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Abstract

Let G be a finite abelian additive group. In this paper, we deal with a combinatorial
constant related to short zero-sum sequences over the abelian p-groups.

1. Introduction

Let G be a finite abelian additive group with exponent exp(G). A sequence S over

G is written as

S =

|S|∏
i=1

gi =
∏
g∈G

gvg(S) with vg(S) ∈ Z≥0

where vg(S) is called the multiplicity of g in S and |S| denotes the length of the

sequence S. By the definition of multiplicity, we see that

|S| =
∑
g∈G

vg(S) ∈ Z≥0.

The sum of all the terms of the sequence S is given by

σ(S) =
∑
g∈G

vg(S)g ∈ G.
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A sequence S over G is called a zero-sum sequence if σ(S) = 0. A sequence S is

called a short zero-sum sequence if σ(S) = 0 and |S| ∈ [1, exp(G)]. For any integer

k ∈ Z≥0 and for a sequence S over G, we define

Nk(S) =

∣∣∣∣∣
{
I ⊂ [1, |S|] :

∑
i∈I

gi = 0, |I| = k

}∣∣∣∣∣ ,
which denotes the number of zero-sum subsequences of S of length k. The Daven-

port constant, D(G), is the minimal positive integer t such that any given sequence

S over G of length |S| ≥ t contains a nonempty zero-sum subsequence. The con-

stant η(G) is the minimal positive integer t such that any given sequence S over G

of length |S| ≥ t contains a short zero-sum subsequence. Finally, the EGZ constant

s(G) is the minimal positive integer t such that any given sequence S over G of

length |S| ≥ t contains a zero-sum subsequence T of length |T | = exp(G).

These constants are classical invariants attached to a finite abelian group G in

combinatorial number theory and have received a lot of attention (see for instance

[1, 2, 5, 6, 7, 9, 10, 15, 16]). When G is a cyclic group, we have η(G) = |G|
and s(G) = 2|G| − 1, by the well-known Erdős-Ginzburg-Ziv theorem [4]. For this

contribution, this constant s(G) is called EGZ constant. When G ∼= C2
p for a prime

p, Olson [13, 14] proved in 1969 that η(C2
p) = 3p − 2 and C. Reiher [15] proved in

2007 that s(C2
p) = 4p− 3, which was, earlier, conjectured by Kemnitz [11] in 1983.

In general, if G ∼= Cm⊕Cn with m|n is the abelian group of rank 2, then it is known

that s(G) = η(G)+n−1 = 2m+2n−3 as given in [10]. In 1995, Alon and Dubiner

[1] proved that s(Cr
n) ≤ c(r)n where c(r) is a computable constant depends only on

the rank r.

When G is of rank ≥ 3, nothing more is known. Even when G ∼= C3
p , for any

prime p, these constants are still unkonwn. Recently, Fan, Gao, Wang and Zhong

[7] determined the values η(G) and s(G) for special type of abelian groups of rank 3.

Apart from these results, Schmid and Zhuang [16] proved that if G is a finite abelian

p-group with D(G) = 2 exp(G) − 1, then s(G) = 2D(G) − 1 = η(G) + exp(G) − 1.

Moreover, they conjectured the following.

Conjecture 1. ([16]) Let G be a finite abelian p-group with D(G) ≤ 2 exp(G)− 1.

Then

s(G) = 2D(G)− 1 = η(G) + exp(G)− 1.

In this article, we prove the following theorems toward Conjecture 1 for a large

class of abelian p-groups using the techniques employed in a recent paper of Gao,

Han and Zhang [8].

Theorem 1. Let H be a finite abelian p-group of rank r(H) and exp(H) = pm for

some positive integer m and for some prime p with p > 2r(H) and D(H) − 1 =
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kpm + t for some positive integer k and a non-negative integer t satisfying 0 ≤ t ≤
(pm − 1)/2. For any positive integer n with pn ≥ 2(D(H)− 1), let G = Cpn ⊕H be

the abelian p-group satisfying D(G) ≤ 2pn − 1 = 2 exp(G)− 1. Let S be a sequence

over G of length pn + 2(D(H) − 1). If Npn+j0p
m

(S) = 0 for some integer j0 with

1 ≤ j0 ≤ k, then S contains a short zero-sum subsequence.

In [8], Gao, Han and Zhang proved the Conjecture 1 for the abelian p-groups G

satisfying k = 1 or t ∈ [pm/2, pm) (notation is as in Theorem 1). In the following

theorem, we deal with the complement of this result.

Theorem 2. Let H be a finite abelian p-group of rank r(H) and exp(H) = pm

for some positive integer m and for some prime p with p > 2r(H) and D(H) −
1 = kpm + t for some positive integer k and a non-negative integer t satisfying

0 ≤ t ≤ (pm − 1)/2. For any positive integer n with pn ≥ 2(D(H) − 1) + pm, let

G = Cpn ⊕ H be the abelian p-group satisfying D(G) ≤ 2pn − 1 = 2 exp(G) − 1.

Then, we have,

η(G) ≤ 2D(G)− exp(G) + (exp(H)− t− 1) = pn + 2(D(H)− 1) + pm − t.

Note that when G = Cpn ⊕H, then D(G) = pn +D(H)−1. Therefore, Theorem 2

states that η(G) ≤ (2D(G)−1)−exp(G)+(exp(H)−t) for the case t ∈ [0, (pm−1)/2]

and hence exp(H)− t− 1 is the extra term againsts the Conjecture 1.

2. Preliminaries

Throughout this section, we take H to be a finite abelian p-group of rank r(H)

and exponent exp(H) = pm for some positive integer m. Also, we write D(H) −
1 = kpm + t for some positive integer k and a non-negative integer t satisfying

0 ≤ t ≤ (pm − 1)/2. Choose any integer n such that pn ≥ 2(D(H) − 1) and let

G = Cpn ⊕H.

We have the following lemmas which are needed in the proof of Theorem 1 and

Theorem 2.

Lemma 2.1. ([8]) Let v = (k + 1)pm −D(H) = pm − t − 1. Let S be a sequence

over G of length |S| = pn + 2(D(H) − 1) such that S contains no short zero-sum

subsequences. For any integer i with 0 ≤ i ≤ k − 1, let T be a subsequence of S of

length |T | = |S| − ipm. Then we have the following;

1 +

h∑
u=0

(
h

u

) k∑
j=1

(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p), (2.1)
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for all h ∈ [0, v].

Lemma 2.2. Let v = (k+1)pm−D(H) = pm−t−1. Let S be a sequence over G of

length |S| = pn +2(D(H)−1) such that S contains no short zero-sum subsequences.

For any integers i and h satisfying 0 ≤ i ≤ k − 1 and 0 ≤ h ≤ v − 1, we have(
|S|
ipm

)
+

k∑
j=1

(−1)j−1
h∑

u=0

(
h

u

)(
|S| − pn − jpm + u

ipm

)
Npn+jpm−u(S) ≡ 0 (mod p).

(2.2)

Proof. This lemma is implicitly proved in Lemma 3.1 (3.3) of [8]. In order to get

(2.2), we take a subsequence T of S such that |T | = |S| − ipm for a given integer i

with 0 ≤ i ≤ k − 1. We can get

1 +

h∑
u=0

(
h

u

) k∑
j=1

(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p).

Now we sum over all the subsequences T with |T | = |S| − ipm and we get

∑
T,|T |=|S|−ipm

1 +

h∑
u=0

(
h

u

) k∑
j=1

(−1)j−1Npn+jpm−u(T )

 ≡ 0 (mod p). (2.3)

Since each subsequence W of S with |W | ≤ |S| − ipm can be extended to a subse-

quence T of length |T | = |S| − ipm in(
|S| − |W |
|T | − |W |

)
=

(
|S| − |W |
|S| − |T |

)
=

(
|S| − |W |
ipm

)
ways, by starting with 0 length subsequence W of S, we see that the number of

ways to get subsequences T of S with |T | = |S| − ipm is

(
|S|
ipm

)
. Then, using this

and expanding the sum in (2.3), we arrive at (2.2).

Corollary 2.2.1. Let S be a sequence over G as defined in Lemma 2.2. For any

integer i with 0 ≤ i ≤ k − 1, we have(
|S|
ipm

)
+

k∑
j=1

(−1)j−1
(
|S| − pn − jpm

ipm

)
Npn+jpm

(S) ≡ 0 (mod p). (2.4)

Proof. Put h = 0 in Lemma 2.2 to get the result. 2
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Theorem 2.3. ([12]) Let p be a prime number. Let a and b be positive integers

with a = anp
n + an−1p

n−1 + · · · + a0 with ai ∈ {0, 1, . . . , p − 1} and b = bnp
n +

bn−1p
n−1 + · · ·+ b0 with bi ∈ {0, 1, . . . , p− 1}. Then(

a

b

)
≡
(
an
bn

)(
an−1
bn−1

)
· · ·
(
a0
b0

)
(mod p).

Theorem 2.4. ([8]) Let n and k be positive integers with 1 ≤ 2k ≤ n. Let A be the

following (k + 1)× (k + 1) matrix with positive integers

A =


1 1 · · · 1(
n
1

) (
n−1
1

)
· · ·

(
n−k
1

)(
n
2

) (
n−1
2

)
· · ·

(
n−k
2

)
· · · · · ·(
n
k

) (
n−1
k

)
· · ·

(
n−k
k

)

 .

Then, the determinant of A is

det(A) =

(
k∏

t=1

t!

)−1 ∏
1≤i<j≤k

(j − i).

3. Proof of Theorem 1

Proof of Theorem 1. Let S be a sequence over G of length |S| = pn + 2(D(H)− 1).

By the assumption, for some integer j0 with 0 ≤ j0 ≤ k, we have Npn+j0p
m

(S) = 0.

Without loss of generality, we shall assume that j0 = k and hence Npn+kpm

(S) = 0,

as the proof of the other cases are similar. We need to prove that S contains a

short zero-sum subsequence. On the contrary, we shall assume that S contains

no short zero-sum subsequences. Hence, by Corollary 2.2.1, for any integer i with

0 ≤ i ≤ k − 1 and by the assumption with j0 = k, we get(
|S|
ipm

)
+

k−1∑
j=1

(−1)j−1
(
|S| − pn − jpm

ipm

)
Npn+jpm

(S) ≡ 0 (mod p). (3.1)

Note that for any integer j with 1 ≤ j ≤ k − 1, we have

|S| − pn − jpm = pn + 2(kpm + t)− pn − jpm = (2k − j)pm + 2t.

Since D(H)−1 = kpm+t for some integer t with 0 ≤ t ≤ (pm−1)/2 and p > 2r(H),

we see that

D(H)− 1 ≤ r(H) exp(H)− r(H) < r(H)pm ≤
(p

2
− 1
)
pm =⇒ k ≤ p

2
− 1.
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Therefore, for all integers j with 1 ≤ j ≤ k − 1, we see that 2k − j < 2k < p and

every integer i < k < p. Since 2t ≤ pm − 1 < pm, by Theorem 2.3, we get(
|S| − pn − jpm

ipm

)
≡
(

2k − j
i

)(
2t

0

)
≡
(

2k − j
i

)
(mod p) (3.2)

for all integers j with 1 ≤ j ≤ k − 1 and for all integers i with 0 ≤ i ≤ k − 1. Also,

since |S| = pn + 2kpm + 2t and 2t < pm < pn, by Theorem 2.3, we get(
|S|
ipm

)
≡
(

2k

i

)
(mod p) (3.3)

for all integers i with 0 ≤ i ≤ k − 1. Therefore, by (3.1), (3.2) and (3.3), we get(
2k

i

)
+

k−1∑
j=1

(
2k − j
i

)
(−1)j−1Npn+jpm

(S) ≡ 0 (mod p) (3.4)

for all i = 0, 1, . . . , k − 1. Now, put

Xj = (−1)j−1Npn+jpm

(S)

for all j = 1, 2, . . . , k − 1 and X0 = 1 as variables modulo p. Then, by putting

i = 0, 1, 2, . . . , k − 1 in (3.4), we get a system of k linear equations in k variables

modulo p as follows.

X0 +X1 +X2 + · · ·+Xk−1 = 0;(
2k

1

)
X0 +

(
2k − 1

1

)
X1 +

(
2k − 2

1

)
X2 + · · ·+

(
k + 1

1

)
Xk−1 = 0;

· · · · · · · · ·

· · · · · · · · ·(
2k

k − 1

)
X0 +

(
2k − 1

k − 1

)
X1 +

(
2k − 2

k − 1

)
X2 + · · ·+

(
k + 1

k − 1

)
Xk−1 = 0;

Note that the coefficient matrix of the above system of linear equations is nothing

but A in Theorem 2.4 with n = 2k and k = k − 1. Therefore, by Theorem 2.4, the

determinant of the coefficient matrix is non-zero modulo p which forces the system

to have only the trivial solution modulo p. That is,

X0 ≡ X1 ≡ . . . ≡ Xk−1 ≡ 0 (mod p),

which is a contradiction to X0 = 1 6≡ 0 (mod p). This proves the result. 2
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4. Proof of Theorem 2

To prove Theorem 2, first we need to extend Lemma 2.2 so that it holds true for

all i ∈ [0, k] and for all h ∈ [0, v), when |S| = pn + 2(D(H)− 1) + pm − t for some

integer t satisfying 0 ≤ t ≤ (pm − 1)/2 (notation is as in Section 2). Recall that H

is an abelian p-group of rank r(H) and exponent pm. Let n be a positive integer

such that pn ≥ 2(D(H)− 1) + pm and G = Cpn ⊕H.

Lemma 4.1. Let S be a given sequence over G of length |S| = pn + 2(D(H)− 1) +

pm− t where t is an integer satisfying D(H)−1 = kpm + t with 0 ≤ t ≤ (pm−1)/2.

Let v = (k+1)pm−D(H) = pm−t−1. If S contains no short zero-sum subsequences,

then for all integers h and i satisfying 0 ≤ h < v and 0 ≤ i ≤ k, we have(
|S|
ipm

)
+

k∑
j=1

(−1)j−1
h∑

u=0

(
h

u

)(
|S| − pn − jpm + u

ipm

)
Npn+jpm−u(S) ≡ 0 (mod p).

(4.1)

Proof. The proof of this lemma is similar to the proof of Lemma 3.1 of [8]. Let S

be the given sequence over G of length |S| = pn + 2(D(H) − 1) + pm − t and S

contains no short zero-sum subsequences.

Claim 1. Na(S) = 0 for all integers a satisfying 1 ≤ a ≤ pn or pn+D(H) ≤ a ≤ |S|.
Since S contains no short zero-sum subsequences, we see that Na(S) = 0 for all

integers a satisfying 1 ≤ a ≤ pn. By the argument of Lemma 3.1 of [8], we see

that Na(S) = 0 for all integers a satisfying pn + D(H) ≤ a ≤ |S| − pm + t. Thus,

to prove Claim 1, we need to prove that Na(S) = 0 for all integers a satisfying

|S| − pm + t+ 1 ≤ a ≤ |S|.
Let W be a zero-sum subsequence of S of length |W | = a for some integer a

satisfying |S| − pm + t + 1 ≤ a ≤ |S|. Since D(G) = pn + D(H) − 1 (by [13]) and

|W | = a ≥ |S| − pm + t + 1 = pn + 2(D(H) − 1) + 1, we see that W contains at

least two disjoint zero-sum subsequences W1 and W2 such that W = W1W2. Since

N b(S) = 0 for all integers 1 ≤ b ≤ pn, we see that |W1| ≥ pn + 1 and |W2| ≥ pn + 1

and hence |W | ≥ 2pn + 2, which is a contradiction because |S| < 2pn + 2 (as by

hypothesis, pn ≥ 2(D(H)− 1) + pm). This proves Claim 1.

Using Claim 1, the proof of Lemma 3.1 (3.1) of [8] yields Lemma 2.1 in Section

2 for the sequence S which in turn produces the congruence (4.1) for all integers i

and h satisfying 0 ≤ i ≤ k − 1 and 0 ≤ h < v. Hence, it is enough to prove the

congruence (4.1) for i = k and for all integers h with 0 ≤ h < v. Let T be any

subsequence of S of length |T | = |S| − kpm. Then consider the sequence T0h for a
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given integer h with 0 ≤ h < v. Note that

|T0h| = |T |+ h = |S| − kpm + h

= pn + 2(D(H)− 1) + pm − t− kpm + h

= pn +D(H)− 1 + pm +D(H)− 1− kpm − t+ h

≥ D(G) + pm − 1.

Then the rest of the proof is just same as that of Lemma 3.1 in [8].

Proof of Theorem 2. Let H be a finite abelian p-group of rank r = r(H) and

the exponent pm. Let D(H) − 1 = kpm + t for some positive integer k and for

some integer t with 0 ≤ t ≤ (pm − 1)/2. Let n be an integer such that pn ≥
2(D(H)− 1) + pm and let G = Cpn ⊕H.

To prove η(G) ≤ pn + 2(D(H) − 1) + pm − t, we let S be a sequence over G

of length |S| = pn + 2(D(H) − 1) + pm − t and we prove that S contains a short

zero-sum subsequence.

Suppose S contains no short zero-sum subsequences. Hence, by Lemma 4.1 with

h = 0, we get(
|S|
ipm

)
+

k∑
j=1

(−1)j−1
(
|S| − pn − jpm

ipm

)
Npn+jpm

(S) ≡ 0 (mod p), (4.2)

for all integers i with 0 ≤ i ≤ k. Note that for all integers j satisfying 0 ≤ j ≤ k,

we have

|S| − pn − jpm = pn + 2(kpm + t) + pm − t− pn − jpm = (2k + 1− j)pm + t.

Since D(H)−1 = kpm+t for some integer t with 0 ≤ t ≤ (pm−1)/2 and p > 2r(H),

we see that

D(H)−1 ≤ r(H) exp(H)−r(H) < r(H)pm ≤
(p

2
− 1
)
pm =⇒ k ≤ p

2
−1 ⇐⇒ 2k+2 ≤ p.

Therefore, for all integers j with 1 ≤ j ≤ k, we see that 2k + 1 − j < 2k + 1 < p

and every integer i ≤ k < p/2. Also, since |S| = pn + 2(D(H) − 1) + pm − t =

pn + 2(kpm + t) + pm− t = pn + (2k+ 1)pm + t, and 2t ≤ pm− 1 < pm, by Theorem

2.3, we get(
|S| − pn − jpm

ipm

)
≡
(

2k + 1− j
i

)(
t

0

)
≡
(

2k + 1− j
i

)
(mod p)
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for all integers j satisfying 1 ≤ j ≤ k. Also, since |S| = pn + (2k + 1)pm + t and

2t < pm < pn, by Theorem 2.3, we get(
|S|
ipm

)
≡
(

2k + 1

i

)
(mod p)

for all integers i with 0 ≤ i ≤ k. Therefore, by (4.2), we get(
2k + 1

i

)
+

k∑
j=1

(
2k + 1− j

i

)
(−1)j−1Npn+jpm

(S) ≡ 0 (mod p) (4.3)

for all integers i satisfying i = 0, 1, . . . , k.

Now, put

Xj = (−1)j−1Npn+jpm

(S)

for all j = 1, 2, . . . , k and X0 = 1 as variables modulo p. By (4.3), we have the

following system of linear equations in k + 1 variables modulo p.

X0 +X1 +X2 + · · ·+Xk = 0;(
2k + 1

1

)
X0 +

(
2k + 1− 1

1

)
X1 +

(
2k + 1− 2

1

)
X2 + · · ·+

(
2k + 1− k

1

)
Xk = 0;

· · · · · · · · ·

· · · · · · · · ·(
2k + 1

k

)
X0 +

(
2k + 1− 1

k

)
X1 +

(
2k + 1− 2

k

)
X2 + · · ·+

(
2k + 1− k

k

)
Xk = 0;

Note that the coefficient matrix of the above system of linear equations is nothing

but A in Theorem 2.4 with n = 2k + 1 and k = k. Therefore, by Theorem 2.4, the

determinant of the coefficient matrix is non-zero modulo p which forces the system

to have only the trivial solution modulo p. That is,

X0 ≡ X1 ≡ . . . ≡ Xk ≡ 0 (mod p),

which is a contradiction as X0 = 1 6≡ 0 (mod p). This proves the theorem.
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