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Let G be a finite abelian group. For any integer a ≥ 1, we 
define the constant s≤a(G) as the least positive integer t such 
that any sequence S over G of length at least t has a zero-sum 
subsequence of length ≤ a in it. In this article, we compute this 
constant for many classes of abelian p-groups. In particular, 
it proves a conjecture of Schmid and Zhuang [20].
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1. Introduction

Let G be a finite abelian additive group with exponent exp(G). A sequence S over G
is written as

S =
|S|∏
i=1

gi =
∏
g∈G

gvg(S) with vg(S) ∈ Z≥0
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where vg(S) is called the multiplicity of g in S and |S| denotes the length of the sequence 
S. By the definition of multiplicity, we see that

|S| =
∑
g∈G

vg(S) ∈ Z≥0.

The sum of all the terms of the sequence S is given by

σ(S) =
∑
g∈G

vg(S)g ∈ G.

A sequence S over G is called a zero-sum sequence if σ(S) = 0. For any integer k ∈ Z>0
and for a sequence S over G, we define

Nk(S) =

∣∣∣∣∣
{
I ⊂ [1, |S|] :

∑
i∈I

gi = 0, |I| = k

}∣∣∣∣∣ ,
which denotes the number of zero-sum subsequences, counted with multiplicities, of S
of length k.

For a given positive integer k ≥ 1, we define a constant s≤k(G) which is the least 
positive integer t such that given any sequence S over G of length |S| ≥ t satisfies 
Nm(S) ≥ 1 for some integer 1 ≤ m ≤ k. The well-known Davenport constant, D(G), is 
defined as the least positive integer t such that any given sequence S over G of length 
≥ t satisfies Nk(S) ≥ 1 for some integer k ≥ 1. The other well-known constant η(G) is 
nothing but η(G) = s≤exp(G)(G).

These constants D(G) and η(G) have received a lot of attention (see for instance [1,4,
5,7–9,11,13–15,20,21]). When G is a cyclic group, we have η(G) = |G| and D(G) = |G|. 
When G ∼= C2

p for a prime p, Olson [18,19] proved in 1969 that η(C2
p) = 3p − 2 and 

for any p-group G, he proved that D(G) = D∗(G) where, for any finite abelian group 
G′ ∼= Cm1 ⊕ · · · ⊕ Cmr

with 1 < m1 ≤ m2 ≤ · · · ≤ mr are integers satisfying mi|mi+1, 
the constant D∗(G′) is defined by

D∗(G′) = 1 +
r∑

i=1
(mi − 1).

If G ∼= Cm ⊕ Cn with m|n is an abelian group of rank 2, then it is known that η(G) =
2m + n − 2 as given in [15] and D(G) = m + n − 1.

When G is of rank ≥ 3, nothing much is known. For any odd prime p, it is known that 
η(C3

p) ≥ 8p − 7 ([5]) and η(C4
p) ≥ 19p − 18 ([4]) and their exact values are still unkonwn. 

Recently, Fan, Gao, Wang and Zhong [7] determined the value η(G) for special types of 
abelian groups of rank 3. Apart from these results, Schmid and Zhuang [20] proved that 
if G is a finite abelian p-group with D(G) = 2 exp(G) −1, then η(G) = 2D(G) − exp(G). 
Moreover, they conjectured the following.
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Conjecture 1. ([20]) Let G be a finite abelian p-group with D(G) ≤ 2 exp(G) − 1. Then

η(G) = 2D(G) − exp(G).

The constants s≤k(G) was introduced by Delorme, Ordaz and Quiroz [3]. It is easy 
to see that if k ≥ D(G), then s≤k(G) = D(G) and if 1 ≤ k < exp(G), we see that 
s≤k(G) = ∞. In general, the problem of determining exact value of s≤k(G) is quite 
difficult. In 2010, Freeze and Schmid [10] proved that s≤3(Cr

2) = 2r−1 + 1. In 2017, 
Wang and Zhao [22] proved that when G = Cm⊕Cn, the constant s≤D(G)−k(G) is equal 
to D(G) +k for all integers k ∈ [0, m −1] and sr−k(Cr

2) = r+2 for all r−k ∈
[⌈2r+2

3
⌉
, r
]
.

By the definition of η(G), it is clear that s≤exp(G)+�(G) ≤ η(G) for all integers � ≥ 0. 
In this article, we prove that s≤exp(G)+�(G) ≤ η(G) − � for many classes of finite abelian 
p-groups and for many integers � ≥ 0. In particular, we get the following results.

• For many classes of finite abelian p-groups G, we get η(G) = 2D(G) −exp(G), which 
proves Conjecture 1. More recently, S. Luo [17] proved Conjecture 1 using entirely 
different method.

• When G ∼= Cpm ⊕ Cpn with n ≥ m + 1, we get

s≤exp(G)+�(G) = 2D(G) − exp(G) − �

for all integers 0 ≤ � ≤ pm − 1, which matches with the result of Wang and Zhao 
[22].

More precisely, we prove the following theorem.

Theorem 1.1. Let H be a finite abelian p-group with exponent exp(H) = pm for some 
integer m ≥ 1 and for a prime number p > 2r(H) where r(H) is the rank of H. Suppose 
the Davenport constant D(H) satisfies D(H) − 1 = kpm + t for some integers k ≥ 1
and 0 ≤ t ≤ pm − 1. Let G = Cpn ⊕ H be a finite abelian p-group for some integer n
satisfying pn ≥ 2(D(H) −1). Let � be any integer satisfying � = apm+t′ for some integer 
a satisfying 0 ≤ a ≤ k − 1 and for some integer t′ satisfying 0 ≤ t′ ≤ t. Then, we have

s≤exp(G)+�(G) ≤ exp(G) + 2(D(H) − 1) − � = 2D(G) − exp(G) − �.

In particular, we get η(G) = 2D(G) − exp(G); when H ∼= Cpm and n ≥ m + 1, for all 
integers 0 ≤ � ≤ pm − 1, we get

s≤exp(G)+�(G) = 2D(G) − exp(G) − �.

Earlier, in 2016, Gao, Han and Zhang [12] proved Conjecture 1 for the abelian p-groups 
G satisfying p > 2r(H) and 

⌈
2D(H)
exp(H)

⌉
is either even or at most 3. Recently, Chintamani, 

Paul and Thangadurai [2] considered similar problem for the complementary case that 
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of [12] and obtained an upper bound. By refining the method employed in [12], we shall 
prove Theorem 1.1.

2. Preliminaries

We shall start with the following useful lemmas.

Lemma 2.1. ([12]) Let G be a finite abelian p-group and let m be a positive integer. If S
is a sequence over G of length |S| ≥ D(G) + pm − 1, then we have

1 +

⌊
|S|
pm

⌋∑
j=1

(−1)jN jpm

(S) ≡ 0 (mod p).

Lemma 2.2. ([6]) Let H be a finite abelian p-group with D(H) ≤ pn − 1 and let G =
Cpn ⊕H. Then, D(G) = pn + D(H) − 1 = exp(G) + D(H) − 1.

Lemma 2.3. ([20]) Let G be any finite abelian p-group with exponent exp(G) such that 
D(G) ≤ 2 exp(G) − 1. Then η(G) ≥ 2D(G) − exp(G).

Throughout this section, now on, we take H to be a finite abelian p-group of rank 
r(H) and exponent exp(H) = pm for some positive integer m. Also, we write D(H) −1 =
kpm+t for some positive integer k and a non-negative integer t satisfying 0 ≤ t ≤ pm−1. 
Choose any integer n such that pn ≥ 2(D(H) − 1) and let G = Cpn ⊕H. Let � be any 
integer satisfying � = apm+ t′ for some integer a with 0 ≤ a ≤ k−1 and for some integer 
t′ with 0 ≤ t′ ≤ t.

We need the following lemma which was proved in ([12]) for the case when � = 0. We 
prove for all integers � satisfying as above.

Lemma 2.4. Let v = (k+1)pm−D(H) = pm− t −1. Let S be a sequence over G of length 
|S| = pn + 2(D(H) − 1) − � such that N b(S) = 0 for all integers b with 1 ≤ b ≤ pn + �. 
Then for any integers i ∈ [0, k− a − 1], h ∈ [0, v + �] or i = k− a and h = v + � and for 
any subsequence T of S of length |T | = |S| − ipm, we have

1 +
h∑

u=0

(
h

u

) k∑
j=a+1

(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p). (1)

Proof. First, we claim the following.

Claim. N i(S) = 0 for all i ∈ [1, pn + �] ∪ [pn + D(H), |S|].

Since S has no zero-sum subsequence of length ≤ pn+�, by the hypothesis, we assume 
that N i(S) �= 0 for some integer i ∈ [pn + D(H), |S|]. Let W be a subsequence of S of 
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length |W | = i ≥ pn + D(H). Since D(G) = pn + D(H) − 1, there exist two disjoint 
zero-sum subsequences W1 and W2 such that |W1| ≤ |W2| and W = W1W2. Since 
N j(S) = 0 for any j ∈ [1, pn + �], it is clear that |Wx| ≥ pn + � + 1 for all integers 
x = 1, 2. Therefore, |S| ≥ |W | = |W1| + |W2| ≥ 2pn + 2� + 2, which is a contradiction to 
the assumption that |S| ≤ pn + 2(D(H) − 1) ≤ 2pn. Therefore, we get the claim.

In order to get those congruences, we need to apply Lemma 2.1 suitably. In order to 
apply Lemma 2.1, we shall consider the finite abelian group G′ = G ⊕Cpm and consider 
the map f : G → G′ given by f(g) = g + e where e is a generator of the cyclic group 
Cpm . Under this map, we consider the image of the given sequence f(S).

Let i be a fixed integer with 0 ≤ i ≤ k− a − 1. Let T be a subsequence of S of length 
|T | = |S| − ipm = pn +2(D(H) −1) − � − ipm. Let h be a fixed integer with 0 ≤ h ≤ v+ �

and consider the sequence T0h. Then,

|T0h| = |T | + h = pn + D(H) − 1 + D(H) − 1 + h− �− ipm

= D(G) + kpm + t + h− apm − t′ − ipm

= D(G) + (k − a− i)pm + t− t′ + h

≥ D(G) + pm

holds true for all integers i ∈ [0, k − a − 1] and for all integers h ∈ [0, v + �] as t′ ≤ t. 
Also, when i = k − a, we take h = v + � so that we get

|T0v+�| = D(G) + t− � + v + � = D(G) + t + pm − t− 1 = D(G) + pm − 1.

Now, we apply Lemma 2.1 to the sequence f(T0h) to get

1 +
z∑

j=1
(−1)jN jpm

(f(T0h)) ≡ 0 (mod p) (2)

where z =
⌊
|T0h|
pm

⌋
, for all integers i ∈ [0, k−a −1] and h ∈ [0, v+�] and when i = k−a, 

take h = v + �. Note that for each integer j = 1, 2, . . . , z, we have

N jpm

(f(T0h)) =
h∑

u=0

(
h

u

)
N jpm−u(T ).

Therefore, for all integers i ∈ [0, k − a − 1] and h ∈ [0, v + �] or when i = k − a, we take 
h = v + �, we get,

1 +
h∑(

h

u

) z∑
(−1)j−1N jpm−u(T ) ≡ 0 (mod p).
u=0 j=1
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Since, by claim, we know that N b(T ) = 0 for all b ∈ [1, pn + �] ∪ [pn + D(H), |T |], and 
pn + D(H) = pn + (k + 1)pm − v, we get

1 +
h∑

u=0

(
h

u

) k∑
j=a+1

(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p)

is true for all integers i ∈ [0, k − a − 1] and h ∈ [0, v + �] and when i = k − a, take 
h = v + �. From this, we get the required congruences. �

Now, we shall prove the following refinement of Lemma 3.1 (3.3) in [12].

Lemma 2.5. Let v = (k+1)pm−D(H) = pm− t −1. Let S be a sequence over G of length 
|S| = pn + 2(D(H) − 1) − � for some integer � satisfying � = apm + t′ for some integer 
a with 0 ≤ a ≤ k− 1 and for some integer t′ with 0 ≤ t′ ≤ t such that N b(S) = 0 for all 
integers b with 1 ≤ b ≤ pn + �. For any integers i and h satisfying 0 ≤ i ≤ k− a − 1 and 
0 ≤ h ≤ v + �, we have

(
|S|
ipm

)
+

k∑
j=a+1

(−1)j−1
h∑

u=0

(
h

u

)(
|S| − pn − jpm + u

ipm

)
Npn+jpm−u(S) ≡ 0 (mod p),

(3)

and

(
|S|

(k − a)pm

)
+

v+�∑
u=0

(
v + �

u

) k∑
j=a+1

(−1)j−1
(
|S| − pn − jpm + u

(k − a)pm

)
Npn+jpm−u(S)

≡ 0 (mod p). (4)

Proof. In order to get (3), we take a subsequence T of S such that |T | = |S| − ipm for a 
given integer i with 0 ≤ i ≤ k− a − 1. Then for any integer h ∈ [0, v + �], by (1), we get

1 +
h∑

u=0

(
h

u

) k∑
j=a+1

(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p).

Now we sum over all the subsequences T with |T | = |S| − ipm and we get

∑
T,|T |=|S|−ipm

⎛
⎝1 +

h∑
u=0

(
h

u

) k∑
j=a+1

(−1)j−1Npn+jpm−u(T )

⎞
⎠ ≡ 0 (mod p). (5)

Since each subsequence W of S with |W | ≤ |S| − ipm can be extended to a subsequence 
T of length |T | = |S| − ipm in
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(
|S| − |W |
|T | − |W |

)
=

(
|S| − |W |
|S| − |T |

)
=

(
|S| − |W |

ipm

)

ways, by starting with 0 length subsequence W of S, we see that the number of ways to 

get subsequences T of S with |T | = |S| − ipm is 
(
|S|
ipm

)
. Then, using this and expanding 

the sum in (5), we arrive at (3). To get (4), we put i = k − a and h = v + � in (1) and 
apply the same procedure. This proves the lemma. �
Corollary 2.1. Let S be a sequence over G as defined in Lemma 2.5. For any integer i
with 0 ≤ i ≤ k − a − 1 and for every integer h with 1 ≤ h ≤ v + �, we have

(
|S|
ipm

)
+

k∑
j=a+1

(−1)j−1
(
|S| − pn − jpm

ipm

)
Npn+jpm

(S) ≡ 0 (mod p) (6)

and

k∑
j=a+1

(−1)j−1
(
|S| − pn − jpm + h

ipm

)
Npn+jpm−h(S) ≡ 0 (mod p). (7)

Proof. To prove (6), we put h = 0 in (3) (Lemma 2.5) and we get the congruence.
We shall prove (7) by induction on h. When h = 1, by (3) (Lemma 2.5), we get,

(
|S|
ipm

)
+

k∑
j=a+1

(−1)j−1
[(

1
0

)(
|S| − pn − jpm

ipm

)
Npn+jpm

(S)

+
(

1
1

)(
|S| − pn − jpm + 1

ipm

)
Npn+jpm−1(S)

]
≡ 0 (mod p).

Therefore, by (6), we get (7) with h = 1.
Suppose we assume (7) is true for all integers b < h and we shall prove for h. We shall 

rewrite (3) with h as follows.

(
|S|
ipm

)
+

k∑
j=a+1

(−1)j−1
h∑

b=0

(
h

b

)(
|S| − pn − jpm + b

ipm

)
Npn+jpm−b(S) ≡ 0 (mod p)

=⇒
(
|S|
ipm

)
+

h−1∑
b=0

(
h

b

) k∑
j=a+1

(−1)j−1
(
|S| − pn − jpm + b

ipm

)
Npn+jpm−b(S)

+
k∑

(−1)j−1
(
|S| − pn − jpm + h

ipm

)
Npn+jpm−h(S) ≡ 0 (mod p)
j=a+1
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By applying the induction hypothesis, we get,

k∑
j=a+1

(−1)j−1
(
|S| − pn − jpm + h

ipm

)
Npn+jpm−h(S) ≡ 0 (mod p)

as required. �
The following theorems are very crucial for proving our main result. We record them 

as follows.

Theorem 2.1. ([16]) Let p be a prime number. Let a and b be positive integers with 
a = anp

n+an−1p
n−1+· · ·+a0 with ai ∈ {0, 1, . . . , p −1} and b = bnp

n+bn−1p
n−1+· · ·+b0

with bi ∈ {0, 1, . . . , p − 1}. Then

(
a

b

)
≡

(
an
bn

)(
an−1

bn−1

)
· · ·

(
a0

b0

)
(mod p),

where 
(
ai

bi

)
= 0, if ai < bi and 

(0
0
)

= 1.

Theorem 2.2. ([12]) Let n and k be positive integers with 1 ≤ 2k ≤ n. Let A be the 
following (k + 1) × (k + 1) matrix with positive integers

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1(
n
1
) (

n−1
1
)

· · ·
(
n−k

1
)

(
n
2
) (

n−1
2
)

· · ·
(
n−k

2
)

· · · · · ·(
n
k

) (
n−1
k

)
· · ·

(
n−k
k

)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then, the determinant of A is given by

det(A) =
(

k∏
t=1

t!
)−1 ∏

1≤i<j≤k

(i− j).

The following is the crucial observation for the proof of Theorem 1.1.

Theorem 2.3. Let S be a sequence over G which is defined as in Lemma 2.5 and let p be 
a prime number satisfying p > 2r(H). Then for every integer j ∈ [a +1, k] and for every 
integer h ∈ [1, v + �], we get,

Npn+jpm−h(S) ≡ 0 (mod p).
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Proof. Since pn ≥ 2(D(H) − 1) = 2(kpm + t) and p > 2r(H), we see that 2k + 1 < p. 
Let h be a fixed integer such that 1 ≤ h ≤ v + �. For any integer j = a + 1, a + 2, . . . , k, 
we see that

|S| − pn − jpm + h = pn + 2(kpm + t) − pn − jpm + h− � = (2k − j)pm + 2t + h− �.

Note that

2t+ h− � ≤ 2t+ v + �− � = 2t+ pm − t− 1 = t+ pm − 1 ≤ pm − 1 + pm − 1 = 2pm − 2,

as t ≤ pm − 1. Hence, for each integer j = a + 1, a + 2, . . . , k, we see that

|S| − pn − jpm + h = (2k − j + c)pm + f

where c = 0 or 1 depending on values t and h and for some integer 0 ≤ f < pm. 
Therefore, by Theorem 2.1, we get

(
|S| − pn − jpm + h

ipm

)
=

(
(2k − j)pm + 2t + h

ipm

)
≡

(
2k − j + c

i

)
(mod p) (8)

for all integers j = a + 1, a + 2, . . . , k and i = 0, 1, . . . , k − a − 1 where c = 0 or 1.
Let h be a fixed integer with 1 ≤ h ≤ v + � and let

Xj = (−1)j−1Npn+jpm−h(S)

for every integer j = a + 1, a + 2, . . . , k. Then by the congruence (7) in Corollary 2.1, we 
get a system of k − a linear equations in k − a variables over Fp as follows.

Xa+1 + Xa+2 + · · · + Xk = 0;(
|S| − pn − pm + h

pm

)
Xa+1 +

(
|S| − pn − 2pm + h

pm

)
Xa+2 + · · ·

+
(
|S| − pn − kpm + h

pm

)
Xk = 0;

· · · · · · · · ·(
|S| − pn − pm + h

(k − a− 1)pm

)
Xa+1 +

(
|S| − pn − 2pm + h

(k − a− 1)pm

)
Xa+2 + · · ·

+
(
|S| − pn − kpm + h

m

)
Xk = 0;
(k − a− 1)p
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By (8), the coefficient matrix of the above system of linear equations over Fp is
⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1(2k−a−1+c
1

) (2k−a−2+c
1

)
· · ·

(2k−k+c
1

)
(2k−a−1+c

2
) (2k−a−2+c

2
)

· · ·
(2k−k+c

2
)

· · · · · ·(2k−a−1+c
k−a−1

) (2k−a−2+c
k−a−1

)
· · ·

(2k−k+c
k−a−1

)

⎞
⎟⎟⎟⎟⎟⎟⎠

whose determinant, by Theorem 2.2, is non-zero modulo p, by taking n = 2k − 1 + c in 
Theorem 2.2. Hence the only solution of the above system is Xn+1 = · · · = Xk = 0 in 
Fp. This proves the theorem. �
3. Proof of Theorem 1.1

We prove that s≤pn+�(G) ≤ pn+2(D(H) −1) −� for all integers � satisfying � = apm+t′

for some integer a with 0 ≤ a ≤ k − 1 and for some integer t′ with 0 ≤ t′ ≤ t where t is 
an integer satisfying D(H) − 1 = kpm + t with 0 ≤ t ≤ pm − 1.

Let S be a sequence over G of length |S| = pn + 2(D(H) − 1) − �. Suppose that 
N b(S) = 0 for all integers 1 ≤ b ≤ pn + �. Then, by Theorem 2.3, we know that

Npn+jpm−h(S) ≡ 0 (mod p)

for all integers j ∈ [a +1, k] and integers h ∈ [1, v+ �]. Therefore, by Lemma 2.5, we get,

(
|S|

(k − a)pm

)
+

k∑
j=a+1

(−1)j−1
(
|S| − pn − jpm

(k − a)pm

)
Npn+jpm

(S) ≡ 0 (mod p) (9)

and by Corollary 2.1 (6), we get,

(
|S|
ipm

)
+

k∑
j=a+1

(−1)j−1
(
|S| − pn − jpm

ipm

)
Npn+jpm

(S) ≡ 0 (mod p) (10)

holds true for all integers i ∈ [0, k − a − 1].
Now, we put

Xj = (−1)j−1Npn+jpm

(S)

for all j = a + 1, a + 2, . . . , k and Xa = 1. Then, by (9) and (10), we get a system of 
(k − a + 1) linear equations in (k − a + 1) unknowns over Fp as follows.

(
|S|
0

)
Xa +

(
|S| − pn − pm

0

)
Xa+1 + · · · +

(
|S| − pn − kpm

0

)
Xk ≡ 0 (mod p);

· · · · · · · · ·
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(
|S|

(k − a− 1)pm

)
Xa+

(
|S| − pn − pm

(k − a− 1)pm

)
Xa+1+· · ·+

(
|S| − pn − kpm

(k − a− 1)pm

)
Xk ≡ 0 (mod p);

(
|S|

(k − a)pm

)
Xa +

(
|S| − pn − pm

(k − a)pm

)
Xa+1 + · · · +

(
|S| − pn − kpm

(k − a)pm

)
Xk ≡ 0 (mod p).

Now, we need to compute the determinant of the coefficient matrix of the above system. 
We shall prove that this determinant is non-zero modulo p, which in turn implies that the 
only solution of the above system is Xa = · · · = Xk = 0 in Fp. This is a contradiction to 
Xa �≡ 0 (mod p), which proves the theorem. Hence, we need to compute the coefficients 
modulo p and its determinant. Since the calculation is the same as in the proof of 
Theorem 2.3, we omit the details here. This proves the upper bound for s≤pn+�(G).

Note that when � = 0, by Lemma 2.2, Lemma 2.3 and by the above upper bound, we 
get

s≤exp(G)(G) = s≤pn(G) = η(G) = pn + 2(D(H) − 1).

Now, we shall assume that G ∼= Cpm ⊕ Cpn with n ≥ m + 1. Then H = Cpm and 
D(H) − 1 = pm − 1. Hence t = pm − 1 and 0 ≤ � ≤ t = pm − 1. In order to prove the 
lower bound for s≤exp(G)+�(Cpm ⊕ Cpn), we consider the following sequence

S = (0, e)p
n−1(f, 0)p

m−1(f, e)p
m−1−�

over G ∼= Cpm ⊕Cpn of length pn + 2(pm − 1) − � = exp(G) + 2(D(H) − 1) − �, where e
is a generator of Cpn and f is a generator of Cpm . If T is a zero-sum subsequence of S
of length ≤ pn + �, then

T = (0, e)a(f, 0)b(f, e)c

for some non-negative integers a, b and c. Since pn ≥ ppm with p ≥ 5 and T is a zero-sum 
sequence, we see that a + c = pn and b + c = pm. Therefore, a + 2c + b = pn + pm. Since 
|T | = a + b + c = pn + z where z ≤ �, then we get c = pm − z ≥ pm − �, which is 
a contradiction to the fact that c ≤ pm − 1 − �. Therefore, N b(S) = 0 for all integers 
0 ≤ b ≤ pn + �. This proves the lower bound. �
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