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1. Introduction

Let G be a finite abelian additive group with exponent exp(G). A sequence S over G
is written as

El
S=]]g = 9" with v,(S) € Zx0
=1

geqG
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where vy(S) is called the multiplicity of g in S and |S| denotes the length of the sequence
S. By the definition of multiplicity, we see that

S| =) " vy(S) € Zo.

geG

The sum of all the terms of the sequence S is given by

a(S) = v,(S)g € G.

geG

A sequence S over G is called a zero-sum sequence if o(S) = 0. For any integer k € Z~
and for a sequence S over G, we define

)

Nk(S) = HI LIS s Y g=0.11= k}

iel

which denotes the number of zero-sum subsequences, counted with multiplicities, of S
of length k.

For a given positive integer k > 1, we define a constant s<x(G) which is the least
positive integer ¢ such that given any sequence S over G of length |S| > ¢ satisfies
N™(S) > 1 for some integer 1 < m < k. The well-known Davenport constant, D(G), is
defined as the least positive integer ¢t such that any given sequence S over G of length
> t satisfies N*¥(S) > 1 for some integer k > 1. The other well-known constant 7(G) is
nothing but 7(G) = s<exp(c)(G)-

These constants D(G) and n(G) have received a lot of attention (see for instance [1,4,
5,7-9,11,13-15,20,21]). When G is a cyclic group, we have n(G) = |G| and D(G) = |G|.
When G = C} for a prime p, Olson [18,19] proved in 1969 that n(C7) = 3p — 2 and
for any p-group G, he proved that D(G) = D*(G) where, for any finite abelian group
G 2Chp @& B Cp, withl <my <mg <--- < m, are integers satisfying m;|m;s1,
the constant D*(G') is defined by

D* (G =1+ i(mi —1).

If G = C,, ® C, with m|n is an abelian group of rank 2, then it is known that n(G) =
2m +n — 2 as given in [15] and D(G) = m +n — 1.

When G is of rank > 3, nothing much is known. For any odd prime p, it is known that
n(C3) > 8p—7([5]) and n(Cy) > 19p— 18 ([4]) and their exact values are still unkonwn.
Recently, Fan, Gao, Wang and Zhong [7] determined the value n(G) for special types of
abelian groups of rank 3. Apart from these results, Schmid and Zhuang [20] proved that
if G is a finite abelian p-group with D(G) = 2exp(G) — 1, then n(G) = 2D(G) — exp(G).
Moreover, they conjectured the following.
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Conjecture 1. ([20]) Let G be a finite abelian p-group with D(G) < 2exp(G) — 1. Then
1(G) = 2D(G) — exp(G).

The constants s<x(G) was introduced by Delorme, Ordaz and Quiroz [3]. It is easy
to see that if £ > D(G), then s<x(G) = D(G) and if 1 < k < exp(G), we see that
s<kx(G) = oo. In general, the problem of determining exact value of s<;(G) is quite
difficult. In 2010, Freeze and Schmid [10] proved that s<3(C3) = 2"~! + 1. In 2017,
Wang and Zhao [22] proved that when G = C,,, © C,,, the constant s<p(g)—x(G) is equal
to D(G)+Fk for all integers k € [0,m—1] and s,_,(C5) =r+2 forallr—k € [[252] ,r].

By the definition of 7(G), it is clear that s<exp(a)+¢(G) < n(G) for all integers £ > 0.
In this article, we prove that s<cyxp(@)+4(G) < 7(G) — £ for many classes of finite abelian
p-groups and for many integers ¢ > 0. In particular, we get the following results.

o For many classes of finite abelian p-groups G, we get n(G) = 2D(G) — exp(G), which
proves Conjecture 1. More recently, S. Luo [17] proved Conjecture 1 using entirely
different method.

e When G = Cpm @ Cpn with n > m + 1, we get

Sgexp(G)H(G) =2D(G) — exp(G) — ¢

for all integers 0 < ¢ < p™ — 1, which matches with the result of Wang and Zhao
[22].

More precisely, we prove the following theorem.

Theorem 1.1. Let H be a finite abelian p-group with exponent exp(H) = p™ for some
integer m > 1 and for a prime number p > 2r(H) where r(H) is the rank of H. Suppose
the Davenport constant D(H) satisfies D(H) — 1 = kp™ +t for some integers k > 1
and 0 <t < p™ —1. Let G = Cpn @ H be a finite abelian p-group for some integer n
satisfying p™ > 2(D(H)—1). Let £ be any integer satisfying £ = ap™+t' for some integer
a satisfying 0 < a < k — 1 and for some integer t' satisfying 0 < t' < t. Then, we have

S<exp(@)+¢(G) < exp(G) +2(D(H) — 1) — £ = 2D(G) — exp(G) — £.

In particular, we get n(G) = 2D(G) — exp(G); when H = Cpm and n > m+ 1, for all
integers 0 < £ < p™ — 1, we get

sgexp(G)Jr@(G) = QD(G) - eXp(G) — L.

Earlier, in 2016, Gao, Han and Zhang [12] proved Conjecture 1 for the abelian p-groups

o 2D(H)
G satisfying p > 2r(H) and ’Vexp(H)

Paul and Thangadurai [2] considered similar problem for the complementary case that

—‘ is either even or at most 3. Recently, Chintamani,
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of [12] and obtained an upper bound. By refining the method employed in [12], we shall
prove Theorem 1.1.

2. Preliminaries
We shall start with the following useful lemmas.

Lemma 2.1. ([12]) Let G be a finite abelian p-group and let m be a positive integer. If S
is a sequence over G of length |S| > D(G) + p™ — 1, then we have

]

1+ Z 1YNP"(S) =0 (mod p).

Lemma 2.2. ([6]) Let H be a finite abelian p-group with D(H) < p™ — 1 and let G =
Cpn @ H. Then, D(G) =p"+ D(H) — 1 =exp(G)+ D(H) —

Lemma 2.3. (/20]) Let G be any finite abelian p-group with exponent exp(G) such that
D(G) < 2exp(G) — 1. Then n(G) > 2D(G) — exp(G).

Throughout this section, now on, we take H to be a finite abelian p-group of rank
r(H) and exponent exp(H) = p™ for some positive integer m. Also, we write D(H)—1 =
kp™ +t for some positive integer k and a non-negative integer ¢ satisfying 0 <¢ < p™ —1.
Choose any integer n such that p” > 2(D(H) — 1) and let G = Cpn & H. Let £ be any
integer satisfying £ = ap™ +t’ for some integer a with 0 < a < k—1 and for some integer
t' with 0 <t/ <t.

We need the following lemma which was proved in ([12]) for the case when ¢ = 0. We
prove for all integers ¢ satisfying as above.

Lemma 2.4. Let v = (k+1)p™ —D(H) = p™ —t—1. Let S be a sequence over G of length
|S| = p" + 2(D(H) — 1) — £ such that N°(S) = 0 for all integers b with 1 < b < p™ + (.
Then for any integersi € [0,k —a—1], h€ [0,v+ €] ori=k—a and h =v+{ and for
any subsequence T of S of length |T| = |S| —ip™, we have

1+ Z ( ) Z 1)j—1an+jp""7u(T) =0 (mod p). )

j=a-+1

Proof. First, we claim the following.
Claim. N*(S) =0 for all i € [1,p" + £]U [p" + D(H),|S|].

Since S has no zero-sum subsequence of length < p™ 4/, by the hypothesis, we assume
that N%(S) # 0 for some integer i € [p™ + D(H),|S|]. Let W be a subsequence of S of
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length |W| = ¢ > p™ + D(H). Since D(G) = p" + D(H) — 1, there exist two disjoint
zero-sum subsequences Wi and Wy such that |[Wi| < |Ws| and W = Wi;W,. Since
N3(S) = 0 for any j € [1,p" + £], it is clear that |W,| > p™ + £ + 1 for all integers
x = 1,2. Therefore, |S| > |W| = |W;| + |Wa| > 2p™ + 2¢ + 2, which is a contradiction to
the assumption that |S| < p™ 4+ 2(D(H) — 1) < 2p™. Therefore, we get the claim.

In order to get those congruences, we need to apply Lemma 2.1 suitably. In order to
apply Lemma 2.1, we shall consider the finite abelian group G’ = G & Cpm and consider
the map f : G — G’ given by f(g) = g + e where e is a generator of the cyclic group
Cpm. Under this map, we consider the image of the given sequence f(S5).

Let ¢ be a fixed integer with 0 < i < k —a — 1. Let T be a subsequence of S of length
|T| = |S|—ip™ =p"+2(D(H)—1)—£—ip™. Let h be a fixed integer with 0 < h < v+¥£
and consider the sequence T0". Then,

|T0" =|T|+h=p"+DH)-1+DH)~1+h—{—
=D(G)+ kp" +t+h—ap™ —t —ip™
=DG)+(k—a—-i)pm+t—t' +h
> D(G) +p™

holds true for all integers i € [0,k — a — 1] and for all integers h € [0,v + ] as t' < t.
Also, when i = k — a, we take h = v + £ so that we get

70" | = D(G) +t —L+v+L=D(G) +t+p™ —t—1=D(G) +p™ — 1.

Now, we apply Lemma 2.1 to the sequence f(70") to get
1—}—2 1)INP"(f(T0") =0 (mod p) (2)

h
where z = 707 , for all integers ¢ € [0,k—a—1] and h € [0,v+/] and when i = k —a,

p
take h = v + £. Note that for each integer j = 1,2,..., 2, we have
" (h
NP (f(TOM)) = NIP"=u(T),
o) =32 () )

Therefore, for all integers 7 € [0,k —a — 1] and h € [0,v + £] or when i = k — a, we take
h=v+/{, we get,
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Since, by claim, we know that N?(T) = 0 for all b € [1,p™ + ] U [p" + D(H),|T|], and
p"+D(H)=p"+ (k+ 1)p™ — v, we get

1+Z<) S (LN NI 20 (mod p)

Jj=a+1

is true for all integers ¢ € [0,k —a — 1] and h € [0,v + £] and when i = k — a, take
h = v+ £. From this, we get the required congruences. O

Now, we shall prove the following refinement of Lemma 3.1 (3.3) in [12].

Lemma 2.5. Letv = (k+1)p™ —D(H) = p™ —t—1. Let S be a sequence over G of length
|S| = p™ + 2(D(H) — 1) — £ for some integer £ satisfying ¢ = ap™ +t' for some integer
a with 0 < a < k—1 and for some integer t' with 0 < t' <t such that N°(S) =0 for all
integers b with 1 < b < p™ + £. For any integers i and h satisfying 0 <i<k—a—1 and
0<h<v+¥ we have

(,|Sm> + Xk: )il Z ( )(ISI Pt —gp +u)an+jpmu(S) 0 (mod )

p j=a+1 zpm
(3)
and
Kl o\ & et (IS =Pt =™ Y g
(i) 2 () 2w (k—apr )™ o
u=0 j=a+1
=0 (mod p). (4)

Proof. In order to get (3), we take a subsequence T of S such that |T'| = |S| —ip™ for a
given integer ¢ with 0 <4 <k —a — 1. Then for any integer h € [0,v + £], by (1), we get

1+ Z ( ) S (L) T) 20 (mod ).
j=a-+1
Now we sum over all the subsequences T with |T'| = |S| — ip™ and we get
Z 1+ Z ( ) Z (=1 INP Py | =0 (mod p).  (5)
T,|T|=|S|—ip™ j=a+1

Since each subsequence W of S with |W] < |S| — ip™ can be extended to a subsequence
T of length |T'| = |S| — ip™ in



252 B. Roy, R. Thangadurai / Journal of Number Theory 191 (2018) 246-257

(|S| - W|> B <|S| - |W|> B <|S| - |W)
T = W] S| = [T ip™
ways, by starting with 0 length subsequence W of S, we see that the number of ways to

S
get subsequences T of S with |T| = |S| —ip™ < | | ) Then, using this and expanding
ip™

the sum in (5), we arrive at (3). To get (4), we put i =k —a and h = v+ £ in (1) and
apply the same procedure. This proves the lemma. O

Corollary 2.1. Let S be a sequence over G as defined in Lemma 2.5. For any integer i
with 0 <i < k—a—1 and for every integer h with 1 < h < v+ ¢, we have

k

‘S| j—1 |S‘ _pn _]pm p"+ip™ —
(ipm + 2 (1) i N ($)=0 (mod p) (6)
Jj=a+1
and
; S| —p" — jp™ + h
> (it (BITF B s <0 mod ) ()
j=a+1 p

Proof. To prove (6), we put h =0 in (3) (Lemma 2.5) and we get the congruence.
We shall prove (7) by induction on h. When h =1, by (3) (Lemma 2.5), we get,

(ifm) + ij (-1~ Ké) (|S| 72;: jpm)Np”ﬂp”(S)

j=a-+1

+G) (SI —p"’*jpm + 1> N;D”Hpml(s)} =0 (mod p).

p™

Therefore, by (6), we get (7) with h = 1.
Suppose we assume (7) is true for all integers b < h and we shall prove for h. We shall
rewrite (3) with h as follows.

<5|> N Zk: -1 Zh: ( ) (|S| ipmjpm +b>Np”+jp’"b(S) =0 (mod p)

j=a+1 b=0

. <|S|>+h§<sz) 3 1)j1<|5|p".jpwb)prpw(S)

ipm
b= j=a+1 P

. <|S —-p ip—mjp + h) Np”+jpm—h(5) =0 (modp)

k
+ > (
—~

Jj=a+1
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By applying the induction hypothesis, we get,

k ‘s s
> <1>ﬂ‘1('5 ="~ *h)zvp”ﬂp’"hw =0 (mod p)

m
j=a+1 £
as required. O

The following theorems are very crucial for proving our main result. We record them
as follows.

Theorem 2.1. ([16]) Let p be a prime number. Let a and b be positive integers with

a = app"+an_1p" "+ +ag witha; € {0,1,...,p—1} and b = b,p"+b,_1p" 1+ +bg
with b; € {0,1,...,p—1}. Then

ay _ (an Ap—1 ag
()= () G) (o) o
where (Z) =0, ifa; < b; and (8) = 1.

Theorem 2.2. ([12]) Let n and k be positive integers with 1 < 2k < n. Let A be the
following (k + 1) x (k + 1) matriz with positive integers

Then, the determinant of A is given by
i —1
det(A) = (H t!) I G-9.
t=1 1<i<j<k

The following is the crucial observation for the proof of Theorem 1.1.
Theorem 2.3. Let S be a sequence over G which is defined as in Lemma 2.5 and let p be
a prime number satisfying p > 2r(H). Then for every integer j € [a+ 1, k] and for every
integer h € [1,v + (], we get,

NP"HP" =1 (§) = (mod p).
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Proof. Since p"™ > 2(D(H) — 1) = 2(kp™ + t) and p > 2r(H), we see that 2k + 1 < p.
Let h be a fixed integer such that 1 < h < v+ £. For any integer j =a+ 1,a+2,...,k,
we see that

S| —p" —jp" +h=p" +2(kp™ +t)—p" —jp" +h—0= 2k —jp" + 2t +h — L.

Note that

2W+h—L<2t+v+Ll—L=2t+p" —t—1=t+p" —-1<p" —1+p" —-1=2p™ -2,

as t < p™ — 1. Hence, for each integer j =a+ 1,a+ 2,...,k, we see that

|S| —p" —jp" +h=2k—j+c)p" + f

where ¢ = 0 or 1 depending on values ¢t and h and for some integer 0 < f < p™.
Therefore, by Theorem 2.1, we get

(SI -t —p" h) _ <(2k — P42+ h)

2k—j+c
1pm ) )

7

) Gwodp ®

ip™

for all integers j =a+1,a+2,...,kandi=0,1,...,k —a— 1 where c=0 or 1.
Let h be a fixed integer with 1 < h < v+ ¢ and let

X = (<L N )

for every integer j = a+1,a+2,...,k. Then by the congruence (7) in Corollary 2.1, we
get a system of k — a linear equations in k — a variables over I, as follows.

Xa+1+Xa+2+"'+Xk:O;
S| —p"—pm 4 h S| —p—2p™ +h
(' | ppmp >Xa+1 + < =7 pm b )Xa+2+"'

S| = p" — kp™ +h

|S| =p" —p™ +h S| —p" —2p™ + 1
X X
( (h—a—1pm )7 T (h—a—1)pm w2t

|S‘_pn_kp’m+h
Xi = 0;
+< (k—a—1)pm L=
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By (8), the coefficient matrix of the above system of linear equations over Fy, is

(2k—a1—1+c) (2k—a1—2+c) L (2k—1k+c)
(2k—a2—1+c) (2k—a2—2+c) L (2k—2k+c)
() (A - L)

whose determinant, by Theorem 2.2, is non-zero modulo p, by taking n =2k — 1+ ¢ in
Theorem 2.2. Hence the only solution of the above system is X,,;; =--- = X =0 in
Fp,. This proves the theorem. 0O

3. Proof of Theorem 1.1

We prove that s<,ny¢(G) < p"+2(D(H)—1)—/ for all integers ¢ satisfying £ = ap™ +t'
for some integer a with 0 < a < k — 1 and for some integer ¢’ with 0 < ¢’ <t where ¢ is
an integer satisfying D(H) — 1 = kp™ + ¢ with 0 <¢ < p™ — 1.

Let S be a sequence over G of length |S| = p" + 2(D(H) — 1) — £. Suppose that
N?(S) = 0 for all integers 1 < b < p™ + £. Then, by Theorem 2.3, we know that

NP'HIP"=h(§) =0 (mod p)

for all integers j € [a+ 1, k] and integers h € [1,v + £]. Therefore, by Lemma 2.5, we get,

< 5] >+ zk:(_1)j—1(|8|_pn_jpm>N”n+jpm(S)EO (mod p) ~ (9)

(k—a)ypm™) =, (k —a)p™

and by Corollary 2.1 (6), we get,

<|5|> . z’“: (_Dj_l(ISI - —J'p’”> NP EP(S) =0 (modp) (10

yevaes .
ip Pt ip

holds true for all integers i € [0,k —a — 1].
Now, we put

X

= (1IN (S)

forall j =a+1,a+2,...,k and X, = 1. Then, by (9) and (10), we get a system of
(k — a+ 1) linear equations in (k — a + 1) unknowns over F, as follows.

S S| — pt _ pm S| — p" — kp™
<|O>Xa+<| | pO P )Xa+1+"'+<| | pO P >Xk50 (mod p);
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((k - a| —| 1)19’”) Kot <|(k|— a— 1)pm)Xa+1+' ' '+(|(k| —a—1)pm )Xk =0 (modp);

((k —|i|)pm> Kot (lsék_fZ);£m> Xapr -+ <|S|(;fna)_pipm> X, =0 (mod p).

Now, we need to compute the determinant of the coefficient matrix of the above system.
We shall prove that this determinant is non-zero modulo p, which in turn implies that the
only solution of the above system is X, = --- = X} = 0 in IF,,. This is a contradiction to
Xo #0 (mod p), which proves the theorem. Hence, we need to compute the coefficients
modulo p and its determinant. Since the calculation is the same as in the proof of
Theorem 2.3, we omit the details here. This proves the upper bound for s<,n1¢(G).

Note that when £ = 0, by Lemma 2.2, Lemma 2.3 and by the above upper bound, we
get

S<exp(Q) (G) = SS;D"(G) = W(G) = pn + 2(D<H) - 1)

Now, we shall assume that G = Cpm ® Cp» with n > m + 1. Then H = Cpm and
DH)-1=p™—1. Hencet =p™ —1and 0 < ¢ <t =p"™ — 1. In order to prove the
lower bound for s<exp()+¢(Cpm @© Cpn ), we consider the following sequence

m

S=(0,e)" T[0T (frep

over G = Cpm & Cpn of length p™ 4+ 2(p™ — 1) — £ = exp(G) + 2(D(H) — 1) — ¢, where e
is a generator of Cp» and f is a generator of Cpm. If T' is a zero-sum subsequence of S
of length < p™ + £, then

T = (0,€)*(f,0)"(f,e)

for some non-negative integers a, b and c. Since p" > pp™ with p > 5 and T is a zero-sum
sequence, we see that a +c¢ = p™ and b+ ¢ = p™. Therefore, a + 2c+ b = p™ + p". Since
IT| = a+b+c = p"+ z where z < ¢, then we get ¢ = p™ — z > p™ — £, which is
a contradiction to the fact that ¢ < p™ — 1 — ¢. Therefore, N°(S) = 0 for all integers
0 < b < p"™+ L. This proves the lower bound. O
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