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Preface

The number theory seminar has been organized, from January 20, 2017, by
Algebraic/Algorithmic/Analytic Number Theory Seminar (ANTS) at Harish-
Chandra Research Institute, Allahabad, India. This lecture series was started by
Kalyan Chakraborty, Azizul Hoque and other members of the group. Prior to the
existence of this group, we had decided to hold a series of three conferences on the
theme ‘Class Groups of Number Fields and Related Topics.’ By October 2019, we
had organized these three conferences. However, seeing its success and also on the
request of all concerned, we have decided to continue this yearly conference.

The first ‘International Conference on Class Groups of Number Fields and
Related Topics (ICCGNFRT)’ was held during September 4–7, 2017, at
Harish-Chandra Research Institute, Allahabad, India.

This collection comprises original research papers and survey articles presented
at ICCGNFRT-2017. There are 16 chapters on important topics in algebraic number
theory and related parts of analytic number theory. These topics include class
groups and class numbers of number fields, units, the Kummer–Vandiver conjec-
ture, class number one problem, Diophantine equations, Thue equations, continued
fractions, Euclidean number fields, heights, rational torsion points on elliptic
curves, cyclotomic numbers, Jacobi sums and Dedekind zeta values.

We are grateful to Springer and its mathematics editor(s), especially Mr. Shamim
Ahmad, for publishing this volume.

Allahabad, India
October 2019

Kalyan Chakraborty
Azizul Hoque

Prem Prakash Pandey
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Distribution of Residues Modulo p Using
the Dirichlet’s Class Number Formula

Jaitra Chattopadhyay, Bidisha Roy, Subha Sarkar and R. Thangadurai

1 Introduction

Let p be an odd prime number. A number a ∈ {1, . . . , p − 1} is said to be a quadratic
residue modulo p, if the congruence

x2 ≡ a (mod p)

has a solution in Z. Otherwise, a is said to be a quadratic non-residue modulo p.
The study of distribution of quadratic residues and quadratic non-residues modulo
p has been considered with great interest in the literature (see for instance [1, 3–7,
10, 12, 13, 15–25]).

Since Z/pZ is a field, the polynomial X p−1 − 1 has precisely p − 1 nonzero
solutions over Z/pZ. As p is an odd prime, we see that X p−1 − 1 = (X (p−1)/2 +
1)(X (p−1)/2 − 1) and one can conclude that there are exactly p−1

2 quadratic residues
as well as non-residues modulo p in the interval [1, p − 1].
Question 1 For an odd prime number p and a given natural number k with
1 ≤ k ≤ p − 1, we let Sk = {a ∈ {1, 2, . . . , p − 1} : a ≡ 0 (mod k)} be the sub-
set consisting of all natural numbers which are multiples of k. How many quadratic
residues (respectively, non-residues) lie inside Sk?

J. Chattopadhyay (B) · B. Roy · S. Sarkar · R. Thangadurai
Harish-Chandra Research Institute, HBNI, Chhatnag Road,
Jhunsi 211019, Allahabad, India
e-mail: jaitrachattopadhyay@hri.res.in

B. Roy
e-mail: bidisharoy@hri.res.in

S. Sarkar
e-mail: subhasarkar@hri.res.in

R. Thangadurai
e-mail: thanga@hri.res.in
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98 J. Chattopadhyay et al.

In the literature, there are many papers addressed similar to Question 1 and to
name a few, one may refer to [8, 9, 11]. First we shall fix some notations as follows.
We denote by Q(p, Sk) (respectively, N (p, Sk)) the number of quadratic residues
(respectively, quadratic non-residues) modulo p in the subset Sk of the interval
[1, p − 1].

The standard techniques in analytic number theory answers the above question as

Q(p, Sk) = p − 1

2k
+ O(

√
p log p) (1)

and the same result is true for N (p, Sk) for all k (we shall be proving this fact
in this article). However, it might happen that for some primes p, we may have
Q(p, Sk) > N (p, Sk) or Q(p, Sk) < N (p, Sk). Using the standard techniques, we
could not answer this subtle question. In this article, we shall answer this using the
Dirichlet’s class number formula for the field Q(

√−p), when k = 2, 3 or 4. More
precisely, we prove the following theorems.

Theorem 1 Let p be anoddprime. If p ≡ 3 (mod 4), then for any ε with0 < ε < 1
2 ,

we have

Q(p, S2) − p − 1

4
�ε p

1
2 −ε .

When the prime p ≡ 1 (mod 4), we have

Q(p, S2) = p − 1

4
.

Corollary 1.1 Let p be an odd prime and let O be the set of all odd integers in
[1, p − 1]. If R = N (p, S2) or R = Q(p,O), then for any ε with 0 < ε < 1

2 , we
have

p − 1

4
− R �ε p

1
2 −ε, if p ≡ 3 (mod 4).

When the prime p ≡ 1 (mod 4), we have

R = p − 1

4
.

Theorem 2 Let p be an odd prime. If p ≡ 1, 11 (mod 12), then for any ε with
0 < ε < 1

2 , we have

Q(p, S3) − p − 1

6
�ε p

1
2 −ε .

When p ≡ 5, 7 (mod 12), in this method, we do not get any finer information
other than in (1).

Corollary 1.2 Let p be an odd prime. If p ≡ 1, 11 (mod 12), then for any ε with
0 < ε < 1

2 , we have

ahoque.ms@gmail.com
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p − 1

6
− N (p, S3) �ε p

1
2 −ε .

Theorem 3 Let p be an odd prime. Then, for p ≡ 3 (mod 8), we have

Q(p, S4) = 1

2

[
p − 1

4

]
.

Also, for any 0 < ε < 1
2 , we have

Q(p, S4) − p − 1

8
�ε p

1
2 −ε, if p ≡ 1 (mod 4),

and

Q(p, S4) − 1

2

[
p − 1

4

]
�ε p

1
2 −ε; if p ≡ 7 (mod 8).

Corollary 1.3 Let p be an odd prime. Then, for p ≡ 3 (mod 8), we have

N (p, S4) = 1

2

[
p − 1

4

]
.

Also, for any 0 < ε < 1
2 , we have

p − 1

8
− N (p, S4) �ε p

1
2 −ε; if p ≡ 1 (mod 4),

and
1

2

[
p − 1

4

]
− N (p, S4) �ε p

1
2 −ε; if p ≡ 7 (mod 8).

Using Theorems 1 and 3, we conclude the following corollary.

Corollary 1.4 Let p be an odd prime such that p ≡ 3 (mod 8). Then for any ε with
0 < ε < 1

2 , we have

Q(p, S2\S4) − 1

2

⌊
p − 1

4

⌋
�ε p

1
2 −ε .

2 Preliminaries

In this section, we shall state many useful results as follows.

Theorem 4 (Polya–Vinogradov) Let p be any odd prime and χ be a non-principal
Dirichlet character modulo p. Then, for any integers 0 ≤ M < N ≤ p − 1, we have

ahoque.ms@gmail.com



100 J. Chattopadhyay et al.

∣∣∣∣∣
N∑

m=M

χ(m)

∣∣∣∣∣ ≤ √
p log p.

Let us define the following counting functions as follows. Let

f (x) = 1

2

(
1 +

(
x

p

))
for all x ∈ (Z/pZ)∗ (2)

and

g(x) = 1

2

(
1 −

(
x

p

))
for all x ∈ (Z/pZ)∗ (3)

where

( ·
p

)
is the Legendre symbol. Then, we have

f (x) =
{
1; if x is a quadratic residue (mod p),
0; otherwise.

and

g(x) =
{
1; if x is a quadratic non-residue (mod p),
0; otherwise.

In the following lemma, we prove the “expected” result.

Lemma 1 For an integer k ≥ 1 and an odd prime p, let Sk = k I where I is the
interval I = {1, 2, . . . , [(p − 1)/k]}. Then

Q(p, Sk) = 1

2

[
p − 1

k

]
+ 1

2

(
k

p

) (p−1)/k∑
m=1

(
m

p

)
(4)

and hence

Q(p, Sk) = 1

2

[
p − 1

k

]
+ O(

√
p log p).

The same expressions hold for N (p, Sk) as well.

Proof We prove for Q(p, Sk) and the proof of N (p, Sk) follows analogously. Let
ψk be the characteristic function for Sk which is defined as

ψk(m) =
{
1; if m ∈ Sk,
0; if m /∈ Sk .

Now, by (2), we see that
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Q(p, Sk) =
∑
m∈Sk

f (m) =
p−1∑
m=1

ψk(m) f (m) = 1

2

p−1∑
m=1

ψk(m)

(
1 +

(
m

p

))

= 1

2

[
p − 1

k

]
+ 1

2

(
k

p

) (p−1)/k∑
m=1

(
m

p

)
, (5)

which proves (4). Then, by Theorem 4, we get

Q(p, Sk) = 1

2

[
p − 1

k

]
+ O(

√
p log p).

This finishes the proof. �

Letq > 1 be a positive integer and letψ be a nontrivial quadratic charactermodulo

q. Let L(s, ψ) =
∞∑
n=1

ψ(n)

ns
be the Dirichlet L-function associated to ψ . Since ψ is

a nontrivial homomorphism, L(s, ψ) admits the following Euler product expansion:

L(s, ψ) =
∏
p�q

(
1 − ψ(p)

ps

)−1

for all complex number s with 
(s) > 1. This, in particular, shows that L(s, ψ) > 0
for all real number s > 1. By continuity, it follows that L(1, ψ) ≥ 0. Dirichlet proved
that L(1, ψ) �= 0 in order to prove the infinitude of prime numbers in an arithmetic
progression. Hence, it follows that L(1, ψ) > 0 for all nontrivial quadratic character
ψ . Since L(1, ψ) > 0, it is natural to expect somenontrivial lower bound as a function
of q. This is what was proved by Landau–Siegel in the following theorem. The proof
can be found in [14].

Theorem 5 Let q > 1 be a positive integer and ψ be a nontrivial quadratic char-
acter modulo q. Then for each ε > 0, there exists a constant C(ε) > 0 such that

L(1, ψ) >
C(ε)

qε
.

The following lemma is crucial for our discussions. This lemma connects the
sum of Legendre symbols and the Dirichlet L-function associated with Legendre
symbol via the famous Dirichlet class number formula for the quadratic field. For an

odd prime p, the Legendre symbol

( ·
p

)
= χp(·) is a quadratic Dirichlet character

modulo p. We also define a character

χ4(n) =
{

(−1)(n−1)/2; if n is odd,
0; otherwise.
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102 J. Chattopadhyay et al.

Then one can define the Dirichlet character χ4p as χ4p(n) = χ4(n)χp(n) for any odd
prime p and similarly, we can define χ3p(n) = χ3(n)χp(n) for any odd prime p > 3.
Clearly, χ4p and χ3p are nontrivial and real quadratic Dirichlet characters.

Lemma 2 (See for instance, Page 151, Theorem 7.2 and 7.4 in [24]) Let p > 3 be
an odd prime and for any real number � ≥ 1, we define

S(1, �) =
∑

1≤m<�

χp(m). (6)

Then we have the following equalities.

(1) For a prime p ≡ 3 (mod 4), we have

S(1, p/2) =
√
p

π

(
2 − χp(2)

)
L(1, χp),

where L(1, χp) is the Dirichlet L-function; Also, we have

S(1, p/3) =
√
p

2π
(3 − χp(3))L(1, χp).

(2) For a prime p ≡ 1 (mod 4), we have

S(1, p/3) =
√
3p

2π
L(1, χ3p);

Also, we have

S(1, p/4) =
√
p

π
L(1, χ4p).

Now, we need the following lemma, which deals with the vanishing sums of
Legendre symbols. This was proved in [2]. For more such relations one may refer to
[8].

Lemma 3 [2] Let p be an odd prime. Then the following equalities hold true.

(1) If p ≡ 1 (mod 4), then we have
(p−1)/2∑
n=1

(
n

p

)
= 0.

(2) If p ≡ 3 (mod 8), then we have
�p/4∑
n=1

(
n

p

)
= 0.

(3) If p ≡ 7 (mod 8), then we have
�p/2∑
�p/4�

(
n

p

)
= 0.
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3 Proof of Theorem 1

Let p be a given odd prime. We want to estimate the quantity Q(p, S2). Therefore,
by (5), we get

Q(p, S2) = 1

2

[
p − 1

2

]
+ 1

2

(
2

p

) (p−1)/2∑
n=1

(
n

p

)
. (7)

Now, we consider three cases as follows.

Case 1. p ≡ 1 (mod 4)

In this case, since
(p−1)/2∑
n=1

(
n

p

)
= 0, by Lemma 3 (1), the Eq. (7) reduces to

Q(p, S2) = p − 1

4
,

which is as desired.

Case 2. p ≡ 3 (mod 8)

By Lemma 2 (1) and by (7), we get

Q(p, S2) = 1

2

[
p − 1

2

]
+

√
p

π

(
2 − χp(2)

)
L(1, χp).

In this case, we know that
(

2
p

)
= −1. Therefore, we get

Q(p, S2) = 1

2

[
p − 1

2

]
+ 3

√
p

π
L(1, χp).

Let ε be any real number such that 0 < ε < 1
2 . Then by Theorem 5, we get

Q(p, S2) − 1

2

[
p − 1

2

]
�ε p

1
2 −ε,

as desired.

Case 3. p ≡ 7 (mod 8).

Since p ≡ 7 (mod 8), we know that

(
2

p

)
= 1. Therefore, by Lemma 2 (1) and

by (7), we get

Q(p, S2) = 1

2

[
p − 1

2

]
+

√
p

π
L(1, χp) = 1

2

[
p − 1

2

]
+

√
pL(1, χp)

π
.
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Let ε be any real number such that 0 < ε < 1
2 . Then by Theorem 5 we get

Q(p, S2) − 1

2

[
p − 1

2

]
�ε p

1
2 −ε

which proves the theorem. �

4 Proof of Theorem 2

Let p be a given odd prime. We want to estimate the quantity Q(p, S3). Therefore,
by (5), we get,

Q(p, S3) = 1

2

[
p − 1

3

]
+

(
3

p

) (p−1)/3∑
n=1

(
n

p

)
. (8)

Now, we consider the following cases.

Case 1. p ≡ 1 (mod 12)

Note that, in this case, we have

(
3

p

)
= 1. By (8) and by Lemma 2 (2), we get

Q(p, S3) − 1

2

(
p − 1

3

)
= 1

2

√
3p

2π
L(1, χ3χp)

≥
√
3p

4π

C(ε)

(3p)ε

�ε p
1
2 −ε,

for any given 0 < ε < 1
2 in Theorem 5.

Case 2. p ≡ 11 (mod 12)

In this case, we have,

(
3

p

)
= 1. Then again by (8) and by Lemma 2 (1), we get

Q(p, S3) = 1

2

[
p − 1

3

]
+ 1

2

√
3p

2π
(3 − χp(3))L(1, χp).

Hence

Q(p, S3) − 1

2

[
p − 1

3

]
�ε p

1
2 −ε,

for any 0 < ε < 1
2 in Theorem 5. �
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5 Proof of Theorem 3

At first, using the Eq. (5), we note that

Q(p, S4) = 1

2

[
p − 1

4

]
+ 1

2

(
4

p

) (p−1)/4∑
m=1

(
m

p

)
= 1

2

[
p − 1

4

]
+ 1

2

(p−1)/4∑
m=1

(
m

p

)
.

(9)
Case 1. p ≡ 1 (mod 4)

Now, we apply Lemma 2 (2) in (9) and we get

Q(p, S4) = 1

2

(
p − 1

4

)
+ 1

2

√
p

π
L(1, χ4χp).

Hence

Q(p, S4) − p − 1

8
�ε p

1
2 −ε,

for any 0 < ε < 1
2 in Theorem 5.

Case 2. p ≡ 3 (mod 8)

In this case, we apply Lemma 3 (2) which says that
[(p−1)/4]∑

n=1

(
m

p

)
= 0. Hence,

by (9), we get

Q(p, S4) = 1

2

[
p − 1

4

]
.

Case 3. p ≡ 7 (mod 8)

First note that by Lemma 3 (3), we have

∑
p−1
4 <m<

p−1
2

(
m

p

)
= 0.

Therefore, the Eq. (9) can be rewritten as

Q(p, S4) = 1

2

[
p − 1

4

]
+ 1

2

∑
1≤m≤(p−1)/4

(
m

p

)
+ 1

2

∑
(p−1)/4≤m≤(p−1)/2

(
m

p

)

= 1

2

[
p − 1

4

]
+ 1

2

p−1
2∑

m=1

(
m

p

)
.

Now, by Lemma 2 (1), we get
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106 J. Chattopadhyay et al.

Q(p, S4) = 1

2

[
p − 1

4

]
+ 1

2

√
p

π
L(1, χp).

Hence

Q(p, S4) − 1

2

[
p − 1

4

]
�ε p

1
2 −ε,

for any 0 < ε < 1
2 in Theorem 5. This proves the result. �
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