 € kZ, mzo + dya, mys + x2 € kZ;

(4) mxy — dy1, my1 — x1 € kZ, mxo — dya, mys — x9 € kZ.
By Lemma 3, we get that (21,%1) is an associate of (x3,49) in Z[v/d]. This is a contradiction.
This proves the theorem. O
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