
ON NORM FORM DIOPHANTINE EQUATIONS

S. SUBBURAM AND R. THANGADURAI

Abstract. Let R be a principal ideal domain. In this article, we study the principal ideals of
a quadratic extension ring R[

√
d] = {a + b

√
d : a, b ∈ R} where d ∈ R such that

√
d 6∈ R. As

an application, we solve some norm form diophantine problems.

1. Introduction

Let R be a principal ideal domain. Let d be an element of R such that the polynomial X2−d
is irreducible in R[X]. Then

R[
√
d] = {x+ y

√
d : x, y ∈ R}

is an integral domain under the usual addition and multiplication. Also, R[
√
d] is a R-module

with a basis {1,
√
d}. Let xR be the principal ideal generated by the element x of R. We denote

gcdR(x, y) the greatest common divisor of the ideals xR and yR, in R. For any x and y in Z,
the set of all rational integers, gcd(x, y) = gcdZ(x, y).

Consider the equation X2 − dY 2 = m with d,m ∈ R. Let (a, b) and (u, v), a, b, u, v ∈ R
and gcdR(a, db) = gcdR(u, dv) = R, be solutions of X2 − dY 2 = m. Then we call (a, b) is an
associate of (u, v) in R[

√
d], if a+ b

√
d is an associate of u+ v

√
d or u− v

√
d.

In 1801, C. F. Gauss proved: Let p be any prime in Z. Then the equation X2 +Y 2 = p has a
solution (x, y) in Z×Z if and only if there is an element n in Z such that n2 +1 ∈ pZ. Moreover,
such solution is unique up to its associates in Z[

√
−1] (see [2]). Note that Z and Z[

√
−1] are

principal ideal domains. In this paper, we have the following general theorem.

Theorem 1. Let R and R[
√
d] be principal ideal domains and let p be any prime element of R

such that gcdR(d, p) = R. Then the equation X2− dY 2 = up has a solution (x, y) in R×R for
some unit u in R if and only if there is an element n ∈ R such that n2 − d ∈ pR. Moreover,
such solution is unique up to its associates in R[

√
d].

Since Q[X], the set of all rational polynomials in variable X, is a principal ideal domain, we
have the following corollary.

Corollary 1.1. Let d be a rational number which is not a perfect square in Q and let f be any
irreducible polynomial in Q[X]. Then the equation Y 2 − dZ2 = uf has a solution (f1, f2) in
Q[X] × Q[X] for some non-zero u in Q if and only if there is an element g ∈ Q[X] such that
g2 − d ∈ fQ[X]. Moreover, such solution is unique up to its associates in Q(

√
d)[X].

In 1940, I. Niven [5] proved that a Gaussian integer of the form a+2bi is expressible as a sum
of two squares of Gaussian integers if and only if not both a/2 and b are odd integers. In 2011,
D. Wei in [9] proposed a method for determining which integers can be written as a sum of two
integral squares for quadratic fields Q(

√
p) and Q(

√
−p), where p is a prime.
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Let K be a number field, OK be its ring of integers and d ∈ OK such that OK and OK [
√
d]

are principal ideal domains. If we put R = OK in Theorem 1, then we have,

Corollary 1.2. Let K be a number field, OK be its ring of integers and d ∈ OK such that
OK and OK [

√
d] are principal ideal domains. Let p be any prime element in OK such that

gcdOK
(d, p) = OK . Then the equation X2 − dY 2 = up has a solution (x, y) in OK × OK for

some unit u in OK if and only if there is an element n ∈ OK such that n2−d ∈ pOK . Moreover,
such solution is unique up to its associates in OK [

√
d].

Legendre, Gauss and Ramanujan studied diagonal integral quadratic forms of 3 or 4 variables.
Here we apply our method to study diagonal integral quadratic forms in 4 variables as follows.
Let (· | p) denotes the Legendre symbol.
Corollary 1.3. Let F be a quadratic extension over Q and let p be a prime element in Z as
well as in OF , the ring of integers of F .

(i) (a)Let F = Q(
√
−3). If there exists an element n ∈ OF such that n2 − 2 ∈ pOF , then

the equation X2
1 −X2

2 − 2Y 2
1 + 2Y 2

2 = ±p has a rational integer solution.
(b) If p ≡ 5, 11 (mod 12) and p ≡ 1, 7 (mod 8), then the equation X2

1−X2
2−2Y 2

1 +2Y 2
2 =

±p has a rational integer solution.
(ii) (a) Let F = Q(

√
−11). If there exists an element n ∈ OF such that n2 − 2 ∈ pOF , then

the equation X2
1 − 3X2

2 − 2Y 2
1 + 6Y 2

2 = ±p has a rational integer solution.
(b) If (p | 11) = −1 and p ≡ 1, 7 (mod 8), then the equation X2

1−3X2
2−2Y 2

1 +6Y 2
2 = ±p

has a rational integer solution.

In 2007, N. Saradha and A. Srinivasan [8] while studying solutions of some generalized Ra-
manujan - Nagell equation, they proved the following. For any square-free rational integer d > 1
and for any odd prime p, the equation X2 + dY 2 = p has at most one solution (x, y), x ≥ 0 and
y ≥ 0, in integers. In this paper, we prove the following theorem.

Theorem 2. Let p be a prime element in R such that gcdR(d, p) = R. Then the equation

X2 − dY 2 = p

has at most one solution (x, y) ∈ R×R up to its associates in R[
√
d].

In order to prove the above results, we need to study principal ideals structure dealt in
Theorem 3. Let E be the quotient field of R. Throughout the article, the elements n1, n2, m1

and m2 are in R such that n1 +n2

√
d and m1 +m2

√
d are linearly independent over E. Also the

submodule a of R[
√
d] is of the form a = (n1+n2

√
d)R⊕(m1+m2

√
d)R. Here m1n2−n1m2 6= 0.

Theorem 3. Let a be an ideal in R[
√
d] with gcdR(n1, n2,m1,m2) = R. Then

a = (a+ b
√
d)R[

√
d]

for some a, b ∈ R if and only if a2 − db2 = u(m1n2 − n1m2) for some unit u in R, with

bm1 − am2, am1 − bdm2, bn1 − an2, an1 − dbn2 ∈ (m1n2 − n1m2)R.

The following corollary is an improvement of the results obtained by C. S. Queen [10] where she
gave a simple characterization of principal ideal domains and as an application, it was proved
that if p ≡ 5 (mod 8) is any prime, then Z[

√
2p] is not a principal ideal domain. However

Corollary 3.1 covers much more classes of real quadratic fields.
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Corollary 3.1. Let p ≡ 5 (mod 8) be any prime. Let d = pn be a square-free positive integer
for some integer n, such that d ≡ 2, 3 (mod 4). Then Z[

√
d] is not a principal ideal domain.

Theorem 4. Let d be a square-free integer, p any odd prime, a ≥ 1 an integer and k =
±2,±4,±pa or ±2pa. Then the equation X2− dY 2 = k has at most one integral solution (x, y),
gcd(x, dy) = 1, up to its associates in Z[

√
d].

2. Preliminaries

We shall start with some lemmas.

Lemma 1. The additive subgroup a is an ideal in R[
√
d] if and only if

m2
1 −m2

2d, n
2
1 − n2

2d, dm2n2 − n1m1 ∈ (n2m1 −m2n1)R.

Proof. It is clear that a is an ideal in R[
√
d] if and only if for any element a + b

√
d of R[

√
d]

and for any x, y ∈ R, there exist x1 and y1 in R such that

[(n1 + n2

√
d)x+ (m1 +m2

√
d)y](a+ b

√
d) = (n1 + n2

√
d)x1 + (m1 +m2

√
d)y1.

This is equivalent to

(n1x+m1y)a+db(n2x+m2y) = n1x1 +m1y1 and (n1x+m1y)b+a(n2x+m2y) = n2x1 +m2y1.

That is,

n1[(n1x+m1y)b+ a(n2x+m2y)]− n2[(n1x+m1y)a+ db(n2x+m2y)] ∈ (m2n1 − n2m1)R

and

m1[(n1x+m1y)b+ a(n2x+m2y)]−m2[(n1x+m1y)a+ db(n2x+m2y)] ∈ (m2n1 − n2m1)R,

as x1, y1 ∈ R. Thus, we have that a is an ideal in R[
√
d] if and only if

b(n2
1 − n2

2d)x+ b(n1m1 − dm2n2)y ∈ (m2n1 − n2m1)R

and
yb(m2

1 −m2
2d) + bx(n1m1 − dm2n2) ∈ (m2n1 − n2m1)R

for any b, x, y ∈ R. This proves the result. 2

Remark. Suppose the ideal a = (a + b
√
d)R[

√
d] for some a + b

√
d ∈ a. Then gcdR(a, b) = R

if and only if gcdR(n1, n2,m1,m2) = R. This can be easily proven.

Proof of Theorem 3. It is clear that for some a, b ∈ R, a = (a+ b
√
d)R[

√
d] if and only if (i) and

(ii) hold:

(i) For any x1 + y1

√
d ∈ R[

√
d], there exist unique x and y in R such that (a+ b

√
d)(x1 +

y1

√
d) = (n1 + n2

√
d)x+ (m1 +m2

√
d)y;

(ii) For any x, y ∈ R, there exist unique x1 and y1 in R such that (n1 + n2

√
d)x + (m1 +

m2

√
d)y = (a+ b

√
d)(x1 + y1

√
d).
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In the above observation, (i) is equivalent to the following; for any x1, y1 ∈ R, there exist
unique x and y in R such that

n1x+m1y = ax1 + bdy1 and n2x+m2y = bx1 + ay1.

That is (i) is equivalent to, for any x1, y1 ∈ R,

(am2 − bm1)x1 + (dbm2 − am1)y1, (an2 − bn1)x1 + (dbn2 − an1)y1 ∈ (m2n1 − n2m1)R.
So (i) holds if and only if

bm1 − am2, am1 − bm2d, an2 − bn1, dbn2 − an1 ∈ (m1n2 − n1m2)R.
Now we shall consider (ii). Since a+ b

√
d, a− b

√
d 6= 0 and R[

√
d] is an integral domain,

a2 − b2d 6= 0.

Then (ii) holds if and only if for any x, y ∈ R, there exist unique x1 and y1 in R such that

n1x+m1y = ax1 + bdy1, and n2x+m2y = bx1 + ay1.

So (ii) is equivalent to the following; for any x, y ∈ R,

(an2− bn1)x+ (am2− bm1)y ∈ (a2− b2d)R and (an1− dbn2)x+ (am1− dbm2)y ∈ (a2− db2)R.
That is,

an1 − dbn2, am1 − dbm2, an2 − bn1, am2 − bm1 ∈ (a2 − db2)R
and hence a(m1n2 − n1m2), b(m1n2 − n1m2) ∈ (a2 − db2)R. Since gcdR(a, b) = R, we have,

(m1n2 − n1m2)R ⊆ (a2 − db2)R. (1)

Now, since bm1 − am2, am1 − bm2d ∈ (m1n2 − n1m2)R,
m2(a2 − db2),m1(a2 − db2) ∈ (m1n2 − n1m2)R.

Similarly, since an2 − bn1, dbn2 − an1 ∈ (m1n2 − n1m2)R, we have

n1(a2 − db2), n2(a2 − db2) ∈ (m1n2 − n1m2)R.
So gcdR(n1, n2,m1,m2)(a2 − db2) ⊆ (m1n2 − n1m2)R. Therefore

(a2 − db2)R ⊆ (m1n2 − n1m2)R. (2)

From (1) and (2), we have a2 − db2 = u(m1n2 − n1m2) for some unit u ∈ R. This proves the
theorem. 2

The following lemma gives a link explicitly between the generators of a principal ideal and
the integral solutions of the equation x2 − dy2 = k.

Lemma 2. Let k = x2 − dy2 be an element in R for some x, y ∈ R with gcdR(x, dy) = R. If
(1) kn = m2 − d for some n,m ∈ R
(2) mx+ dy,my + x ∈ kR or mx− dy,my − x ∈ kR,

then there exists a principal ideal P in R[
√
d] such that

P = nR+ (m+
√
d)R.

Moreover, if P = (a+ b
√
d)R[

√
d] for some a, b ∈ R, then

(a, b) =
(
mx+ dy

k
,
my + x

k

)
or

(
mx− dy

k
,
x−my

k

)
.
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Proof. Since (m2 − d) ∈ nR, by Lemma 1, we see that P = nR + (m +
√
d)R is an ideal in

R[
√
d]. Therefore, it is enough to prove that P is a principal ideal.

First we shall prove that if mx+ dy,my+ x ∈ kR, then P is the principal ideal generated by
a+ b

√
d, where

(a, b) =
(
mx+ dy

k
,
my + x

k

)
.

Since P = nR+ (m+
√
d)R, by putting n1 = n, n2 = 0, m1 = m and m2 = 1 in Theorem 3, we

see that it is enough to prove the following conditions;

bm− a, am− bd ∈ nR, and a2 − db2 = n,

because it is clear that

gcdR(a, b) = gcdR
((

mx+ dy

k

)
,

(
y

(
mx+ dy

k

)
− x

(
my + x

k

)))
= R.

Since n = (m2 − d)/k, we have that(
mx+ dy

k

)2

− d
(
my + x

k

)2

= n.

That is, a2 − db2 = n. So we need only to check the conditions bm − a, am − bd ∈ nR. Now,
consider

bm− a =
m(my + x)

k
− (mx+ dy)

k
=
m2y − dy

k
= ny ∈ nR.

Similarly, we have am− bd ∈ nR. Thus P is the principal ideal in R[
√
d], generated by a+ b

√
d.

Since (x, y) ∈ R×R is a solution of X2−dY 2 = k with gcdR(x, dy) = R, (x,−y) ∈ R×R is
also a solution of the equation with gcdR(x,−dy) = R. Therefore the above statement is true
for (x,−y) also. This proves the lemma. 2

Lemma 3. Let k be an element in R and let (x1, y1) and (x2, y2) in R×R be two solutions of
the equation

x2 − dy2 = k

with gcdR(x1, dy1) = gcdR(x2, dy2) = R. If kn = m2 − d for some m,n ∈ R and if one of the
following four is true.

(1) mx1 + dy1,my1 + x1 ∈ kR, mx2 + dy2,my2 + x2 ∈ kR;
(2) mx1 − dy1,my1 − x1 ∈ kR, mx2 − dy2,my2 − x2 ∈ kR;
(3) mx1 + dy1,my1 + x1 ∈ kR, mx2 − dy2,my2 − x2 ∈ kR;
(4) mx1 − dy1,my1 − x1 ∈ kR, mx2 + dy2,my2 + x2 ∈ kR,

then (x1, y1) is an associate of (x2, y2) in R[
√
d].

Proof. Since mx1 + dy1,my1 + x1 ∈ kR or mx1− dy1,my1− x1 ∈ kR, by Lemma 2, for the pair
(x1, y1), we can associate a principal ideal

P = nR+ (m+
√
d)R =


(
mx1 + dy1

k
+
my1 + x1

k

√
d

)
R[
√
d] or(

mx1 − dy1

k
+
x1 −my1

k

√
d

)
R[
√
d]
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Similarly, by Lemma 2 again, for the other pair (x2, y2), we have,

P = nR+ (m+
√
d)R =


(
mx2 + dy2

k
+
my2 + x2

k

√
d

)
R[
√
d] or(

mx2 − dy2

k
+
x2 −my2

k

√
d

)
R[
√
d]

,

because mx2 + dy2,my2 + x2 ∈ kR or mx2 − dy2,my2 − x2 ∈ kR. So there are four possibilities
for P. Without loss of generality we can assume that

P = nR+ (m+
√
d)R =

(
mx1 + dy1

k
+
my1 + x1

k

√
d

)
R[
√
d]

and
P = nR+ (m+

√
d)R =

(
mx2 + dy2

k
+
my2 + x2

k

√
d

)
R[
√
d].

Since any two generators of a principal ideal are associates, we conclude that(
mx1 + dy1

k
+
my1 + x1

k

√
d

)
and

(
mx2 + dy2

k
+
my2 + x2

k

√
d

)
are associates. Therefore, there exists a unit a+ b

√
d in R[

√
d] such that

(mx1 + dy1) + (my1 + x1)
√
d = (a+ b

√
d)
(
(mx2 + dy2) + (my2 + x2)

√
d
)
.

This implies that
x1 + y1

√
d =

(
a+ b

√
d
) (
x2 + y2

√
d
)
.

This proves the lemma. 2

Lemma 4. Let p be a prime element in R such that gcdR(d, p) = R, and p = x2−dy2 for some
x, y ∈ R. Then there exist n,m ∈ R such that

(a) pn = m2 − d;
(b) mx+ dy,my + x ∈ pR or mx− dy,my − x ∈ pR.

Proof. Let p = x2 − dy2 be prime in R such that gcdR(d, p) = R, for some x, y ∈ R. First we
shall prove that there exists an element α ∈ R such that yα ≡ 1 (mod p). Since p is prime in
R, the ideal pR is a maximal ideal in R. So, R/pR is a field. Since gcdR(x, dy) = R, we have
y + pR 6= pR. So, for the element y + pR ∈ R/pR, there exists a unique element α + pR in
R/pR such that (y + pR)(α + pR) = 1 + pR. That is, yα − 1 ∈ pR. Since x2 ≡ dy2 (mod p),
we see that (xα)2 ≡ d(yα)2 (mod p). Therefore, (xα)2 ≡ d (mod p), because yα − 1 ∈ pR. By
letting m = xα, we have pn = m2 − d for some n ∈ R. Thus, we have

(m2 − d)x2 = m2x2 − dx2 = m2x2 − d(p+ dy2) = (mx+ dy)(mx− dy)− dp.
So, (mx+ dy)(mx− dy) ∈ pR. This implies that mx+ dy ∈ pR or mx− dy ∈ pR, because pR
is prime ideal in R. If mx+ dy ∈ pR, then

mxy + dy2 = mxy + x2 − p = x(my + x)− p ∈ pR.
This gives that x(my + x) ∈ pR. That is, x ∈ pR or my + x ∈ pR. Since gcdR(x, dy) = R,
x /∈ pR. This means that my + x ∈ pR.

From this, we have that if mx− dy ∈ pR, then my− x ∈ pR, since (x,−y) ∈ R×R is also a
solution of X2 − dY 2 = p. This proves the lemma. 2

Lemma 5. If R[
√
d] is a principal ideal domain and if n1, n2, m1 and m2 satisfy
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(1) gcdR(n1, n2,m1,m2) = R;
(2) m2

1 −m2
2d, n

2
1 − n2

2d, dm2n2 − n1m1 ∈ (n2m1 −m2n1)R,
then the equation

x2 − dy2 = u(n2m1 −m2n1)
has a solution (x, y) ∈ R×R, gcdR(x, dy) = R, for some unit u in R.

Proof. Since m2
1 −m2

2d, n
2
1 − n2

2d, dm2n2 − n1m1 ∈ (n2m1 −m2n1)R, by Lemma 1, a = (n1 +
n2

√
d)R⊕ (m1 +m2

√
d)R is an ideal in R[

√
d]. Since R[

√
d] is a principal ideal domain, we see

that a = (a+ b
√
d)R[

√
d], for some a, b ∈ R. By the remark followed by Lemma 1, we see that

gcdR(a, b) = R. So, by Theorem 3, we have that a2− db2 = u(n2m1−m2n1) for some unit u in
R. 2

Let m 6= 0 be in R. Put n2 = 1, m1 = m, m2 = 0 in Lemma 5. Then we have the following
corollary.

Corollary 6. Let R[
√
d] be a principal ideal domain and let m 6= 0 be an element in R. If

n2 − d ∈ mR for some n ∈ R, then the equation x2 − dy2 = um has a solution (x, y) ∈ R×R,
gcdR(x, dy) = R, for some unit u in R.

Lemma 7. Let R[
√
d] be principal ideal domain and let p be a prime element in R such that

gcdR(d, p) = R. Then n2 − d ∈ pR for some n ∈ R if and only if the equation x2 − dy2 = up
has a solution (x, y) ∈ R×R for some unit u in R.

Proof follows from Corollary 6 and Lemma 4.

Lemma 8. Let d be a square-free integer and let k = x2 − dy2 be an integer for some integers
x and y with gcd(x, dy) = 1. For any integer m, we have,

(1) if k|(mx+ dy), then k|(my + x);
(2) if k|(mx− dy),then k|(my − x).

Proof. We have k = x2−dy2 with gcd(x, dy) = 1. Therefore, gcd(x, k) = 1. If k|(mx+dy), then
k|(mxy + dy2) = mxy − k + x2 = x(my + x) − k and hence k|x(my + x). Since gcd(x, k) = 1,
k|(my + x), as desired. Since k = x2 − d(−y)2, by (1), we have (2). 2

Lemma 9. Let d be a square-free integer and let k = x2 − dy2 be an integer for some integers
x and y with gcd(x, dy) = 1. Then there exist integers m and n such that kn = m2 − d.
Proof. Given that k = x2 − dy2. Then x2 ≡ dy2(mod k). This implies that(xy−1)2 ≡ d(mod k).
From this, we see that there exist integers n and m = (xy−1) such that kn = m2 − d. 2

Lemma 10. Let d be a square-free integer and let k = ±2,±4,±pa or ±2pa for any odd prime
p and any integer a ≥ 1. Suppose that the equation x2 − dy2 = k has an integral solution (x, y)
such that gcd(x, dy) = 1. Let m be an integer such that k|(m2− d). Then either k|(mx+ dy) or
k|(mx− dy) is true.
Proof. Given that k = ±2,±4,±pa or ±2pa and x2 − dy2 = k for some integers x and y with
gcd(x, dy) = 1. Let m be an integer such that k|(m2 − d). Note that

(m2 − d)x2 = (mx+ dy)(mx− dy)− dk.
Since k|(m2 − d), we see that k|[(mx+ dy)(mx− dy)].

If 2 | k, then x, d, y and m are odd, since gcd(x, dy) = 1. That is, mx and dy are odd.
Therefore 4 divides one of the even numbers (mx+ dy) and (mx− dy).
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Next we shall show that if pa | k, then pa | (mx + dy) or pa | (mx − dy). Suppose that
p|(mx+ dy) and p|(mx− dy). So p|2mx. Since p is an odd prime with gcd(p,m) = 1, we have
p|x. So p|dy and hence p | gcd(x, dy), which is a contradiction to gcd(x, dy) = 1. So pa|(mx+dy)
or pa|(mx− dy), since pa|[(mx+ dy)(mx− dy)]

From these, we conclude that k|(mx+ dy) or k|(mx− dy). 2

3. Proofs of Theorems 1 and 2

Proof of Theorem 2. Suppose that there are two solutions (x1, y1) and (x2, y2) in R satisfying
the equation x2−dy2 = p. Since p is a prime element in R such that gcdR(d, p) = R, by Lemma
4, we have pn = m2 − d for some n,m ∈ R and one of the following four is true

(1) mx1 + dy1,my1 + x1 ∈ pR, mx2 + dy2,my2 + x2 ∈ pR;
(2) mx1 + dy1,my1 + x1 ∈ pR, mx2 − dy2,my2 − x2 ∈ pR;
(3) mx1 − dy1,my1 − x1 ∈ pR, mx2 + dy2,my2 + x2 ∈ pR;
(4) mx1 − dy1,my1 − x1 ∈ pR, mx2 − dy2,my2 − x2 ∈ pR.

So, by Lemma 3, we have that (x1, y1) is an associate of (x2, y2) in R[
√
d]. This proves the

theorem. 2

Proof of Theorem 1. Proof follows from Lemma 7 and Theorem 2. 2

4. Proof of Corollary 1.3.

It is well known (see for instance, [3]) that if D is a square-free integer D ≡ 1(mod4) and
H = Q(

√
D), then

OH = Z⊕ 1 +
√
D

2
Z.

Also, if D is a square-free integer with D ≡ 1(mod4) and H = Q(
√

2,
√
D), then

OH = Z⊕
√

2Z⊕ 1 +
√
D

2
Z⊕
√

2 +
√

2D
2

Z,

and for D = −1,−3,−11, the class number of OH is 1 (see for instance, [6]). Also, it is known
that the class number of Q(

√
−D) is 1 for D = 2, 3.

To prove (i) of (a), we let H = Q(
√

2,
√
−3). Then, we have

OH = Z⊕
√

2Z⊕ 1 +
√
−3

2
Z⊕
√

2 +
√
−6

2
Z.

If F = Q(
√
−3), then,

OF = Z⊕ 1 +
√
−3

2
Z.

If R = OF (
√

2) = OF ⊕OF

√
2, then

R = Z⊕
√

2Z⊕ 1 +
√
−3

2
Z⊕
√

2 +
√
−6

2
Z.

Therefore, OH = R and we see that the class number of OH is 1. Therefore the class number of
OF (
√

2) is 1 and the class number of OF is also 1. By Theorem 1, we have the following: For
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any prime element p ∈ OF , the equation x2 − 2y2 = ±p has a solution (x, y) with x, y ∈ OF if
and only if there is an element n ∈ OF such that n2 − 2 ∈ pOF . Let

x = x1 +
1 +
√
−3

2
x2 and y = y1 +

1 +
√
−3

2
y2

for some integers x1, x2, y1 and y2. Then ±p = x2 − 2y2 is equivalent to that

±p =

(
x1 +

1 +
√
−3

2
x2

)2

− 2

(
y1 +

1 +
√
−3

2
y2

)2

.

Since p is a rational prime, we get,

x2
1 + x1x2 −

1
2
x2

2 − 2y2
1 − 2y1y2 + y2

2 = ±p and x1x2 +
1
2
x2

2 − 2y1y2 − y2
2 = 0.

When we subtract the above two equations, we have

x2
1 − x2

2 − 2y2
1 + 2y2

2 = ±p.
This proves the result.

(b) Let F and H be as in (i) (a). Since p ≡ 1, 7 (mod 8), we get 2 is a square modulo p.
Therefore there exists n such that n2 − 2 ∈ pOF . Since p ≡ 5, 11 (mod 12), we see that p is
a non-square modulo 3. Therefore p is a prime element in OF . Therefore the assertion follows
from (i) (a).

Proof of (ii) is similar to the proof of (i) by taking H = Q(
√

2,
√
−11) and F = Q(

√
−3). 2

5. Proof of Corollary 3.1.

First we treat the case when d = pn where d ≡ 2 (mod 4), even integer. Let a = (6 +
√
d)Z +

(4 +
√
d)Z. Since n1 = 6, n2 = 1,m1 = 4 and m2 = 1, we see that

m1n2 −m2n1 = −2

and
m2

1 −m2
2d = 16− d, n2

1 − n2
2d = 36− d, and dm2n2 −m1n1 = d− 24.

Hence 2 divides gcd(16− d, 36− d, d− 24), as d is even and so a is an ideal. If it is a principal
ideal, by Theorem 3, there exist integers a and b such that

a2 − b2d = ±(m1n2 − n1m2) = ±2,

but this is impossible as p ≡ 5 (mod 8). Hence, Z[
√
d] is not a principal ideal domain.

Next, assume that d = pn where d ≡ 3 (mod 4), odd case. Let a = (5 + 3
√
d)Z + (1 +

√
d)Z

be an additive subgroup of Z[
√
d]. Since m1n2 − n1m2 = −2 and we see that 2| gcd(1− d, 25−

9d, 3d − 5) , as d is odd. Therefore, a is an ideal in Z[
√
d]. If possible, a is a principal ideal.

Then, by Theorem 3, there exist integers a and b such that

a2 − pnb2 = ±2.

Then we have,
a2 ≡ ±2 (mod p)

which is impossible as ±2 are non-square modulo p with p ≡ 5 (mod 8). Hence a is not a
principal ideal and so Z[

√
d] is not a principal ideal domain.

2
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6. Proof of Theorem 4

Suppose that there are two integral solutions (x1, y1) and (x2, y2) to the equation x2−dy2 = k,
such that gcd(x1, dy1) = gcd(x2, dy2) = 1 and (x1, y1) is not an associate of (x2, y2) in Z[

√
d].

By Lemma 9, there exist integers m and n such that kn = m2 − d. Also, by Lemma 10, the
following is true:

(1) k|(mx1 + dy1) or k | (mx1 − dy1)
(2) k|(mx2 + dy2) or k | (mx2 − dy2).

Therefore, by Lemma 8, we have one of the following
(1) mx1 + dy1,my1 + x1 ∈ kZ, mx2 + dy2,my2 + x2 ∈ kZ;
(2) mx1 + dy1,my1 + x1 ∈ kZ, mx2 − dy2,my2 − x2 ∈ kZ;
(3) mx1 − dy1,my1 − x1 ∈ kZ, mx2 + dy2,my2 + x2 ∈ kZ;
(4) mx1 − dy1,my1 − x1 ∈ kZ, mx2 − dy2,my2 − x2 ∈ kZ.

By Lemma 3, we get that (x1, y1) is an associate of (x2, y2) in Z[
√
d]. This is a contradiction.

This proves the theorem. 2
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