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Abstract

LetT' CQ bea finitely generated multiplicative group
of algebraic numbers. Let «y,...,a, € @X be algebraic
numbers which are Q-linearly independent and let
€ > 0 be a given real number. One of the main results
that we prove in this article is as follows: There exist
only finitely many tuples (u,q,p;,...,p,) € [ x 2"+
with d = [Q(u) : Q] for some integer d > 1 satisfying
|e;qu| > 1, a;qu is not a pseudo-Pisot number for some
integeri € {1, ...,r} and

0< Iajqu—pjl < —gﬁ
He(u)lglr

for all integers j =1,2,...,r, where H(u) is the abso-
lute Weil height. In particular, when r = 1, this result
was proved by Corvaja and Zannier in [Acta Math. 193
(2004), 175-191]. As an application of our result, we
also prove a transcendence criterion which generalizes
a result of Han¢l, Kolouch, Pulcerova, and Stépniéka in
[Czech. Math. J. 62 (2012), no. 3, 613—-623]. The proofs
rely on the clever use of the subspace theorem and the
underlying ideas from the work of Corvaja and Zannier.
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1 | INTRODUCTION

Rational approximation is a fascinating and one of the important techniques to prove transcen-
dental results. This area has very rich history and one of the major milestones is a famous result
of Roth [7] extending the earlier works of Thue and Siegel (for a proof, see [8]). Then Ridout [6]
proved a p-adic version of Roth, a vast generalization is due to Schmidt [9] (Subspace Theorem)
and many versions of the subspace theorem are available now, and these versions are applied to
many problems in various branches of Number Theory (for instance, see [10]). In 2004, Corvaja
and Zannier [3] proved a “Thue-Roth”-type inequality with “moving targets” to solve a problem
of Mahler. Recently in 2019, Kulkarni, Mavraki, and Nguyen [5] proved a generalization of the
Mabhler problem part of Corvaja and Zannier. In this article, we are interested in the simultaneous
approximation of algebraic numbers in the same spirit of Corvaja and Zannier. Also, we apply our
main theorem to prove a transcendental result. In order to state our results, we shall start with
some terminology.

In order to state our results, we start with the following definition. An algebraic number « is
said to be a pseudo-Pisot number, if || > 1, a has integral trace, and all its other conjugates have
absolute value strictly less than 1.

Theorem 1.1. LetT' C @X be a finitely generated multiplicative group of algebraic numbers. Let
Apyeee, Ay € @X be Q-linearly independent algebraic numbers. For a given real number € > 0, let B
be a subset of T X Z"+! which consists of tuples (u,q, p;, ..., p,) € T X Z7 L with d = [Q(u) : Q] for
some integer d > 1 satisfying |o;qu| > 1, a;qu is not a pseudo-Pisot number for some integer i €
{1,2,...,r}and
0 <lajqu—pjl < ;d forallintegers j =1,2,..,r, 11
He(u)|gq| ™

where H(u) is the absolute Weil height of an algebraic number. Then B is a finite set.

When we put r = 1 in Theorem 1.1, we recover one of the main results of Corvaja and Zannier
in [3]. As an application of Theorem 1.1, we prove the following transcendence criterion.

Corollary 1.1. Let ay, ..., @, be Q-linearly independent real numbers. Let & be an algebraic number
of degree d > 2 such that one of its conjugates 3 satisfies || > |a| > 1. For some n > 0, suppose that
there exist infinitely many tuples (n,q, py, ..., p;) € Zio X Z" satisfying

1

0< ’ochoc” —pj‘ < forallintegers j =1, ...,r,

Hi(am)gr ™"

where H(u) is the absolute Weil height of an algebraic number. Then at least one of the numbers
among ay, ..., &, is transcendental.

Corollary 1.1 is an extension of a result due to Hancl, Kolouch, Pulcerova, and Stépniéka in [4].
It is important to note that Corvaja and Han¢l [2], in 2007, proved the transcendence of infinite
product using the new diophantine approximation result proved by Corvaja and Zannier [3] for
the first time in the literature. As an example, with the similar spirits in [4], one can conclude the
following transcendental result.
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Let o > 1 be a real algebraic number of degree d > 2 such that a conjugate 3 of a satisfying |B| >

1+-+6
a and let r > 2 be an integer. Let § > 0 and € > 0 be real numbers satisfying —* = 1L+e > 1. Let
S+
-

(ay)ns1 be a sequence of positive integers and fori = 1,2, ...,r, let (bg))“?1 be a sequence of positive
integers. Let BS) = bg)aan foralln > 1andforalli =1,2,...,r. Suppose that the sequence (BS))M
is non-decreasing and satisfying the growth conditions

1
ff)>(2+(d/r)+5)n = oo and BY > nl*

lim sup <B

n—oo

foralli=1,2,..,r. Ifa; = H;"zl U;% foralli=1,2,...,r, then either at least one of the numbers
among ay, ..., &, is transcendental o; they are Q-linearly dependent. Here [x] denotes the integral
part of the real number x.

Let K be a number field and let S be a finite set of places on K such that S contains all the

archimedean valuations of K. The group of S-units, denoted by O%, is defined as
Oy ={a €K : |a],=1 forall v ¢ S}.
Now, we shall state the other result of this article as follows.

Theorem 1.2. Let K be a number field of degree n which is Galois over Q and let S be a finite set
of places on K such that S contains all the archimedean places of K. Let d be a divisor of n and let
ay, ...,y € K be given algebraic numbers and not all zero. For a given real number ¢ > 0, let B be a
subset of 0% x Z? which consists of triples (uy, q, p) € O35 X 7% with d = [Q(u,) : Q] for some inte-
ger d > 1 satisfying |a;qu;| > 1, a;qu; is not a pseudo-Pisot number for some integeri € {1,2,...,d}
and

1

0 < |ayquy + a,quy + - +ayquy — p|l < ——m—,
layquy + orqu, aquq — | He(uy) g1+

where Uy, U,, ..., uy are all Galois conjugates. Then B is a finite set.

2 | PRELIMINARIES

Let K C C be a number field which is Galois over Q with Galois group Gal(K /Q). Let My be the
set of all inequivalent places of K and M, be the set of all archimedean places of K. For each
place v € Mg, we denote | - |, the absolute value corresponding to v, normalized with respect
to K. Indeed if v € M, then there exists an automorphism o € Gal(K/Q) of K such that for all
x €K,

x|, = o ()| /1Kl Q1)
where d(o) = 1if 6(K) = K C R and d(0) = 2 otherwise. Note that d(o) is constant since K/Q is

Galois. Non-archimedean absolute values are normalized accordingly so that the product formula
[T.en, 1%l = 1 holds for any x € K*.
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The absolute Weil height H(x) is defined as

H(x) := [] max1,|x|,}forall x € K.

WwEMg

For a vector X = (x, ..., x,,) € K" and for a place w € My, the w-norm for x, denoted by ||x]|,,, is
defined by

”X”cu = max{lxllwa eeey |xn|a)}

and the projective height, H(x), is defined by

Hx) = ] IIxll..

wEMy

Now we are ready to state a more general version of the Schmidt Subspace Theorem, which was
formulated by Evertse and Schlickewei. For a reference, see [1, Chapter 7], [9, Chapter V, Theorem
1D'], and [10, Page 16, Theorem I1.2].

Theorem 2.1 (Subspace theorem). Let K be a number field and m > 2 be an integer. Let S be a finite
set of places on K which contains all the archimedean places of K. For each v € S, let L, ,, ..., L, ,,
be linearly independent linear forms in the variables X1, ..., X,,, with coefficients in K. For any € > 0,

the set of solutions x € K™ to the inequality

|Ll U(X)ll) 1
H H H(X)m+£

ves i=1 ”X”U

lies in finitely many proper subspaces of K™.

The following lemma is an application of Theorem 2.1 which can be deduced from results
obtained by Evertse. For a proof, we refer to [3, Lemma 1].

Lemma 2.1. Let K be a number field which is Galois over Q and S be a finite subset of places which
contains all the archimedean places. Let o4, ..., 0, be distinct automorphisms of K for some integer

> 1and let A4, ..., 4, be non-zero elements of K. Let € > 0 be a given real number and w € S be a
distinguished place. Let € C (9>S< be a subset which is defined as

¢ :={ueo§ oy @) + -+ Ao, < max{|o1<u>|w,.-.,|on<u>|w}}.

1
He(u)
If € is an infinite subset of OF, then there exist a,, ... ,a,, € K, not all zero, such that

a,o0(v) + - +a,0,(L)=0

holds true for infinitely many elements v € G.
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We also need the following lemma, which is a special case of the S-unit equation theorem
proved by Evertse and van der Poorten—Schlickewei. For a proof, we refer to [10, page 18, Theorem
11.4].

Lemma 2.2. LetK,S and 04, ...,0, be as Lemma 2.1. Let a4, ..., a,, be non-zero elements of K. Let
CcC (9g< be a subset which is defined as

C:={ue0f : ao;(w)+ - +a,0,(u) =0}.

If € is an infinite set, then there exist integersi # j satisfying1 < i < j < n, non-zero elementsa,b €
K* and infinitely many v € € satisfying

ao;(v) + bo;(v) = 0.
We shall start with the following observation.

Lemma 2.3. Let K be a number field of degree n which is Galois over Q and k C K be a subfield
of degree d over Q for some integer d > 2. Let «y, ..., &, be Q-linearly independent elements of K for
some integerr > 1. Let S be a finite set of places on K which contains all the archimedean places and
let € > 0 be a given real number. Let

B= {(u,q,pl,...,pr) € ((9§r\k)><Z’+1 D 0<|oqu—p;| < forall1<i<g r}

He(w)lgl ™
2.2)

be a subset of (OF N k) x Z"*1. If B is an infinite set, then H(u) — co as u varies over all the tuples
(u,q, py»-,py) € B.

Proof. If possible, H(u) is bounded as u varies over all the tuples (u, g, p;, ..., p,) € B. Then there
exists a fixed u, say, u, and an infinite subset .4 of B such thatif (u,q, p;, ..., p,) € A, thenu = u,
and satisfying
0 < |a;qug — p;l < ;d forall 1<igr (2.3)
He(ug)lgl ™

holds true for all tuples (u, g, p;, -, P;) € A. Since H(u,) is a constant and if d/r > 1, then, by
Roth’s theorem, we conclude that o u, ..., a,u, are all transcendental which is a contradiction.
Hence, we can assume that d/r < 1.

Equation (2.3) implies that o u, ..., a,u, have simultaneous rational approximation with com-
mon denominator ¢ whose exponent is 1+ d/r + € = 1+ & where § > 1/r. By the well-known
application of the subspace theorem on simultaneous approximation with common denominator,
one gets either one of the numbers au, ..., a,u, is transcendental or 1, a;uy, ..., o, U, are Q-
linearly dependent. Since a;u, is algebraic for each integer i > 1, we conclude that 1, o, uy, ..., a,u,
are Q-linearly dependent. This does not contradict to the fact that a;u,, ..., a,u, are Q-linearly
independent. To get a contradiction, we proceed as follows.
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Now consider r + 1 linearly independent linear forms with algebraic coefficients as
Ly (X5 X150, X,) = Xg and L; o (Xg, X1, -0 » X)) = @UpXo — X;

foralli=1,2,...,r. We take K = Q and S = {oo0} in Theorem 2.1. Then by (2.3), we conclude that
there are infinitely many integer tuples (q, p;, p,, ..., p,) Where (u,q, p;,..., p,) € A satisfying
Theorem 2.1. Therefore there exist ay, a, ..., a, € Z, not all zero, such that

aq+ap; + - +a,p, =0 (2.4)

holds true for all tuples (uy, g, p;, ..., p,) € A’ where A’ is an infinite subset of A. Since not all
functions of g; are 0 in (2.4), we assume that a; # 0 for some integer i, satisfying 1 < i, <r.

Claim. There exist an infinite subset A" of A’ and integers by, ..., b, (not all are zero) such that
b,p, + -+ + b,p, = 0 for all the tuples (u,,q, p;, ..., p,) € A"

Since d/r < 1 and r,d > 2, we see that @ > 1. We consider r linearly independent linear
forms with algebraic coefficients as

L oo (X1, X5, .., X,) = aiupx; — x; foralli =1,2,...,ip — 1,ip + 1,...,r, and
Lio,oo(xl,xz, vy X)) = X, -

Now, we take K =Q and S = {oco} in Theorem 2.1. In order to conclude the assertion of
Theorem 2.1, we need to estimate the following quantity:

-
H |Li,oo(p1’ p27 ) pio—l’ q, pi0+1’ 7pr)|
i=1
for all the integer tuples (p;, w5 Dig—1> 9> Pig+1> ..., D) where (uy,q, py,--,p,) € A’. By (2.3), we
get

r

H |Li,oo(p1’p2’ e pio—l’ q, pi0+1’ ’pr)l <
i=1

1 Iq|
He(uy) al (r=Dd o

r

holds true for all tuples (uy, ¢, py,---> p,) € A’. Since (r — 1)d/r > 1, we conclude that

1 lgf 1 1
Hg(uo) |q|@+€ h Hs(uO) |Q|£

.
[T 12001 P2s s Piy—15 @ P15 5 P <
i=1

holds true for all tuples (uy,q, py,-->p,) € A’. Therefore, by Theorem 2.1, we get a non-trivial
relation

biOq + blpl + + bio—lpio—l + bi0+1pi0+1 + A + brpr = O Where bi S Z (25)

holds true for all tuples (u,,q, py,---,p,) € A for some infinite subset A" of A’. Since
Qs eee s Q15 Ao 415 s Ay ATE Q-linearly independent, we conclude that bio # 0. Now, by (2.4) and
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(2.5), we can arrive at relation

(by,a, — agby)p, + (bj ay — agby)p, + -+ + (b a;, 1 — agb; _1)pi, 1

+b;,a; p;, + - + (b a, — agb,)p, =0,

lo™lp

which holds true for all tuples (py, ..., p,) where (4, g, py, > p,) € A" Since a;, and b; are non-
zero, we conclude that the above relation is non-trivial. This proves the claim.

Now, dividing by g and letting the tuples (p;,..., p,) vary over all tuples in A", we get
aq Uy, ..., o, U, are Q-linearly dependent, which is a contradiction as ay, a5, ..., @, are Q-linearly
independent. Hence, H(u) — oo, as desired. I

The following lemmas are key to prove Theorems 1.1 and 1.2.

Lemma 2.4. Let K be a number field of degree n which is Galois over Q and k C K be a sub-
field of degree d over Q. Let ay,...,a, be Q-linearly independent elements of K for some integer
r > 1. Let S be a finite set of places on K which contains all the archimedean places and let € > 0
be a given real number. Let B be a subset of ((9>S< Nk) x 2"t as defined in (2.2) such that for each
tuple (u,q, p;, ..., p,) € B, there exists an integer i € {1, ..., r} satisfying |qo;u| > 1 and qo;u is not
a pseudo-Pisot number. If B is infinite, then there exist a proper subfield k' C k, a non-zero element
u' € k and an infinite subset B' C B such thatu/u' € k' forall (u,q, py, p5, -, p,) € B'.

Proof. First note that d > 2 as Q does not admit any proper subfield in it. Let G = Gal(K/Q) be
the Galois group of K over Q. Since K over k is Galois, we let H := Gal(K/k) C G be the sub-
group fixing k. Hence, |G/H| = [k : Q] = d. Therefore, among the n embeddings of K, there are
d embeddings, say, Id = o, ..., 04 which are the complete set of representatives for the left cosets
of H in G and more precisely, we have

G/H :={H,0,H,...,04H}.
Each p € G defines an archimedean valuation on K by the formula
lal, 2= |~ ()| 4/, (2.6)

where | - | denotes the usual absolute value in C. Two elements p; # p, in G define the same
valuation if and only if ,ol‘lo,o2 is the complex conjugation. Then for a fixed i with 1 <i <r, by
(2.6), for each p € Gal(K/Q) and for each tuple (u, g, p;, ..., p,) € I3, we have,

letyqu — p;| 9@/ EA = | p(a)o(qu) — p(p)l, = lp(a)gew) = pil,. 2.7)

Foreach v € M, let p, be an automorphism defining the valuation v, according to (2.6): |«]|, :=
lal,, s Then the set {0, 1 v € M} represents the left cosets of the subgroup generated by the
complex conjugation in G. For each j = 1,2, ...,d, let

S;={veMy : ply=0;:k-C},

and hence S; U ...U S; = M. Thus, we have M = {p, : v € M} and by (2.7), we get

d
I 1eut@deu(@w) = pily = I [T leo(@)o;(qw) - pil,. 28)

VEM, Jj=1ves;
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By (2.7), we see that

T teutaentaw) = pily = [ leaqu— pil“e/ K01 = o, qu — p;|Zoers P/ 1KC1,

VEM, VEM o,

Then, from (2.8) and the well-known formula ZUGMm d(p,) = [K : @], it follows that
d
[T I tec(@do;@w) = pil, = lasqu — pil (29
Jj=1vES;

for all integersi =1,...,r.
Now, for each v € S, we define d + r linearly independent linear forms in d + r variables as
follows: For j = 1,2,...,d and forv € S; and for each integer i satisfying 1 <i < r, we let

Ly (X155 Xy oy Xpioq) = X = Py (A X g5
and when the integer i in the ranger + 1 <i < d +r, we let
Lv,i(xlﬁ L) x}” ooy xr+d) = xi'
For each v € S\M_, and for each integer i satisfying 1 <i <r +d, we let
Lu,i(xls cee s Xpy eeny Xr+d) = X;.

Let X be the element in K9*" of the form

X = (py, Pys - » Prr qo1 (), ..., qog(u)) € K4t
In order to apply Theorem 2.1, we need to estimate the following quantity

dtr |Lu,J(X)|U

TT11 —X (2.10)

veS j=1

Using the fact that L, ;(X) = qo;(u), forr + 1 < j < d + r, we obtain

d+r d+r d+r d+r
IT IT 1o, =TT I tae;t =TT IT tale TT J[T1e;@le-
VES j=r+1 VES j=r+1 vES j=r+1 Jj=r+1ves

Since o j (u) are S-units, by the product formula, we obtain

[Tie;@1, = T 1e,@l, =1.

vES vVEM

Consequently, the above equality implies

d+r d+r d+r d+r

ITIT e, =TT IT tato< I T tate= J lqi%eens @E

vES j=r+1 VES j=r+1 VEM, j=r+1 Jj=r+1
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Then, from the formula ZUeMm d(p,) = [K : Q], we get

d+r d+r d+r

d :
ITIT s < IT IT tals = T 1aiZees @S < jgd. @
veS j=r+1 VEM, j=r+1 Jj=r+1
Now we estimate the denominators of the product in (2.10) as follows: We have
d+r d+r d+r d+r
1T x> I H X1, = H< 11 ||X||U> =[[E.
veS j=1 VEMg j= j= VEMK Jj=1
since ||X||, < 1forallv ¢ S. Thus, we get
d+r
TTTT i, > B (2.12)
ves j=1

By (2.10), (2.11), and (2.12), it follows that

G L, X,

=, Hd+r(x>'q'dHIaqu pil

VES j=

Thus, from (2.2), we have

HiiI’ILu,(X)IU LR 11 1
vesior Xl T HE@X)™ HE (W) [gld+re HA(X) (IgIH@)

Notice that

HX) = [ max{ipilys 1P lor 1961 @los . 190401}

VEM

= [T maxtipilos - 1P lor 199, GDlos . 190401}

veS

< [[maxtigp, - prlos s 1ap1 - prlos 19Dy -+ POy Wl o 1Py -+ PTa(0)],}

veES

< |qp1 pr| Hmax{l, |O-1(u)|v"" ’ |0d(u)|u}

veES
< lgpy -+ m(]‘[ max{1, |ol(u>|v}> (1‘[ max{1, |od(u)|v}>
veS vesS

= |gp; - p, I H*(w).

By using the inequality ||x| — |¥|| < |x — y| and the fact, by Lemma 2.3, that H(u) — oo when u
varies over all the tuples (u, g, p;, ..., p,) € B, by (2.2), we conclude that |p;| < |o;qu| + 1. Since
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|u|d < H(w), for all integers i satisfying 1 < i < r, we get
Pl < layqul +1 < Iqlleg | HAw) + 1 < 1g1H*(u)
holds true for all but finitely many tuples (u,q, p;,...,p,) € B. By combining both these

observations, we obtain H(X) < |q|"t*'H(u)¥9*4, and hence, we get H(X)"/(@@+1) < |q|H(u).
Therefore,

H dﬁ IL, ](X)lv 1 1 < 1 _ 1
pS 1 X1, Hd+r(x)(|q| H))ye H(X)d+r+(re)/2rd+1)  f(X)d+r+e’’

for some &’ > 0 holds true for infinitely many tuples (u, ¢, p;, ---, p,) € B. Then, by Theorem 2.1,
there exists a proper subspace of K9+ that contain infinitely many X € /3. That is, we have a
non-trivial relation

a,py + a;p; + -+ +a,p, + byqo,(w) + - + byqoy(u) =0, a;,b; €K, (2.13)
holds true for all the tuples (u, g, p;, ..., p,) € B, for some infinite subset /3, of 5.

By the hypothesis, we know that a;qu is not a pseudo-Pisot number for some integer i. Without
loss of generality, we can assume that for each (u, q, p;, ..., p,) € By, we have |a,qu| > 1 and o, qu
is not a pseudo-Pisot number. Under the same hypothesis as in [3, Lemma 3], Corvaja and Zannier
established a relation of the form a; p + b;qo,(u) + -+ + byqo4(u) = 0. Therefore, in view their
work, it is enough to show the existence of a non-trivial linear relation as in (2.13) witha; = a, =

e = ar_l = O.
Claim 1. Atleast one of the functions of b; is non-zero in the relation (2.13).
If possible, suppose b; = 0 for all integersi = 1,2, ..., 7. Then from (2.13), we get

a,p, +a,p, + -+ +a,p, =0 with a; €K. (2.14)

If all the functions of g; are rational numbers, then, dividing by qu, we obtain
a1_+...+ar—u =0 (215)

holds true for all tuples (u, g, p;, ..., p,) € B,. For each such tuple, the inequality

1
. 1+94¢
He(u)lullgl ™™

o B <

1
O0<|oqu—pj)| < ————— <= 0< qu

Hew)lgl ™

holds true for every i = 1, ..., r. As the tuples (u, q, p;, ..., p,) vary over all the elements in B;, by
Lemma 2.3, we have H(u) — oo. Therefore, we conclude, by (2.15), that

a; 0 + -+ aa. =0.



ON SIMULTANEOUS APPROXIMATION OF ALGEBRAIC NUMBERS | 1163

Since not all functions of ag; are 0, this is a contradiction to the fact that functions of «; are Q-
linearly independent. Hence we conclude that at least one of functions of a; is algebraic irrational.
Also, the sequence (5—;, s 5—;) tends to (¢, ... «,) and since none of the functions of «; are zero,

there exists an infinite subset B, of B, such that for any tuple (u,q, p;, ..., p,) € B, satisfying
p; # 0 for all integersi =1,2,...,r.

Let {a;,a,,...,qa,,} be the maximal Q-linearly independent subset of the set {a,,...,qa,}, if
necessary, by renaming the indices. Then we can write

Ay = €10y + - + ¢4, Where ¢;,, € Q, forall 1<i<r—m.
Thus, by substituting the values of a,,,,; in (2.14), we get
aipy + o+ @yPy +(C11a; + 0+ €1 )Py -+ Cmpn @+ F M @)Dy =
We rewrite this equality in the following form:
ay(py + ¢11Pms - F ComnPr) + 0 + (P + €1 P o F CrmymPy) = 0. (2.16)
Since ay, ..., a,, are Q-linearly independent, by (2.16), we obtain

P1tcuPmir + o oo Pr = 0= = Py + C1yp P + 0 F ComnmymPr- (2.17)

From (2.17), we get a relation of the form (2.14) with rational coefficients, which is again not
possible as observed earlier. Thus this proves Claim 1.

Claim 2. There exists a non-trivial relation as in (2.13) with a; = 0 foralli =1,2,...,r — 1.

We first prove that there exists a relation as in (2.13) with a; = 0. If possible, we assume that
a; # 0. Then by rewriting the relation (2.13) we obtain

a, a,

b b,
L a—iqol(u) o g 20w, (2.18)

a;

b,
Case 1. oj(Z—l) # a—’ for some integer j satisfying2 < j < d.
1 1
By applying the automorphism ¢; on both sides of (2.18), we get

_ a, a, b, b,
D = O'j<a1>p2 oj<a1>p, aj<a1>qajoal(u) Gj<a1>qajoad(u).

By subtracting this relation with (2.18), we get a relation involving the terms only with p,, ..., p,,

o,(u), ..., o4(u). Such a relation is non-trivial, as the coefficient of o j(u) iso j(b1 /a;) — a—’ # 0.
1

b; . .
Case 2. L = oj(b—l) for all integers j = 2,3, ...,d.
a ap
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Note that b; # 0. If not, then 0 = o;(b; /a;) = b;/a, for every integer j and hence b; = 0 for all
integers i, which contradicts Claim 1. By putting A = —b, /a,, we rewrite (2.18) as

p=-2p Z— Dy + (o, (D)o, (1) + -+ + 04 ()4 (u)). (2.19)
1

Clearlya;, b i €K, butitis not necessary that 1 belongs to k. If 4 & k, then there exists an automor-
phism t € H with t(1) # 1. By applying the automorphism 7 on both sides of (2.19) and subtract
with (2.19) to eliminate p;, we obtain

p(t(ay/ay) — ay/ay) + - + p(z(a, /a)) — a, /a)) + (A — T(D)o; (w)

d
+ D (0:(D)o;(u) — Too;(w)) = 0.
i=2

Note that 700 coincides on k with o; for some integer i and since t € H and 0,,...,04 € H,

none of the too j with j > 2 belongs in H. Hence the above relation can be written as a linear
combination of p,, ..., p, and o;(u) with the property that the coefficient of o, (u) is A — (1) # 0.
Therefore, we obtain a non-trivial linear relation among the p,, ..., p, and o;(u).

If A € k, then by adding —a; qu on both sides of the equality (2.19), we get

a a
|py —qul = ’—a—2p2 — a_rpr + (A —ay)go,(w) + qo,(D)oy(u) + -+ + qoyg(A)oy(u)
1 1

Then from (2.2), we get

a a 1
=20 e = S+ (= 9010 + @) + -+ 4 (D) < ———
! ! He(u)gr™*
(2.20)
Then just like the inequality in (2.9), we have the following important observation:
d a a
H _pv<_2>p2_'"_pv(_r>pr
j=1 UESj ! 4
+ (P — pp(ar))g(p,00 )W) + -+ + q(p, 00,4 )(A)(py00) (1)
1%
a, a,
= ‘—a—pz Py + (1 —ay)qo,(u) + qo,(V)o,(u) + - + qog(A)oyz(u)).

1 1

For each ve M, and j=1,..,d, we define v(j) such that p,00 =0y on the field k,
where {v(1),...,v(d)} is a permutation of {1, ..., d}. Hence the above relation can be written as
a linear combination of p,,..., p, and g,q),...,0yq)- Therefore there exist algebraic numbers
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Cy(1)s = Co(a) € K, not all zero, such that

a a
—pu<a—j>p2—--~ —pu<a—1>pr

+ (pv(/l) - pv(al))q(pvoal)(u) + o+ Q(pvocd)(/‘l)(puoo-d)(u)

[

Jj=1 veSj

v

a a
—Pu <_2>p2 - =Py <a_1>pr + Cu(l)qgv(l)(u) + -t Cv(d)qov(d)(u)

v

Hence, by (2.20), we have

[

j=1 UESj

1
<

—
v Heé(u)gr**

a, a
—Py (a_1>p2 — =Py <a—i>Pr + ¢u1)q0 )W) + -+ + €y g0 () (W)

(2.21)

Since the inequality (2.21) holds true for all the tuples (u,q, p;,..., p,) € 1;, we can apply
Theorem 2.1 suitably.

For each v € M, since ¢, ..., ¢yq) € K, not all zero, we let k, € {v(1), ..., v(d)} such that

Ck, # 0. Now, for each v € S, we define r + d — 1 linearly independent linear formsinr +d — 1
variables as follows: for each j = 1,2,...,d and foreachv € S j»we define

Lv,i(xl’ e Xy e xr+d—1) =X - pv(ai)xr+j—1
foreachi=1,2,..,r —1;
Lv,r—1+kv (xl’ ey Xpyeens xr+d—1)
a, )
=Pl —)X1 7~ Py a_ X1+ Co()Xr—1+v(1) + -+ Co(d)*r—1+uv(d)>
1
foreachr <m#r—1+k, <r+d—1,wedefine
Ly (X105 eee s Xps oo s Xpiog—1) = Xy
and for each v € S\M, and for each integer i in the range 1 < i < r + d — 1, we consider
Lv’l’(xl, ey Xr, ceey xr+d_1) = xl'.

Since ¢, # 0, it follows that for each v € S, the linear forms Ly, ..., L, ,,4_, are linearly inde-
pendent.

Write the special points in K"+4-1 as

X = (py, . Prr @0, (W), ..., qo4(u)) € K"H471,
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Then, by Theorem 2.1, there exists a proper subspace of K"*4~1 which contain infinitely many
points X = (p,, ..., p;» qo; (1), ..., qo4(u)). Hence, we get a non-trivial relation

a,p, + - +a,p, + biqo,(u) + - + bl gqo,(w) =0, a,b] €K (2.22)

holds true for infinitely many tuples (p,, ..., p,, qo,(4), ..., qo4(u)). By Claim 1, we can always
assume that not all functions of b; are zero. Thus, we obtain a non-trivial relation in r +d —
1 tuples.

By continuing this process, inductively, we can get a non-trivial relation with a; = 0 for all
integersi = 1,2, ...,r — 1. That s,

a)'p, +b{qo;(w) + - + b/qo,w) =0, a, b €K

holds true for infinitely many tuples (p,, go; (), ..., qo4(u)) where functions of b/’ are not all zero.
This proves Claim 2. We then conclude exactly as in [3, Lemma 3] to complete the proof of this
lemma. ]

Lemma 2.5. Let K be a number field of degree n which is Galois over Q and S be a finite set of places
on K which contains all the archimedean places. Let k C K be a subfield of degree d over Q for some
integerd > 1 and ay, ..., a4 be any elements of K. For a given real number € > 0, let

- x 2. _ 1
B= {(u, q,p) €E(OgNk)XZ" 1 0< |ayquy + -+ + agqug — p| < HeGun) gl } (2.23)

whereu = u; and u,, ..., u, are the other conjugates of u and for each triple (u, q, p) € B, there exists
anintegeri € {1, ..., d} such that |qou;| > 1 and qa;u; is not a pseudo-Pisot number. If B is infinite,
then there exist a proper subfield k' C k, a non-zero element ' € k and an infinite subset B' C B
such that for all triples (u, q, p) € B/, we have u/u’ € k'.

Proof. Note that d > 2 because Q does not admit any proper subfield in it. Let H := Gal(K/k) C
Gal(K/Q) = G be the subgroup of the Galois group ¢ fixing k. Since K is Galois over Q, we have
that K is Galois over k and |G/H| = d. Therefore, among the n embeddings on K, there are d
embeddings o, ..., 04 (with o, is the identity) which are the complete set of representatives of the
left cosets of H in G and more precisely, we have

G/H :={H,0,H,...,04H}.
For each p € Gal(K/Q) and for any triple (u, q, p) € B, with the rule in (2.6), we have
lotyquy + -+ + agquy — p|* @7 = o )p(quy) + - + p(ag)p(qug) — p(P)],
= |p(agp(uy) + - + plag)ge(ug) — plo- (2.24)

Foreachv € M, let p, be an automorphism defining the valuation v, according to (2.6): |x]|, :=
| x|, - Then the set{p, : v € M} represents the left cosets of the subgroup generated by the com-
plex conjugation in G. For j = 1,2, ...,d, let S i be the subset of M, formed by those valuation v
such that p |, = 0; : k > C. Note that S; U... US3 = M. Thus, we have M, ={p, : v € M}



ON SIMULTANEOUS APPROXIMATION OF ALGEBRAIC NUMBERS 1167

and for each triple (u, g, p) € 13, we obtain

[T leo(@aps@) + - + pu(aa)ap,ug) — pl,
VEM

d
= H H lou(a1)qo;(uy) + -+ + py(ag)qo;(ug) — ply.

Jj=1ves;

By (2.24), we see that

I 1eut@ge,) + - + pu(adgeoa) = plo = [ lenquy + -+ + agquy — p|*@/15:4
VEM VEM

oty quy + -+ + ctgquy — p|Evenie WP/ KA1

Then, by the formula ZveMm d(p,) = [K : Q], it follows that

TT I teo(ago(u) + = + py(a)go;ug) = pl, = loyquy + - + aqqug — pl.  (2.25)
j=1 veSj

Now, for each v € S, we define d + 1 linearly independent linear forms in d + 1 variables as
follows: For each j = 1,2, ...,d and for an archimedean placev € S j» we define

Ly o(Xgs e » Xg) = =X + pp(a)xy + -+ + py(ag)xy
and for any integer i satisfying 0 < i < d, we define
Ly i(Xg, 5 Xg) = X;.
Also, for any v € S\M_, and for any integer i satisfying 0 < i < d, we put
Ly i(Xg, 5 Xg) = X;.

Clearly, these linear forms are Q-linearly independent. Let the special points X € K¢*! be of the
form

X = (p,qo,(w), ..., qo4(w)) € ) Gand

In order to apply Theorem 2.1, we need to estimate the following quantity:

HH

vES j=

L, (X
| U,( o 26

Using the fact that L, j(X) =qo j(u), for all 1 € j < d and for all v, we obtain

d d d d
Iz, = [T TTee;@l =TT 1al [T 1e;e!.-

ves j=1 ves j=1 veS j=1 j=1ves
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Since o ;(u) are S-units, then by the product formula we obtain

[Tie;el = ] lojel, =1

vES VEM

Consequently, from the above equality, we get

IS

d d
[TITee®L =111l < T1 HICIIU H|q|ZUeM d(p,)/IK:Q]

veS j=1 veS j=1 VEM, j=1
Then, from the formula ZUeMm d(p,) = [K : Q], we get
d
d
I < I H lql, H |g| Zoere AL 1g1d. (2.27)
vesS j=1 VEM, j=1 j=1
Now we estimate the product of the denominators in (2.26) as follows: Consider
d
I = I Huxnv = H< I1 ||X||v>
vES j=0 VEMg j= VEMK

since ||X||, < 1forallv ¢ S. Thus, by the definition of H(X), we conclude that

HH IXIl, > HH(X) (2.28)

vES j=0
By (2.25), (2.27), and (2.28), we get
|LU J(X)lv 1
HH [1X]] Hd+1(X)|‘J|d|“1qu1+"' + agqug — pl.
v

veS j=0

Therefore, by (2.23), we get

1Ly, ;X 1 ¢ 1 1 1 1
I_LH X, S Ee ! He(u) |gld+s — HI+(X) (Iq[Hw))"’

First note that
Ipl < loyquy + - + agqugl + 1 < |qllal Hw)? d

where |a| = max{|a;| : i =1,2,...,d}and every conjugate of u has absolute value bounded by its
Weil height power d. Hence, we get

pl < C(a, d)|q|H (w),
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where C(a, d) is a positive constant depends only on « and d. Since H(X) < |q||p|H ()¢, we get
H(X) < C'lgPHw)™ < C'(1gIHwW)** = |qIHw) > C"HX)"/CV.

where C’ and C” are positive constants that depend only on « and d and hence the last inequality
becomes

L, J(X)IU 1

H H X1, H(x)d+1+£’ ’

VES j=

for some €’ > 0 which holds for infinitely many points X. Therefore, by Theorem 2.1, there exists
a proper subspace of K9+! which contain infinitely many points X = (p, go,(w), ..., qo4(u)). It
means that we obtain a non-trivial relation

agp +a;qo(w) + -+ +aygqoy(u) =0, a; €K, (2.29)

satisfied by all the triples (u, g, p) € B; C BB for some infinite subset 3; of 3. Also, for each triple
(u,q, p) € B;, without loss of generality, we can assume that |ga;u| > 1 and qa; u is not a pseudo-
Pisot number.

Since not all functions of g; are 0, clearly, we can conclude that at least one among a, ..., a, is
non-zero. Now, we have the following claim.

Claim 1. There exists a non-trivial relation as in (2.29) with a, = 0.

Suppose that a; # 0. Then we rewrite the relation (2.29) as
a ay
p=~—qoy() = - — —qo,(w). (2:30)
Qo o

By considering the case when o j(a1 /ay) #a j /a,, for some index j € {2, ...,d}, or the case when
aj/ay = oj(a,/ay) for all j, we can conclude that all the coefficients a;/a, are non-zero. Former
case can be handled as in Case 1 in Claim 2 of Lemma 2.4. We deal with the latter case.

Put 1 = —a, /a,. With these notations, we can re-write (2.30) as follows:

p = q(o,(D)o () + -+ + 04(D)ay(w)).

In the proof of Claim 2 of Lemma 2.4, we had the two possibilities, namely, either A € k or 1 & k.
Here also, the proof for the case 1 ¢ k is similar to that of the proof of Claim 2 of Lemma 2.4.
Therefore we consider the case 1 € k. By adding —a;qo; (u) — -+ — a3qo4(u) to both sides in the
above equality, we get

|p — (1901 (u) + - + ayqo,(w)| = |p — (aquy + -+ + azquy)|

= |(A — ap)go,(u) + (0,(1) — ay)qo,(u) + - + (a4(4) — ag)qoz(w)].
Therefore by (2.23), we get

1 1
|q|d+s HE(u)'

0 < |(A = ay)goy(w) + (0,(4) — az)qo,(u) + -+ + (04(4) — ag)gog(u)] <



1170 | KUMAR AND THANGADURAI

Then dividing by g on both sides to get

0 < [(A —ap)o () + (0,(4) — ay)a,(u) + -+ + (04(4) — ag)og(u)l

1 1 1 1

< |q|d+1+s He(u) = |q|1+s HE(u)' (2.31)

By putting 0,(1) — o; = 8; for all integers i, we note that not all functions of §8; are zero. Then by
re-writing (2.31), we get

1819160 + =+ 4040 < i s (2.32)

holds true for all triples (u,q, p) € ;. In order to apply Lemma 2.1, we distinguish two cases,
namely, 8; = 0 and 3; # 0 as follows.

Suppose 8; = 0. In this case, 0;(4) = a; and hence the algebraic number qa,u = gAu. Since
a,qu is not a pseudo-Pisot number, we get that gAu is not a pseudo-Pisot number. Therefore,

max{|o,(qAu)l, ..., |lo4(qAu)[} > 1

This implies that
max{|o,(W)l, ..., [og(W)[} > max{laz(/l)l S log@ (2.33)

Since not all functions of 8; are zero, let §; , ..., 8; be non-zero elements among 3, ..., §; and by
(2.32), we get

1
18,01, ) + -+ + B, 0, (W] < ||1+€ TS (2.34)

holds true for all triples (u, g, p) € B;. Thus by (2.33) and (2.34), for all triples (u, q, p) € B, the
inequality

11,01, ) + = + B, 0, (W] < max{|oy (W, .. |og (W) HH (W)

holds true. Therefore by Lemma 2.1, with the distinguished place w corresponding to the identity
embedding, n = i, and /1 51 for 1 < j < r, we get an infinite subset 53, C /3, such that for all
triples (u,q, p) € B, there ex1sts anon- tr1v1al relation of the form

5190 (W) + -+ + s4q0,4(u) =0
holds true for some s,, ..., s; € K. Therefore, by Lemma 2.2, there exist an infinite subset B; of B,

and a non-trivial relation of the form ac j(u) + bo;(u) = 0 for some distinct integers i and j and
a,b € K* satisfied by all the triples (u, g, p) € B;. Hence,

~o7 (3 ) oo pw) = u
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is true for all triples (u, q, p) € Bs. Therefore, for any two triples (u’,q’, p’), W, q", p"") € B;, we
have
Gi_loaj(u//u”) - ul/u/!.

That is, the element u’ /u"’ is fixed by the automorphism o7 'oc; & H, and hence u’/u’’ belongs
to the proper subfield k’ of k which is fixed by the subgroup generated by H and ai‘loa - To
finish the proof of this lemma, fix a non-zero u’ € k with (u’, g, p) € B; and take any other triple
(u,q, p) € B, then we can get u/u’ € k'.

Now we assume that 3; # 0. In this case, the term 5, o, (1) does appear in (2.32). Since |a; qu, | =
|, qu| > 1, we see that

max{|u |, ..., [ugl} = {loy @], ..., log@)[} = |u| > |ag| g™

holds true for all pairs (u, q) where the triples (u, g, p) satisfying (2.32). Thus by (2.32), we deduce
that

1 1 |y | max{|oy (W], ..., log(u)l}
lg|'+e He(u) lgleHe(u) '

0 < |Byo(w) + -+ + Byoa(w)| <

By applying Lemma 2.1 with the distinguished place w as in the case §; = 0 and with the inputs
n =d, A; = ; for each integeri = 1, ..., d, we conclude the same as in the case when 3; = 0. This
completes the proof of the lemma. O

3 | PROOF OF THEOREMS 1.1 AND 1.2 AND COROLLARY 1.1

Proof of Theorem 1.1. Since T is finitely generated multiplicative subgroup of ﬁx, by enlarging I',
if necessary, we can reduce to the situation where I' C Qisa group of S-units, namely,

F=0§={ueK:H|u|U=1}

vES

of a suitable number field K which is Galois over Q, with ¢y, ..., a, in K and for a suitable finite
set of places S of K which contains all the archimedean places. Also, note that S is stable under
Galois conjugation. [l

Suppose that the assertion is not true. That is, the subset 3 (which is defined in (1.1)) is an
infinite set. Then by inductively, we construct sequences {ocgl)}[;o, s {ocl@ }i>0» Whose elements are
in K, with the property that for any integer n > 0, the numbers (oc(()l) oci,l)), v (a(()r ). a;’ )) are
Q-linearly independent, an infinite decreasing chain B; of an infinite subset of 3 and an infinite
strictly decreasing chain k; of subfields of K satisfying the following:

Foreach integern > 0, B, C (k, X Z"*Y)n B,_;, k, C k,_;, k, # k,_, and all but finitely many

tuples (u,q, py, ..., p,) € B, satisfying the inequalities: |oc(()i) oc,(f)qul > 1, oc(()i) ocs)qu is not a
pseudo-Pisot number for some integeri € {1, ...,r}, and
@) () 1 ; .
oty =+ "qu — pj| < foreach integer j =1,2,...,r. (€R))]

He/ ()| | 7+
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If such sequences exist, then we eventually get a contradiction to the fact that the number field K
does not admit an infinite strictly decreasing chain of subfields. Therefore in order to finish the
proof of the theorem, it suffices to construct such sequences.

‘We proceed our construction by applying induction on n: for n = 0, put oc(J )

ky = K and B, = BB, and we are done in this case because of our supposmon
@) k

—ocjforlgjsr,

By the induction hypothesis, we assume that «,;
property that (a(()l) cay, (@ ((Jr)
we prove n + 1th stage.

For each integer j = 1,2,...,r, we let

.»and B, for an integer n > 0 exist with the
,({)) are Q-linearly independent and satisfying (3.1). Now

§;= oc(()j) a;j).
By the induction hypothesis, the numbers &, ..., §, are Q-linearly independent and satisfy (3.1).
Then by applying Lemma 2.4 with &, ..., 6,, k = k,,, we obtain an elementy,,,; € k,,aproper sub-
field k,,,; of k,, and an infinite set B,,,; C B, such that all tuples (u, g, p;, ..., p,) € B, satisty
U =Y,V Withv € k1 and y,,,; € k,,. Note that since u € OF, we observe that v € O. Hence,
as u varies, we see that v also varies over (9>S<. Thus, we can assume that (u, q, py, ..., p;) € B4 if
and only if (v, q, p;, ..., D,) € B41-
Setal) = =¥, forall1 < j <r. Clearly,

n+1
) 0D
oc(()J ---oni,])ocnﬁr1 =08i¥pt1 = 5(” foralll1 <j <
Therefore, by induction hypothesis, it is clear that s Mg 5531 are Q-linearly independent. Also,

by induction hypothesis, we know that for every tuple (u,q, p;, ..., p,) € B, there exists an
integer i € {1, ..., r} satisfying |§;qu| > 1 and §;qu is not a pseudo-Pisot number. Since &;qu =

8iqYntV = 5§l]+)1qv for every tuple (v,q, py,..., p,) € B,,;, there exists an integer i such that

|552quv| >1and 5( 1qu is not a pseudo-Pisot number and

1
18Y) qu = pjl = 18;¥p1qv — pj| = 16,qu — p;| < —.
H(yp0)/ 4D g| 7 ¥

Since v € k,,,,, we see that

HYpi1v) > HYpy) ' H),

and hence, in particular, for almost all v € k,,.;, we get H(S,, +1v) H (v)(+D/(n+2) Therefore,
for all but finitely many tuples (v, g, p;, ..., p,) € B, and forall 1 < j < r, we have the following
inequality

1
169 qu—p;l < —.
H(u):/ ()| q|r *¢

This proves the induction and hence the theorem. O

Proof of Theorem 1.2. The proof of this theorem is similar to the proof of Theorem 1.1.



ON SIMULTANEOUS APPROXIMATION OF ALGEBRAIC NUMBERS | 1173

Suppose that there are infinitely many triples (u,q, p) € (9§ x 7? satisfying the following
inequality:

0 < laygo, (W) + -+ + agqog(w) — pl < lgI™* *H*(w),

where functions of o; are all the embeddings of Q(u) to C. Then by inductively, we construct
sequences {a; o}, ..., {; 4}7°, Whose elements are in K, an infinite decreasing chain B; of an
infinite subset of B and an infinite strictly decreasing chain k; of subfields of K satisfying the

following properties.

For each integer n > 0, B, C (k, X Z*) N B,_y, k,, C k,_1, k,, # k,_, and all but finitely many
triples (u, q, p) € B, satisfying the inequalities: |a; ;- a; ,qu;| > 1, &; 5 -+ &; ,qu; is not a pseudo-
Pisot number for some integeri € {1, ... ,d} and

1
He/(+D) ()| g|d+e

[ty o+ oty GO (W) + - + g g g, q0q(u) — p| < (3.2)

If such sequences exist, then we eventually get a contradiction to the fact that the number field K
does not admit any infinite strictly decreasing chain of subfields. Therefore in order to finish the
proof of the theorem, it suffices to construct such sequences.

We proceed our construction by applying induction on n: for n = 0, put a; , = q; for each inte-
geri=1,..,d, ky =K and BB, = 13, and we are done in this case because of our supposition. By
the induction hypothesis, we assume that %> k,,and B, for an integer n > 0 and (3.2) holds true.
Then by applying Lemma 2.5 with k = k, and

81 =10 Ay s e Og = A+ A s

we obtain an element y, ., € k,, a proper subfield k,, of k,, and an infinite set B,,, C B,
such that all triples (u, q, p) € B, satisfy u = y,,, ;v with v € k,,, ;. Note that since u € O, we
observe that v € (9?. Hence, as u varies, we see that v varies over (9?. Thus, we can assume that
(u,q,p) € B, ifand only if (v, q, p) € B, ;.

Seta; 41 = 0(Ypqq) forall1 < j < d. Clearly,

. @) :
aj’o o C(j’naj’n_‘_l = 5JO']()/H+1) .= 5nj+1 fOI‘ all 1 < J < d

By the induction hypothesis, we know that for every triple (u, q, p) € B,,,,, there exists an inte-
ger i satisfying |§;qu| > 1 and §;qu is not a pseudo-Pisot number. Since §;qu; = 6;90;(y,410) =
5;(121‘10 j(v), for every triple (u, g, p) € B,,,;, there exists an integer i such that |5}(Brlqui| > 1and
5Silqui is not a pseudo-Pisot number and

®

|5(1) qo (V) + - +6,,,90;(L) + - + 62‘21qad(v) - pl

n+1
= 161901 (Ypn410) + -+ + 8490 4(¥410) — P

1
Hs/(n+1)(yn+lv)|q|d+e ’

=181quy + - + S4qug — pl <
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Since v € K, we see that

H(yp10) 2 H ) TH(V),

and hence, in particular, for almost all v € K, we have H(5,,,,v) > H (v)(n*tD/(+2) Therefore, for
all but finitely many such triple (v, g, p) € B,,,;, we have the following inequality:

) et 59 g0 et 5@ _ 1
|5n+1qv oot 5n+1 qcl(v) oot 5n+1qad(v) pl< Ha/(n+2)(v)|q|d+€
holds true. This proves the induction step and hence the theorem. O

Proof of Corollary 1.1. Suppose that the assertion of Corollary 1.1 is false. Then «;, ..., «, are alge-
braic numbers. By choosing ¢ < 7 log|a|/log H(x), we see that there are infinitely many tuples
(n,q, py, ..., py) in Zio x 7" satisfying

1

0<|“J’“nq_Pj|< - forall 1<j<r.

H(amyqr™*

Then by taking T’ = (a) and u = a” in Theorem 1.1, we get, for infinitely many values of n, or;qa” is
apseudo-Pisot number for all 1 < i < r, and, in particular, all their other conjugates have modulus
less than 1.

Let K be the Galois closure of the number field Q(«, 4, ..., @,) over Q. By our assumption on
a, we know that « has a conjugate g with |8] > |a|. Therefore there exists an automorphism o :
K — K maps a to 8. Hence, for all n € N, we have o(qa;a™) = qo(«;)B". Since a;qa” is a pseudo-
Pisot number for infinitely many values of n, we see that all the other conjugates of a;qa" have
modulus < 1. In particular, the same is true for o(ga;a™). But, since |o(qo;a")| = |qo(a;)||B8]",
and |B| > |a| > 1, this is impossible. This proves the corollary. O
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