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Abstract
Let G be a finite abelian additive group. In this paper, we deal with a combinatorial
constant related to short zero-sum sequences over the abelian p-groups.

1. Introduction

Let G be a finite abelian additive group with exponent exp(G). A sequence S over

G is written as
|S|

S=1]g =[] 9" with v,(S) € Zso
=1

geG

where vy(S) is called the multiplicity of g in S and |S| denotes the length of the
sequence S. By the definition of multiplicity, we see that

S| =" vy(S) € Zso.

geG

The sum of all the terms of the sequence S is given by

o(S) =Y y(S)g €.

geG
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A sequence S over G is called a zero-sum sequence if o(S) = 0. A sequence S is
called a short zero-sum sequence if o(S) = 0 and |S| € [1,exp(G)]. For any integer
k € Z>o and for a sequence S over G, we define

{Icmsn : Zgi—o,m—k}

el

N¥(S) =

b

which denotes the number of zero-sum subsequences of S of length k. The Daven-
port constant, D(G), is the minimal positive integer ¢ such that any given sequence
S over G of length |S| > ¢ contains a nonempty zero-sum subsequence. The con-
stant 7(G) is the minimal positive integer ¢ such that any given sequence S over G
of length |S| > ¢ contains a short zero-sum subsequence. Finally, the EGZ constant
s(@) is the minimal positive integer ¢ such that any given sequence S over G of
length |S| > ¢ contains a zero-sum subsequence T' of length |T'| = exp(G).

These constants are classical invariants attached to a finite abelian group G in
combinatorial number theory and have received a lot of attention (see for instance
[1, 2, 5, 6, 7, 9, 10, 15, 16]). When G is a cyclic group, we have n(G) = |G|
and s(G) = 2|G| — 1, by the well-known Erdés-Ginzburg-Ziv theorem [4]. For this
contribution, this constant s(G) is called EGZ constant. When G = Cg for a prime
p, Olson [13, 14] proved in 1969 that 1(Cy) = 3p — 2 and C. Reiher [15] proved in
2007 that s(Cg) = 4p — 3, which was, earlier, conjectured by Kemnitz [11] in 1983.
In general, if G & C,, ®C,, with m|n is the abelian group of rank 2, then it is known
that s(G) = n(G)+n—1 = 2m+2n—3 as given in [10]. In 1995, Alon and Dubiner
[1] proved that s(CT) < ¢(r)n where ¢(r) is a computable constant depends only on
the rank 7.

When G is of rank > 3, nothing more is known. Even when G = C’g, for any
prime p, these constants are still unkonwn. Recently, Fan, Gao, Wang and Zhong
[7] determined the values 1(G) and s(G) for special type of abelian groups of rank 3.
Apart from these results, Schmid and Zhuang [16] proved that if G is a finite abelian
p-group with D(G) = 2exp(G) — 1, then s(G) = 2D(G) — 1 = n(G) + exp(G) — 1.
Moreover, they conjectured the following.

Conjecture 1. ([16]) Let G be a finite abelian p-group with D(G) < 2exp(G) — 1.
Then
s(G) =2D(G) — 1 =n(G) + exp(G) — 1.

In this article, we prove the following theorems toward Conjecture 1 for a large
class of abelian p-groups using the techniques employed in a recent paper of Gao,
Han and Zhang [8].

Theorem 1. Let H be a finite abelian p-group of rank r(H) and exp(H) = p™ for
some positive integer m and for some prime p with p > 2r(H) and D(H) — 1 =
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kp™ 4+t for some positive integer k and a non-negative integer t satisfying 0 <t <
(p™ —1)/2. For any positive integer n with p™ > 2(D(H) — 1), let G = Cpn & H be
the abelian p-group satisfying D(G) < 2p™ — 1 =2exp(G) — 1. Let S be a sequence
over G of length p™ + 2(D(H) — 1). If NP"+iop™ (S) = 0 for some integer jo with
1 < jg <k, then S contains a short zero-sum subsequence.

In [8], Gao, Han and Zhang proved the Conjecture 1 for the abelian p-groups G
satisfying k = 1 or ¢t € [p™/2,p™) (notation is as in Theorem 1). In the following
theorem, we deal with the complement of this result.

Theorem 2. Let H be a finite abelian p-group of rank r(H) and exp(H) = p™
for some positive integer m and for some prime p with p > 2r(H) and D(H) —
1 = kp™ 4+t for some positive integer k and a non-negative integer t satisfying
0 <t < (p™—1)/2. For any positive integer n with p™ > 2(D(H) — 1) + p™, let
G = Cpn @& H be the abelian p-group satisfying D(G) < 2p™ —1 = 2exp(G) — 1.
Then, we have,

1(G) < 2D(G) — exp(G) + (exp(H) —t = 1) = p" +2(D(H) — 1) +p™ — ¢.

Note that when G = Cp» @ H, then D(G) = p™ + D(H) — 1. Therefore, Theorem 2
states that n(G) < (2D(G)—1)—exp(G)+(exp(H)—t) for the case t € [0, (p™—1)/2]
and hence exp(H) — ¢t — 1 is the extra term againsts the Conjecture 1.

2. Preliminaries

Throughout this section, we take H to be a finite abelian p-group of rank r(H)
and exponent exp(H) = p™ for some positive integer m. Also, we write D(H) —
1 = kp™ + t for some positive integer k and a non-negative integer t satisfying
0 <t < (p™—1)/2. Choose any integer n such that p™ > 2(D(H) — 1) and let
G=Cp ®H.

We have the following lemmas which are needed in the proof of Theorem 1 and
Theorem 2.

Lemma 2.1. ([8]) Let v = (k+ 1)p™ — D(H) =p™ —t — 1. Let S be a sequence
over G of length |S| = p™ + 2(D(H) — 1) such that S contains no short zero-sum
subsequences. For any integer i with 0 < i < k —1, let T be a subsequence of S of
length |T| = |S| — ip™. Then we have the following;

h

B\ "=, it apt g
1+ Z <u> Zl(fl)Jlep TPTTUT) =0 (mod p), (2.1)

=0
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for all h € [0,v].

Lemma 2.2. Letv = (k+1)p"™—D(H) =p™—t—1. Let S be a sequence over G of
length |S| = p™+2(D(H)—1) such that S contains no short zero-sum subsequences.
For any integers ¢ and h satisfying 0 <1< k—1and 0 < h <v—1, we have

(1) 33 () (917 27" )20, et

P j=1 u=0 w
(2.2)

Proof. This lemma is implicitly proved in Lemma 3.1 (3.3) of [8]. In order to get
(2.2), we take a subsequence T of S such that |T'| = |S| —ip™ for a given integer 4
with 0 <7 <k — 1. We can get

h k
1+ Z) (Z) 2(-1)]‘*1NP”+J‘?””*“(T) =0 (mod p).

Now we sum over all the subsequences T with |T'| = |S| — ip™ and we get
b K
1)1 P +ip" —u =
> 1+ (u> Z( 17N (T)]| =0 (modp). (2.3)
T,|T|=|S|—ip™ u=0 =1

Since each subsequence W of S with |[W| < |S| — ip™ can be extended to a subse-
quence T of length |T'| = |S| — ip™ in

(|S - |W|> B <|S| - |W> B <S| - |W|>
T = W] S| = [T ip™
ways, by starting with 0 length subsequence W of S, we see that the number of

S
ways to get subsequences T of S with |T'| = |S| — ip™ is (| |> Then, using this
pm

and expanding the sum in (2.3), we arrive at (2.2). O

Corollary 2.2.1. Let S be a sequence over G as defined in Lemma 2.2. For any
integer ¢ with 0 < i < k — 1, we have

(fm) +é<—1)j—1('5‘f;m‘ j”m)m"w’”(s)zo (mod p).  (2.4)

Proof. Put h =0 in Lemma 2.2 to get the result. a O
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Theorem 2.3. ([12]) Let p be a prime number. Let a and b be positive integers
with a = app™ + ap_1p" L+ -+ +ag with a; € {0,1,...,p— 1} and b = b,p™ +
bn_lpn_l + -+ by with b; € {0, 1,...,p— 1}. Then

() =G ) () moan

Theorem 2.4. ([8]) Let n and k be positive integers with 1 < 2k < mn. Let A be the
following (k+ 1) x (k + 1) matriz with positive integers

1
() e ()
A= ® 00

Then, the determinant of A is

k —1
det(A)z(Ht!) II G-a.

3. Proof of Theorem 1

Proof of Theorem 1. Let S be a sequence over G of length |S| = p™ +2(D(H) —1).
By the assumption, for some integer jo with 0 < jo < k, we have N?"+ior™ (S)=0.
Without loss of generality, we shall assume that jo = k and hence N?"+kP™ (S) =0,
as the proof of the other cases are similar. We need to prove that S contains a
short zero-sum subsequence. On the contrary, we shall assume that S contains
no short zero-sum subsequences. Hence, by Corollary 2.2.1, for any integer ¢ with
0 <i <k —1 and by the assumption with jo = k, we get

IS = gyt (181 =2 = 0™
<, ) +) (=177 < , )Np +P"(§) =0 (mod p). (3.1)
Note that for any integer j with 1 < 7 < k — 1, we have
S| =p" —jp"™ = p" +2(kp™ +1) —p" — jp™ = (2k — j)p"™ + 2t.
Since D(H)—1 = kp™ +t for some integer ¢t with 0 < ¢ < (p™—1)/2 and p > 2r(H),
we see that
p

D(H) —1 < r(H)exp(H) — r(H) < r(H)p™ < (5 —1)p" = k<

b_q
2
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Therefore, for all integers j with 1 < j < k — 1, we see that 2k — j < 2k < p and
every integer ¢ < k < p. Since 2t < p™ — 1 < p™, by Theorem 2.3, we get

(ISI _ij_ jp’”) _ <2ki—j) (2015) _ <2kz— j) (taod ) .

for all integers j with 1 < j < k — 1 and for all integers ¢ with 0 <7 < k — 1. Also,
since |S| = p™ + 2kp™ + 2t and 2t < p™ < p", by Theorem 2.3, we get

()= (2) s

for all integers ¢ with 0 <4 < k — 1. Therefore, by (3.1), (3.2) and (3.3), we get

7

j=1
forall i =0,1,...,k — 1. Now, put
X; = (1) INP"HIPT ()

for all 7 = 1,2,...,k — 1 and Xy = 1 as variables modulo p. Then, by putting
i=0,1,2,...,k —11in (3.4), we get a system of k linear equations in k variables
modulo p as follows.

Xo+Xi+Xo 4+ X1 =0;

2k 2k —1 2k — 2 k+1
Xo+ X1+ Xo+---+ + Xi_1=0;
1 1 1 1
2k 2k —1 2k —2 k+1
(k‘—l)XO+<I€—1)X1+<I€—1)X2+”.+<I{?—1>Xk_l0’

Note that the coefficient matrix of the above system of linear equations is nothing
but A in Theorem 2.4 with n = 2k and k = k — 1. Therefore, by Theorem 2.4, the
determinant of the coeflicient matrix is non-zero modulo p which forces the system
to have only the trivial solution modulo p. That is,

Xo=X1=...=X,-1 =0 (mod p),

which is a contradiction to Xo =12 0 (mod p). This proves the result. O
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4. Proof of Theorem 2

To prove Theorem 2, first we need to extend Lemma 2.2 so that it holds true for
all i € [0, k] and for all h € [0,v), when |S| = p™ +2(D(H) — 1) 4+ p™ — t for some
integer ¢ satisfying 0 < ¢ < (p™ — 1)/2 (notation is as in Section 2). Recall that H
is an abelian p-group of rank r(H) and exponent p™. Let n be a positive integer
such that p” > 2(D(H) — 1) +p™ and G = Cp» & H.

Lemma 4.1. Let S be a given sequence over G of length |S| = p" +2(D(H)—1)+
p"™ —t where t is an integer satisfying D(H) —1 = kp™ 4+t with 0 <t < (p™—1)/2.
Letv = (k+1)p™—D(H) = p™—t—1. If S contains no short zero-sum subsequences,
then for all integers h and i satisfying 0 < h < v and 0 <1i <k, we have

j=1 =0 w
(4.1)

Proof. The proof of this lemma is similar to the proof of Lemma 3.1 of [8]. Let S
be the given sequence over G of length |S| = p™ + 2(D(H) — 1) +p™ —t and S
contains no short zero-sum subsequences.

Claim 1. N%(S) = 0 for all integers a satisfying 1 < a < p" orp"+D(H) < a < |S|.

Since S contains no short zero-sum subsequences, we see that N%(S) = 0 for all
integers a satisfying 1 < a < p™. By the argument of Lemma 3.1 of [8], we see
that N%(S) = 0 for all integers a satisfying p" + D(H) < a < |S| — p™ +t. Thus,
to prove Claim 1, we need to prove that N%(S) = 0 for all integers a satisfying
IS|—p™ +t+1<a<|S|

Let W be a zero-sum subsequence of S of length |W| = a for some integer a
satisfying |S| —p™ +t+ 1 < a < |S]. Since D(G) = p" + D(H) — 1 (by [13]) and
Wl =a>|S|—pm+t+1=p"+2(D(H)—1)+ 1, we see that W contains at
least two disjoint zero-sum subsequences W; and W5 such that W = W;W,. Since
N?(S) =0 for all integers 1 < b < p”, we see that [W;| > p™ + 1 and |Ws| > p" + 1
and hence |W| > 2p™ + 2, which is a contradiction because |S| < 2p™ + 2 (as by
hypothesis, p™ > 2(D(H) — 1) + p™). This proves Claim 1.

Using Claim 1, the proof of Lemma 3.1 (3.1) of [8] yields Lemma 2.1 in Section
2 for the sequence S which in turn produces the congruence (4.1) for all integers 4
and h satisfying 0 < ¢ < k—1 and 0 < h < v. Hence, it is enough to prove the
congruence (4.1) for i« = k and for all integers h with 0 < h < v. Let T be any
subsequence of S of length |T| = |S| — kp™. Then consider the sequence T0" for a
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given integer h with 0 < h < v. Note that

70" = |T|+h=|S|—kp™ +h
= p"+2(DH)-1)+p" —t—kp™ +h
= p"+DH)-1+p"+DH)—-1-kp" —t+h
> D(G)+p™—1.

Then the rest of the proof is just same as that of Lemma 3.1 in [8].

Proof of Theorem 2. Let H be a finite abelian p-group of rank r = r(H) and
the exponent p™. Let D(H) — 1 = kp™ 4+t for some positive integer k and for
some integer ¢t with 0 < ¢ < (p™ — 1)/2. Let n be an integer such that p" >
2(D(H)—1)+p™ and let G =Cpn ® H.

To prove n(G) < p" +2(D(H) — 1) + p™ — t, we let S be a sequence over G
of length |S| = p™ + 2(D(H) — 1) + p™ — t and we prove that S contains a short
zero-sum subsequence.

Suppose S contains no short zero-sum subsequences. Hence, by Lemma 4.1 with
h =0, we get

p™m ip™m

(|5 ) N zk:(—l)j‘l (|S — p" - .jpm>an+jpm(S) =0 (mod p), (4.2)

j=1

for all integers 7 with 0 < ¢ < k. Note that for all integers j satisfying 0 < j < k,
we have

IS —p™ —jp™ =p" +2(kp" + 1) +p" —t—p" —jp" =2k +1—j)p" +1.

Since D(H)—1 = kp™ +t for some integer ¢t with 0 < ¢ < (p"™—1)/2 and p > 2r(H),
we see that

D(H)~1 < r(H)exp(H)—r(H) < r(H)p™ < (g - 1) o= k< §_1 = 2k+2 < p.

Therefore, for all integers j7 with 1 < j < k, we see that 2k +1—j <2k+1<p
and every integer ¢ < k < p/2. Also, since |S| =p" +2(D(H) — 1) +p™ —t =
Pt 4 2(kp™+t)+p™ —t =p"+ (2k+1)p™ +t, and 2t < p™ —1 < p™, by Theorem
2.3, we get

IS —p" —jp™\ _ (2k+1—j\ [t
ip™ o i 0

(2k+1—j

7

) (modp
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for all integers j satisfying 1 < j < k. Also, since |S| = p™ + (2k + 1)p™ + ¢ and
2t < p™ < p”, by Theorem 2.3, we get

()= (4") man

for all integers ¢ with 0 < ¢ < k. Therefore, by (4.2), we get

for all integers ¢ satisfying i = 0,1,..., k.

Now, put

X

J = (~1 N ()

for all j = 1,2,...,k and Xo = 1 as variables modulo p. By (4.3), we have the
following system of linear equations in k£ + 1 variables modulo p.

Xo+ X1+ Xo+ -+ Xy =0;

2k+1 2k+1-1 2k+1-—2 2k+1—-k
T N e L

2k +1 2k+1—-1 2k+1—-2 2k+1—k
( ]:_)XO‘F( +k >X1+< +/€ )X2+'--+< +k )szo;

Note that the coefficient matrix of the above system of linear equations is nothing
but A in Theorem 2.4 with n = 2k + 1 and k = k. Therefore, by Theorem 2.4, the
determinant of the coefficient matrix is non-zero modulo p which forces the system
to have only the trivial solution modulo p. That is,

Xo=X1=...=X, =0 (mod p),
which is a contradiction as Xg =1 # 0 (mod p). This proves the theorem. O
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