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Abstract

Let θ be a given element in F2(X). In this article, we give a sufficient condition for
the sequence (θn)n≥0 to have a distribution modulo 1.

1. Introduction

Many number theoretic problems have natural counterparts in the domain of func-

tion fields. We are concerned here with the question of the distribution modulo

1 of the powers of an element θ ∈ Fq(X), the counterpart of the question of the

distribution modulo 1 of (3/2)n. The reader will notice that the method and result

of this note can easily be extended to the case of an algebraic element over Fq(X);

since our result is only partial, we see no interest in stating it in a more general

form, as long as generalisation does not bring a better understanding.

Let us start by giving some definition. We denote Fq((X)) by the set of all the

Laurent expansions

η =
∑

k≥−k0

εk(η)Xk, k0 ∈ N and εk(η) ∈ Fq.

It is a field which contains Fq(X).
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Definition 1 (Densities). Let θ ∈ Fq((X)). We say that the sequence (θn)n≥0 has

a distribution modulo 1 if for any L ≥ 1 and for any bL ∈ FLq , the sequence

N (θ, bL) = {n ∈ N : (ε1(θn), . . . , εL(θn)) = bL} (1)

has an asymptotic density, i.e., if the following limit

lim
x→∞

1

x
Card {n ≤ x : n ∈ N (θ, bL)} (2)

exists.

Similarly, we say that the sequence (θn)n≥0 has a logarithmic distribution modulo

1 if for any L ≥ 1 and for any bL ∈ FLq , the sequence N (θ, bL) has a logarithmic

density, i.e., if the following limit

lim
x→∞

1

log x

∑
n∈N (θ,bL),n≤x

1

n
(3)

exists.

Houndonougbo proved in [5] the existence of the distribution modulo 1 of the

sequence (θn)n≥0, where θ = P (X)µ + 1/P (X)ν for positive integers µ and ν and

P a non constant polynomial in Fq[X]: he indeed showed more, namely that the

sequence N (θ, (0, 0, . . . , 0)) has density 1. Deshouillers proved in [4] that the se-

quence (θn)n≥0 also has a distribution modulo 1 when θ = P (X)/Xν , i.e. when

the Laurent expansion of θ is finite: he showed that for any bL the sequence N (θ, bL)

is q-automatic and that it has a density. Allouche and Deshouillers proved in [1]

that for any θ algebraic over Fq(X), the sequence N (θ, bL) is q-automatic; by a gen-

eral result of Cobham [3], this implies that the sequence (θn)n≥0 has a logarithmic

distribution modulo 1, but the existence of a distribution modulo 1 is still an open

question.

Our aim is to provide a criterion which is sufficient to prove the existence of the

distribution modulo 1 of (θn)n≥0. We made some ten hand numerical experiments

on θ with an infinite Laurent expansion; in the cases we considered, this criterion

turned out to be satisfied and indeed led to a limit distribution which is the Dirac

measure at 0.

From now on, we assume that q = 2 and that θ ∈ F2(X). In order to describe the

2-automata which generate the sequences N (θ, bL) we follow [1] and first introduce

some definition.
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For n ≥ 0, we consider the Laurent expansions

θn =
∑

k≥−k0(n)

εk(θn)Xk.

Since θ is rational, its expansion is ultimately periodic and the following definition

makes sense.

Definition 2 (Parameter). The parameter of an element θ in F2(X) is the smallest

even positive integer T satisfying

ε−h(θ) = 0 if h ≥ T

and

εh+T (θ) = εh(θ) if h ≥ T.

From now on we denote T as the parameter of θ. For n ≥ 0 and K,L ≥ 0, we

define

B(n,K,L) = (ε−K(θn), ε−K+1(θn), . . . , εL−1(θn), εL(θn)) ∈ FL+1+T
2 , (4)

B(n,L) = B(n, T, L) (5)

and

M(n) = (m(n, 0), . . . ,m(n, T − 1)) ∈ FT2 , (6)

where, for t ∈ Z : m(n, t) =

∞∑
h=0

ε−t−hT (θn) ∈ F2,

which is well defined since this sum contains only a finite number of non-zero ele-

ments.

The key ingredient in [1] is the fact that, for L ≥ T , the two (2T +L+ 1)-tuples

(M(2n),B(2n,L)) and (M(2n+ 1),B(2n+ 1, L)) only depend on (M(n),B(n,L)).

Since [1] is not easily available, we give here a proof of this fact.

Proposition 1. Let L ≥ T ; there exist two maps ρ and τ from F2T+L+1
2 into itself

such that for every n ≥ 0 one has,

(M(2n),B(2n,L)) = ρ ((M(n),B(n,L))) , (7)

(M(2n+ 1),B(2n+ 1, L)) = τ ((M(n),B(n,L))) . (8)

Proof. We first observe that

∀k ∈ Z : ε2k(θ2n) = εk(θn), (9)

∀k ∈ Z : ε2k+1(θ2n) = 0, (10)

For t even in [0, T ) : m(2n, t) = m(n, t/2) +m(n, t/2 + T/2), (11)

For t odd in [0, T ) : m(2n, t) = 0. (12)
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This implies that as soon as one knows B(n,L), all the coefficients of θ2n with

indices beween −2T − 1 and 2L+ 1 are known: so are B(2n, 2T + 1, 2L+ 1) and a

fortiori B(2n,L). Similarly, the knowledge of M(n) implies that of M(2n). This

implies (7).

We noticed that the knowledge of B(n,L) gives us that of B(2n, 2T + 1, 2L+ 1).

Let us show that the knowledge of B(n,L) and of M(n) gives us the knowledge of

m(2n, t) =

∞∑
h=0

ε−t−hT (θ2n) for t ∈ [−2L− T − 1, 3T + 1]. (13)

Indeed, if t ∈ [0, T −1], then m(2n, t) is an element ofM(2n); Otherwise m(2n, t) is

an element ofM(2n) which is modified by a few terms which belong to B(2n, 2T +

1, 2L + T + 1), e.g. m(2n,−2) = ε2(θ2n) + m(2n, T − 2), m(2n, T ) = −ε0(θ2n) +

m(2n, 0).

For any k we have

εk(θ2n+1) =

+∞∑
r=−∞

ε−T+r(θ)εk+T−r(θ
2n) =

+∞∑
r=0

ε−T+r(θ)εk+T−r(θ
2n)

=

2T−1∑
r=0

ε−T+r(θ)εk+T−r(θ
2n) +

∞∑
r=2T

ε−T+r(θ)εk+T−r(θ
2n)

=

2T−1∑
r=0

ε−T+r(θ)εk+T−r(θ
2n) +

T−1∑
ν=0

εT+ν(θ)
∑
r≥2T

r≡νmodT

εk+T−r(θ
2n)

=

2T−1∑
r=0

ε−T+r(θ)εk+T−r(θ
2n) +

T−1∑
ν=0

εT+ν(θ)m(2n, T + ν − k).

The last relation shows that as soon as one knows B(n,L) and M(n,L) (and the

digits of θ with indices between −T and 2T which are our inititial data), we have

enough information to determine B(2n + 1, L) (cf. (13) and the fact that for k ∈
[−T, L] we have T + ν − k ∈ [T − L, 3T − 1] ⊂ [−2L− T − 1, 3T + 1]).

We finally study M(2n+ 1). Let t ∈ [0, T − 1). Reasoning as above, we have.

m(2n+ 1, t) =

∞∑
h=0

2T−1∑
r=0

ε−T+r(θ)ε−t−r−(h−1)T (θ2n)

+

∞∑
h=0

∞∑
r=2T

ε−T+r(θ)ε−t−r−(h−1)T (θ2n)

= S1 + S2, say.

By interchanging the sums in the first term on the right hand side, we see that it
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is equal to

S1 =

2T−1∑
r=0

ε−T+r(θ)m(2n, t+ r − T ). (14)

Since r ∈ [0, 2T − 1] and t ∈ [0, T − 1], we have −T ≤ t+ r − T ≤ 2T − 2 and thus

the term in (14) is known as soon as M(n) is known. Let us look at the second

term. We have

S2 =

∞∑
h=0

∞∑
r=2T

ε−T+r(θ)ε−t−r−(h−1)T (θ2n)

=

∞∑
h=0

∞∑
s=T

εs(θ)ε−t−s−hT (θ2n)

=

∞∑
h=0

T−1∑
ν=0

∑
r≥T

s≡νmodT

εs(θ)ε−t−s−hT (θ2n).

We use the periodicity of the digits of θ and write s = ν + T + kT . We have

S2 =

T−1∑
ν=0

εT+ν(θ)

∞∑
h=0

∞∑
k=0

ε−t−ν−T−(h+k)T (θ2n)

=

T−1∑
ν=0

εT+ν(θ)

∞∑
`=0

 ∑
h≥0,k≥0
h+k=`

1

 ε−t−ν−T−`T (θ2n).

It is enough to consider each inside sum over `. We notice that if t+ ν is odd, then

all the terms ε−t−ν−T−`T (θ2n) are zero and so is the sum of those terms over `. We

also notice that the sum
∑
h≥0,k≥0
h+k=`

1 is equal to 1 when ` is even and to 0 when ` is

odd. Combining those two remarks and writing ` = 2λ, we have, when t+ ν is even

∞∑
`=0

 ∑
h≥0,k≥0
h+k=`

1

 ε−t−ν−T−`T (θ2n) =

∞∑
λ=0

ε−(ν+t+T )/2−λT (θn)

= m(n, (ν + t+ T )/2);

when ν + t+ T ≤ 2T , then m(n, (ν + t+ T )/2) is an element in M(n); otherwise,

we write m(n, (ν + t + T )/2) = m(n, (ν + t − T )/2) − ε(T−ν−t)/2(θn), which the

difference of an element of M(n) and an element of B(n,L).

Thus S2 is also known as soon as B(n,L) and M(n) are known. This ends the

proof of Proposition 1.
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This permits to build a directed graph ΓL with edges indexed by 0 or 1 as follows.

We first consider the set of vertices

RL = {(M(n),B(n,L)) : n ≥ 0}. (15)

We then build two edges starting from rL ∈ RL depending on ε = 0 or ε = 1 in

the following way: since rL = (M(n),B(n,L)) for some integer n ≥ 0, for each

ε ∈ {0, 1}, we define the state

δL(rL, ε) := (M(2n+ ε),B(2n+ ε, L)) (16)

and the edge (rL, δL(rL, ε)), which are well defined. The above-mentioned ob-

servation of [1] implies that our definition is indeed independent of the choice

of n such that rL = (M(n),B(n,L)). The reader who needs to refresh her/his

knowledge on Automatic Sequences is strongly recommended to visit [2]1 , specially

subsections 4.1 and 5.1. The refreshment being performed, it is not difficult to

see that the sequence N (θ, bL) is 2-automatic: it is recognized by the automaton

A(bL) = {RL, {0, 1}, δL, r0,L, F (bL)}, where RL and δL have already been defined,

r0,L = (M(0),B(0, L))

and

F (bL) is the set of those r ∈ RL, the last L components of which are bL.

It will be convenient to extend the function δL to a new function still called δL,

defined over the words w on {0, 1}, satisfying

∀r ∈ RL,∀ε ∈ {0, 1},∀w ∈ {0, 1}∗ : δL(r, ∅) = r, δL(r, εw) = δL(δL(r, w), ε).

Let us recall a criterion on the graph ΓL which insures that the sequence N (θ, bL)

has a density.

In the directed graph ΓL, we say that two vertices r and s are equivalent if there

is a directed path leading from r to s and a directed path leading from s to r; this

permits to consider equivalent classes, which form a tree, which leads to the notion

of final class; we finally say that an equivalent class is regular if there exists an

integer ` such that for any pair (r, s), there is a directed path of length ` leading

from r to s. We have the following criterion.

Proposition 2. Let L ≥ T be a given integer and bL ∈ FL2 be a given vector. If the

graph ΓL of the automaton A(bL) has a single final class and if this class is regular,

then, the sequence N (θ, bL) has an asymptotic density.

1Thanks, Jeff, for this invaluable monography... and for the rest!
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Theorem 8.4.7, p. 272 of [2] deals with the special case where all the states con-

stitute a single final regular equivalence class. Proposition 2 is a mere extension of

this result where the key tool is Perron-Frobenius theorem.

Back to our question, we notice that if u ≤ v, then N (θ, bu) is a finite union of

sequences N (θ, bv), and it is thus enough for our purpose to consider the sequences

N (θ, bL) for all sufficiently large values of L.

We wish to prove here that if the criterion applies to an automaton A(bL), it

also applies to the automaton A(bL+1), which leads to the following

Theorem 1. Let θ be an element in F2(X) and let T be its parameter. If the graph

ΓT has a single final class and if this final class is regular, then the sequence (θn)n≥0
has a distribution modulo 1.

We remark that in the statement of Theorem 1, the automaton A(bT ) only occurs

through its graph ΓT , which itself depends on {RT , δT , r0,T } but not on F (bT ).

Corollary 1. Let θ be an element in F2(X) and let T be its parameter. If the

graph ΓT has a single equivalence class, then the sequence (θn)n≥0 has a distribution

modulo 1.

2. Connection between the automata A(bL) and A(bL+1)

Our key tool to understand the connection between the automata A(bL+1) and

A(bL) is a natural map fromRL+1 ontoRL; we define it and give its main properties

in the following proposition.

Proposition 3. Let θ and T be as in Theorem 1 and let L ≥ T . The map σL from

RL+1 to F2T+L+1
2 , defined by suppressing the last component of an element, has the

following properties

σL (RL+1) = RL, (17)

∀r ∈ RL, at most two elements s ∈ RL+1 such that σL(s) = r, (18)

σL(r0,L+1) = r0,L, (19)

∀r ∈ RL+1, and ε ∈ {0, 1}, we have : σL (δL+1(r, ε)) = δL(σL(r), ε). (20)

Proof. By definition, cf. (15), for a state rL+1 in RL+1, there exists an integer n

such that rL+1 is the (2T +L+2)-tuple (M(n),B(n,L+ 1)). If we suppress its last

component we get the (2T+L+1)-tuple (M(n),B(n,L)), which is an element ofRL.

In the other direction, if we start with an element rL in RL, there exits an n such

that rL = (M(n),B(n,L)), and for this n we have rL = σL((M(n),B(n,L+ 1)).
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Thus, the suppression of the last component defines the map σL which satisfies the

Property (17). Property (18) comes from the fact that the last component of an el-

ement of RL+1 belongs to {0, 1}. We have σL(r0,L+1) = σL ((M(0),B(0, L+ 1)) =

(M(0),B(0, L)) = r0,L, which proves Property (19). Finally, let r ∈ RL+1, there

exists an integer n such that r = (M(n),B(n,L+ 1)); for ε ∈ {0, 1}, we have,

cf. (16), δL+1(r, ε) := (M(2n+ ε),B(2n+ ε, L+ 1)) and so σL (δL+1(r, ε)) =

σL ((M(2n+ ε),B(2n+ ε, L+ 1))) = (M(2n+ ε),B(2n+ ε, L)) = δL(σL(r), ε),

which proves (20).

We say that rL+1 ∈ RL+1 is sitting above rL for some rL ∈ RL, if σ(rL+1) = rL.

Claim 1. Assume that CL is the unique final class in ΓL and let CL+1 be one of

the final classes of ΓL+1. Then any element of CL+1 is sitting above some element

of CL.

Proof. Let rL+1 ∈ CL+1 be a given element. Then we have, σL(rL+1) ∈ RL. If

σL(rL+1) ∈ CL, then we are done. If not, then there exists a word w ∈ {0, 1}∗ such

that δL(σL(rL+1), w) ∈ CL. Since rL+1 belongs to CL+1 which is a final class, the

state δL+1(rL+1, w) belongs to CL+1. Therefore, there exists a word w′ ∈ {0, 1}∗
such that δL+1(rL+1, ww

′) = rL+1. Thus, by the definition of CL, we see that

δL(σL(rL+1), ww′) ∈ CL. Since rL+1 is sitting above σL(rL+1), by (20) we conclude

that rL+1 = δL+1(rL+1, ww
′) is sitting above δL(σL(rL+1), ww′) ∈ CL.

Now, we look at a converse of Claim 1.

Claim 2. Assume that CL is the unique final class in ΓL and let CL+1 be one of the

final classes of ΓL+1. For any element r ∈ CL, there is an element s ∈ CL+1 which

is sitting above r.

Proof. Let r be an element in CL and t an element in CL+1. There exists a word

w ∈ {0, 1}∗ such that δL(σL(t), w) ∈ CL. Since r ∈ CL, there exists a word w′

such that δL(σL(t), ww′) = r. Now, we look at δL+1(t, ww′). Since t ∈ CL+1, we

conclude that δL+1(t, ww′) ∈ CL+1. Since t is sitting above σL(t), by (20), we have

δL+1(t, ww′) ∈ CL+1 is sitting above r.

Claim 3. Assume that CL is the unique final class in ΓL. If CL+1 is a final class

in ΓL+1, then |CL+1| ≥ |CL|.

Proof. If r 6= s are two different elements in CL, then, by Claim 2, there exist two

elements r′, s′ of CL+1 such that r′ is sitting above r and s′ is sitting above s. Since

r 6= s, by the definition, we see that r′ 6= s′. Hence the claim.

Claim 4. Assume that CL is the unique final class in ΓL. Then there can be at

most two distinct final classes in ΓL+1.
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Proof. We first remark that two classes are distinct if and only if they are disjoint;

now, the claim simply follows from Claim 3 and (18): each final class has at least

|CL| elements and for any element r in CL we can have at most two elements of

RL+1 sitting above r.

Claim 5. Assume that CL is the unique final class in ΓL. Suppose that C(1)L+1 and

C(2)L+1 are two distinct final classes in ΓL+1 sitting above CL. They are disjoint and

for every element r ∈ CL, there is exactly one element r1 ∈ C(1)L+1 and one element

r2 ∈ C(2)L+1 which are sitting above r. Moreover, for any (r1, r2) ∈ C(1)L+1 × C
(2)
L+1 and

for any word w ∈ {0, 1}∗, we have

δL+1(r1, w) 6= δL+1(r2, w). (21)

Proof. Since the two classes C(1)L+1 and C(2)L+1 are distinct, they are disjoint. By Claim

2, above each element r ∈ CL, there exist r1 ∈ C(1)L+1 and r2 ∈ C(2)L+1 sitting above r ;

since the two classes are disjoint, we have r1 6= r2. By (18), this implies that above

r, there can be only one element from each of the C(i)L+1. The last assertion follows

the fact that for any word w, the element δL+1(ri, w) is in C(i)L+1.

3. Proof of Theorem 1

By Proposition 2, it is enough to prove that for any L ≥ T and any bL, the graph

ΓL of the automaton A(bL) has a single final class, and this class is regular. Let us

recall that ΓL is independent of bL. We shall prove our assertion by induction on

L.

The assumption of Theorem 1 is simply the case L = T : the graph ΓT has a

single final class and this class is regular.

Let us assume that for some L ≥ T , the graph ΓL has a single final class and

this class is regular; let CL be this class.

We first prove that the graph ΓL+1 has a single final class. By Claim 1, any

single final class of ΓL+1 is sitting above CL; thus by Claim 4, there are at most

two final classes in ΓL+1. If we have indeed two distinct final classes, then we can

apply Claim 5: let r be an element in CL: there exist two elements r1 and r2 which

are sitting above r and which belong to the two different classes above CL. Choose

an integer h such that 2h > L + 1 and consider a word w consisting of h zeroes.

By (20), the elements δL+1(ri, w) are sitting above δL(r, w) for i = 1 and 2. This

means that they differ at most by their last digit. Let n1 and n2 be two integers

such that

ri = (M(ni),B(ni, L+ 1)) for i = 1, 2.
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Then, we have

δL+1(ri, w) =
(
M
(
ni2

h
)
,B
(
ni2

h, L+ 1
))

=
(
M
(
ni2

h
)
,B
(
ni2

h, L
)
◦ εL+1(θni2

h

)
)

for i = 1, 2, where the symbol ◦ represents the concatenation. Since 2h > L+ 1, we

have

εL+1(θn12
h

) = εL+1(θn22
h

) = 0,

which implies

δL+1(r1, w) = δL+1(r2, w),

a contradiction to Claim 5. Hence, there is only one final class in the graph ΓT+1.

Let CL+1 be the unique final class in ΓL+1. It remains to show that this class is

regular.

If |CL+1| = |CL|, then, by Claim 2, for every rL ∈ CL, there is exactly only one

rL+1 ∈ CL+1 such that rL+1 is sitting above rL and conversely. Therefore, by (20),

δL+1(rL+1, w) is sitting above δL(rL, w) for every word w. Since CL is regular, this

implies that CL+1 is also regular.

Suppose that |CL+1| > |CL|. Then, there exists r in CL such that the two elements

r ◦ 0 and r ◦ 1 are in CL+1. Choose an integer h such that 2h > L+ 1 and let w be

the word consisting of h zeroes. By the above argument, we have

δL+1(r ◦ 0, w) = δL+1(r ◦ 1, w),

and we denote this element by s. Since CL is regular, there exists an integer K such

that for any k ≥ K, there is a word wk of length k satisfying

δL(σL(s), wk) = r;

thus δL+1(s, wk) is either r◦0 or r◦1. But in either case, we have δL+1(s, wkw) = s,

so that for any ` ≥ K + h there is a path of length ` which connects s to s. Since

CL+1 is an equivalent class, any element u can be connected to any element v by a

path of length exactly 2|CL+1|+K+h, which implies that CL+1 is regular. Theorem

1 is proved.

2

Proof of Corollary 1. Since the graph of A(bT ) has unique class, say, CT , it is the

final class. Choose an integer h such that 2h > T . Let w be a word consisting only

h zeroes. Then δT (r0,T , w) =
(
M(2h),B(2h, T )

)
= rh, say. Therefore there exists a

word w′ such that δT (rh, w
′) = r0,T . Thus, we have

δT (r0,T , ww
′) = r0,T with |ww′| = K, say.
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Since it is an equivalent class, any element u can be connected to any other element

v by a path of length K + 2|CT |. Hence it is regular. Therefore, by Theorem 1, we

get the corollary.
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