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Abstract
Let Γ ⊂ ℚ

×
be a finitely generated multiplicative group

of algebraic numbers. Let 𝛼1, … , 𝛼𝑟 ∈ ℚ
×
be algebraic

numbers which are ℚ-linearly independent and let
𝜖 > 0 be a given real number. One of the main results
that we prove in this article is as follows: There exist
only finitely many tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ Γ × ℤ𝑟+1

with 𝑑 = [ℚ(𝑢) ∶ ℚ] for some integer 𝑑 ⩾ 1 satisfying|𝛼𝑖𝑞𝑢| > 1, 𝛼𝑖𝑞𝑢 is not a pseudo-Pisot number for some
integer 𝑖 ∈ {1, … , 𝑟} and

0 < |𝛼𝑗𝑞𝑢 − 𝑝𝑗| < 1

𝐻𝜖(𝑢)|𝑞| 𝑑𝑟 +𝜀
for all integers 𝑗 = 1, 2, … , 𝑟, where 𝐻(𝑢) is the abso-
lute Weil height. In particular, when 𝑟 = 1, this result
was proved by Corvaja and Zannier in [Acta Math. 193
(2004), 175–191]. As an application of our result, we
also prove a transcendence criterion which generalizes
a result of Hančl, Kolouch, Pulcerová, and Štěpnička in
[Czech. Math. J. 62 (2012), no. 3, 613–623]. The proofs
rely on the clever use of the subspace theorem and the
underlying ideas from the work of Corvaja and Zannier.
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1 INTRODUCTION

Rational approximation is a fascinating and one of the important techniques to prove transcen-
dental results. This area has very rich history and one of the major milestones is a famous result
of Roth [7] extending the earlier works of Thue and Siegel (for a proof, see [8]). Then Ridout [6]
proved a 𝑝-adic version of Roth, a vast generalization is due to Schmidt [9] (Subspace Theorem)
and many versions of the subspace theorem are available now, and these versions are applied to
many problems in various branches of Number Theory (for instance, see [10]). In 2004, Corvaja
and Zannier [3] proved a “Thue-Roth”-type inequality with “moving targets” to solve a problem
of Mahler. Recently in 2019, Kulkarni, Mavraki, and Nguyen [5] proved a generalization of the
Mahler problem part of Corvaja and Zannier. In this article, we are interested in the simultaneous
approximation of algebraic numbers in the same spirit of Corvaja and Zannier. Also, we apply our
main theorem to prove a transcendental result. In order to state our results, we shall start with
some terminology.
In order to state our results, we start with the following definition. An algebraic number 𝛼 is

said to be a pseudo-Pisot number, if |𝛼| > 1, 𝛼 has integral trace, and all its other conjugates have
absolute value strictly less than 1.

Theorem 1.1. Let Γ ⊂ ℚ
×
be a finitely generated multiplicative group of algebraic numbers. Let

𝛼1, … , 𝛼𝑟 ∈ ℚ
×
be ℚ-linearly independent algebraic numbers. For a given real number 𝜀 > 0, let 

be a subset of Γ × ℤ𝑟+1 which consists of tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ Γ × ℤ𝑟+1 with 𝑑 = [ℚ(𝑢) ∶ ℚ] for
some integer 𝑑 ⩾ 1 satisfying |𝛼𝑖𝑞𝑢| > 1, 𝛼𝑖𝑞𝑢 is not a pseudo-Pisot number for some integer 𝑖 ∈
{1, 2, … , 𝑟} and

0 < |𝛼𝑗𝑞𝑢 − 𝑝𝑗| < 1

𝐻𝜀(𝑢)|𝑞| 𝑑𝑟 +𝜀 for all integers 𝑗 = 1, 2, … , 𝑟, (1.1)

where𝐻(𝑢) is the absolute Weil height of an algebraic number. Then  is a finite set.

When we put 𝑟 = 1 in Theorem 1.1, we recover one of the main results of Corvaja and Zannier
in [3]. As an application of Theorem 1.1, we prove the following transcendence criterion.

Corollary 1.1. Let 𝛼1, … , 𝛼𝑟 beℚ-linearly independent real numbers. Let 𝛼 be an algebraic number
of degree 𝑑 ⩾ 2 such that one of its conjugates 𝛽 satisfies |𝛽| > |𝛼| > 1. For some 𝜂 > 0, suppose that
there exist infinitely many tuples (𝑛, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ ℤ2

>0
× ℤ𝑟 satisfying

0 <
|||𝛼𝑗𝑞𝛼𝑛 − 𝑝𝑗

||| < 1

𝐻𝜂(𝛼𝑛)𝑞
𝑑
𝑟
+𝜂

for all integers 𝑗 = 1,… , 𝑟,

where 𝐻(𝑢) is the absolute Weil height of an algebraic number. Then at least one of the numbers
among 𝛼1, … , 𝛼𝑟 is transcendental.

Corollary 1.1 is an extension of a result due to Hančl, Kolouch, Pulcerová, and Štěpnička in [4].
It is important to note that Corvaja and Hančl [2], in 2007, proved the transcendence of infinite
product using the new diophantine approximation result proved by Corvaja and Zannier [3] for
the first time in the literature. As an example, with the similar spirits in [4], one can conclude the
following transcendental result.
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Let 𝛼 > 1 be a real algebraic number of degree 𝑑 ⩾ 2 such that a conjugate 𝛽 of 𝛼 satisfying |𝛽| >
𝛼 and let 𝑟 ⩾ 2 be an integer. Let 𝛿 > 0 and 𝜖 > 0 be real numbers satisfying

1+ 𝑑
𝑟
+𝛿

𝑑
𝑟
+1

⋅ 𝜖

1+𝜖
> 1. Let

(𝑎𝑛)𝑛⩾1 be a sequence of positive integers and for 𝑖 = 1, 2, … , 𝑟, let (𝑏(𝑖)𝑛 )𝑛⩾1 be a sequence of positive
integers. Let 𝐵(𝑖)𝑛 = 𝑏

(𝑖)
𝑛 𝛼𝑎𝑛 for all 𝑛 ⩾ 1 and for all 𝑖 = 1, 2, … , 𝑟. Suppose that the sequence (𝐵(𝑖)𝑛 )𝑛⩾1

is non-decreasing and satisfying the growth conditions

lim sup
𝑛→∞

(
𝐵
(𝑖)
𝑛

) 1
(2+(𝑑∕𝑟)+𝛿)𝑛

= ∞ and 𝐵
(𝑖)
𝑛 ≫ 𝑛1+𝜖

for all 𝑖 = 1, 2, … , 𝑟. If 𝛼𝑖 =
∏∞

𝑛=1

[𝐵
(𝑖)
𝑛 ]

𝐵
(𝑖)
𝑛

for all 𝑖 = 1, 2, … , 𝑟, then either at least one of the numbers

among 𝛼1, … , 𝛼𝑟 is transcendental or they are ℚ-linearly dependent. Here [𝑥] denotes the integral
part of the real number 𝑥.
Let 𝐾 be a number field and let 𝑆 be a finite set of places on 𝐾 such that 𝑆 contains all the

archimedean valuations of 𝐾. The group of 𝑆-units, denoted by ×
𝑆
, is defined as

×
𝑆
= {𝛼 ∈ 𝐾 ∶ |𝛼|𝑣 = 1 for all 𝑣 ∉ 𝑆}.

Now, we shall state the other result of this article as follows.

Theorem 1.2. Let 𝐾 be a number field of degree 𝑛 which is Galois over ℚ and let 𝑆 be a finite set
of places on 𝐾 such that 𝑆 contains all the archimedean places of 𝐾. Let 𝑑 be a divisor of 𝑛 and let
𝛼1, … , 𝛼𝑑 ∈ 𝐾 be given algebraic numbers and not all zero. For a given real number 𝜀 > 0, let be a
subset of ×

𝑆
× ℤ2 which consists of triples (𝑢1, 𝑞, 𝑝) ∈ ×

𝑆
× ℤ2 with 𝑑 = [ℚ(𝑢1) ∶ ℚ] for some inte-

ger 𝑑 ⩾ 1 satisfying |𝛼𝑖𝑞𝑢𝑖| > 1, 𝛼𝑖𝑞𝑢𝑖 is not a pseudo-Pisot number for some integer 𝑖 ∈ {1, 2, … , 𝑑}

and

0 < |𝛼1𝑞𝑢1 + 𝛼2𝑞𝑢2 +⋯ + 𝛼𝑑𝑞𝑢𝑑 − 𝑝| ⩽ 1

𝐻𝜀(𝑢1)|𝑞|𝑑+𝜀 ,
where 𝑢1, 𝑢2, … , 𝑢𝑑 are all Galois conjugates. Then  is a finite set.

2 PRELIMINARIES

Let 𝐾 ⊂ ℂ be a number field which is Galois over ℚ with Galois group Gal(𝐾∕ℚ). Let𝑀𝐾 be the
set of all inequivalent places of 𝐾 and 𝑀∞ be the set of all archimedean places of 𝐾. For each
place 𝑣 ∈ 𝑀𝐾 , we denote | ⋅ |𝑣 the absolute value corresponding to 𝑣, normalized with respect
to 𝐾. Indeed if 𝑣 ∈ 𝑀∞, then there exists an automorphism 𝜎 ∈ Gal(𝐾∕ℚ) of 𝐾 such that for all
𝑥 ∈ 𝐾,

|𝑥|𝑣 = |𝜎(𝑥)|𝑑(𝜎)∕[𝐾∶ℚ], (2.1)

where 𝑑(𝜎) = 1 if 𝜎(𝐾) = 𝐾 ⊂ ℝ and 𝑑(𝜎) = 2 otherwise. Note that 𝑑(𝜎) is constant since 𝐾∕ℚ is
Galois. Non-archimedean absolute values are normalized accordingly so that the product formula∏

𝜔∈𝑀𝐾
|𝑥|𝜔 = 1 holds for any 𝑥 ∈ 𝐾×.
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The absolute Weil height𝐻(𝑥) is defined as

𝐻(𝑥) ∶=
∏

𝜔∈𝑀𝐾

max{1, |𝑥|𝜔} for all 𝑥 ∈ 𝐾.

For a vector 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ 𝐾𝑛 and for a place 𝜔 ∈ 𝑀𝐾 , the 𝜔-norm for 𝐱, denoted by ||𝐱||𝜔, is
defined by

‖𝐱‖𝜔 ∶= max{|𝑥1|𝜔, … , |𝑥𝑛|𝜔}
and the projective height,𝐻(𝐱), is defined by

𝐻(𝐱) =
∏

𝜔∈𝑀𝐾

‖𝐱‖𝜔.
Now we are ready to state a more general version of the Schmidt Subspace Theorem, which was
formulated by Evertse and Schlickewei. For a reference, see [1, Chapter 7], [9, Chapter V, Theorem
1𝐷′], and [10, Page 16, Theorem II.2].

Theorem 2.1 (Subspace theorem). Let𝐾 be a number field and𝑚 ⩾ 2 be an integer. Let 𝑆 be a finite
set of places on 𝐾 which contains all the archimedean places of 𝐾. For each 𝑣 ∈ 𝑆, let 𝐿1,𝑣, … , 𝐿𝑚,𝑣

be linearly independent linear forms in the variables𝑋1,… , 𝑋𝑚 with coefficients in𝐾. For any 𝜀 > 0,
the set of solutions 𝐱 ∈ 𝐾𝑚 to the inequality

∏
𝑣∈𝑆

𝑚∏
𝑖=1

|𝐿𝑖,𝑣(𝐱)|𝑣‖𝐱‖𝑣 ⩽
1

𝐻(𝐱)𝑚+𝜀

lies in finitely many proper subspaces of 𝐾𝑚.

The following lemma is an application of Theorem 2.1 which can be deduced from results
obtained by Evertse. For a proof, we refer to [3, Lemma 1].

Lemma 2.1. Let 𝐾 be a number field which is Galois overℚ and 𝑆 be a finite subset of places which
contains all the archimedean places. Let 𝜎1, … , 𝜎𝑛 be distinct automorphisms of 𝐾 for some integer
𝑛 ⩾ 1 and let 𝜆1, … , 𝜆𝑛 be non-zero elements of 𝐾. Let 𝜀 > 0 be a given real number and 𝜔 ∈ 𝑆 be a
distinguished place. Let 𝔈 ⊂ ×

𝑆
be a subset which is defined as

𝔈 ∶=

{
𝑢 ∈ ×

𝑆
∶ |𝜆1𝜎1(𝑢) +⋯ + 𝜆𝑛𝜎𝑛(𝑢)|𝜔 <

1

𝐻𝜀(𝑢)
max{|𝜎1(𝑢)|𝜔, … , |𝜎𝑛(𝑢)|𝜔}}.

If 𝔈 is an infinite subset of ×
𝑆
, then there exist 𝑎1, … , 𝑎𝑛 ∈ 𝐾, not all zero, such that

𝑎1𝜎1(𝑣) +⋯ + 𝑎𝑛𝜎𝑛(𝑣) = 0

holds true for infinitely many elements 𝑣 ∈ 𝔈.
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We also need the following lemma, which is a special case of the 𝑆-unit equation theorem
proved by Evertse and van der Poorten–Schlickewei. For a proof, we refer to [10, page 18, Theorem
II.4].

Lemma 2.2. Let 𝐾, 𝑆 and 𝜎1, … , 𝜎𝑛 be as Lemma 2.1. Let 𝑎1, … , 𝑎𝑛 be non-zero elements of 𝐾. Let
𝔈 ⊂ ×

𝑆
be a subset which is defined as

𝔈 ∶=
{
𝑢 ∈ ×

𝑆
∶ 𝑎1𝜎1(𝑢) +⋯ + 𝑎𝑛𝜎𝑛(𝑢) = 0

}
.

If𝔈 is an infinite set, then there exist integers 𝑖 ≠ 𝑗 satisfying 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, non-zero elements 𝑎, 𝑏 ∈
𝐾× and infinitely many 𝑣 ∈ 𝔈 satisfying

𝑎𝜎𝑖(𝑣) + 𝑏𝜎𝑗(𝑣) = 0.

We shall start with the following observation.

Lemma 2.3. Let 𝐾 be a number field of degree 𝑛 which is Galois over ℚ and 𝑘 ⊂ 𝐾 be a subfield
of degree 𝑑 over ℚ for some integer 𝑑 ⩾ 2. Let 𝛼1, … , 𝛼𝑟 be ℚ-linearly independent elements of 𝐾 for
some integer 𝑟 ⩾ 1. Let 𝑆 be a finite set of places on𝐾 which contains all the archimedean places and
let 𝜀 > 0 be a given real number. Let

 =

{
(𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ (×

𝑆
∩ 𝑘) × ℤ𝑟+1 ∶ 0 < |𝛼𝑖𝑞𝑢 − 𝑝𝑖| < 1

𝐻𝜀(𝑢)|𝑞| 𝑑𝑟 +𝜖 for all 1 ⩽ 𝑖 ⩽ 𝑟

}

(2.2)

be a subset of (×
𝑆
∩ 𝑘) × ℤ𝑟+1. If  is an infinite set, then 𝐻(𝑢) → ∞ as 𝑢 varies over all the tuples

(𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ .

Proof. If possible,𝐻(𝑢) is bounded as 𝑢 varies over all the tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ . Then there
exists a fixed 𝑢, say, 𝑢0 and an infinite subset of such that if (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ , then 𝑢 = 𝑢0
and satisfying

0 < |𝛼𝑖𝑞𝑢0 − 𝑝𝑖| < 1

𝐻𝜖(𝑢0)|𝑞| 𝑑𝑟 +𝜀 , for all 1 ⩽ 𝑖 ⩽ 𝑟 (2.3)

holds true for all tuples (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ . Since 𝐻(𝑢0) is a constant and if 𝑑∕𝑟 ⩾ 1, then, by
Roth’s theorem, we conclude that 𝛼1𝑢0, … , 𝛼𝑟𝑢0 are all transcendental which is a contradiction.
Hence, we can assume that 𝑑∕𝑟 < 1.
Equation (2.3) implies that 𝛼1𝑢0, … , 𝛼𝑟𝑢0 have simultaneous rational approximation with com-

mon denominator 𝑞 whose exponent is 1 + 𝑑∕𝑟 + 𝜖 = 1 + 𝛿 where 𝛿 ⩾ 1∕𝑟. By the well-known
application of the subspace theorem on simultaneous approximation with common denominator,
one gets either one of the numbers 𝛼1𝑢0, … , 𝛼𝑟𝑢0 is transcendental or 1, 𝛼1𝑢0, … , 𝛼𝑟𝑢0 are ℚ-
linearly dependent. Since𝛼𝑖𝑢0 is algebraic for each integer 𝑖 ⩾ 1, we conclude that 1, 𝛼1𝑢0, … , 𝛼𝑟𝑢0
are ℚ-linearly dependent. This does not contradict to the fact that 𝛼1𝑢0, … , 𝛼𝑟𝑢0 are ℚ-linearly
independent. To get a contradiction, we proceed as follows.
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Now consider 𝑟 + 1 linearly independent linear forms with algebraic coefficients as

𝐿0,∞(𝑥0, 𝑥1, … , 𝑥𝑟) = 𝑥0 and 𝐿𝑖,∞(𝑥0, 𝑥1, … , 𝑥𝑟) = 𝛼𝑖𝑢0𝑥0 − 𝑥𝑖

for all 𝑖 = 1, 2, … , 𝑟. We take 𝐾 = ℚ and 𝑆 = {∞} in Theorem 2.1. Then by (2.3), we conclude that
there are infinitely many integer tuples (𝑞, 𝑝1, 𝑝2, … , 𝑝𝑟) where (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈  satisfying
Theorem 2.1. Therefore there exist 𝑎0, 𝑎1, … , 𝑎𝑟 ∈ ℤ, not all zero, such that

𝑎0𝑞 + 𝑎1𝑝1 +⋯ + 𝑎𝑟𝑝𝑟 = 0 (2.4)

holds true for all tuples (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ ′ where ′ is an infinite subset of . Since not all
functions of 𝑎𝑖 are 0 in (2.4), we assume that 𝑎𝑖0 ≠ 0 for some integer 𝑖0 satisfying 1 ⩽ 𝑖0 ⩽ 𝑟.

Claim. There exist an infinite subset ′′ of ′ and integers 𝑏1, … , 𝑏𝑟 (not all are zero) such that
𝑏1𝑝1 +⋯ + 𝑏𝑟𝑝𝑟 = 0 for all the tuples (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ ′′

Since 𝑑∕𝑟 < 1 and 𝑟, 𝑑 ⩾ 2, we see that (𝑟−1)𝑑

𝑟
> 1. We consider 𝑟 linearly independent linear

forms with algebraic coefficients as

𝐿𝑖,∞(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝛼𝑖𝑢0𝑥𝑖0 − 𝑥𝑖 for all 𝑖 = 1, 2, … , 𝑖0 − 1, 𝑖0 + 1, … , 𝑟, and

𝐿𝑖0,∞(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑥𝑖0 .

Now, we take 𝐾 = ℚ and 𝑆 = {∞} in Theorem 2.1. In order to conclude the assertion of
Theorem 2.1, we need to estimate the following quantity:

𝑟∏
𝑖=1

|𝐿𝑖,∞(𝑝1, 𝑝2, … , 𝑝𝑖0−1, 𝑞, 𝑝𝑖0+1, … , 𝑝𝑟)|
for all the integer tuples (𝑝1, … , 𝑝𝑖0−1, 𝑞, 𝑝𝑖0+1, … , 𝑝𝑟) where (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ ′. By (2.3), we
get

𝑟∏
𝑖=1

|𝐿𝑖,∞(𝑝1, 𝑝2, … , 𝑝𝑖0−1, 𝑞, 𝑝𝑖0+1, … , 𝑝𝑟)| < 1

𝐻𝜀(𝑢0)

|𝑞|
|𝑞| (𝑟−1)𝑑𝑟

+𝜀

holds true for all tuples (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ ′. Since (𝑟 − 1)𝑑∕𝑟 > 1, we conclude that

𝑟∏
𝑖=1

|𝐿𝑖,∞(𝑝1, 𝑝2, … , 𝑝𝑖0−1, 𝑞, 𝑝𝑖0+1, … , 𝑝𝑟)| < 1

𝐻𝜀(𝑢0)

|𝑞|
|𝑞| (𝑟−1)𝑑𝑟

+𝜀
⩽

1

𝐻𝜀(𝑢0)

1|𝑞|𝜀
holds true for all tuples (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ ′. Therefore, by Theorem 2.1, we get a non-trivial
relation

𝑏𝑖0𝑞 + 𝑏1𝑝1 +⋯ + 𝑏𝑖0−1𝑝𝑖0−1 + 𝑏𝑖0+1𝑝𝑖0+1 +⋯ + 𝑏𝑟𝑝𝑟 = 0 where 𝑏𝑖 ∈ ℤ (2.5)

holds true for all tuples (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ ′′ for some infinite subset ′′ of ′. Since
𝛼1, … , 𝛼𝑖0−1, 𝛼𝑖0+1, …, 𝛼𝑟 are ℚ-linearly independent, we conclude that 𝑏𝑖0 ≠ 0. Now, by (2.4) and
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(2.5), we can arrive at relation

(𝑏𝑖0𝑎1 − 𝑎0𝑏1)𝑝1 + (𝑏𝑖0𝑎2 − 𝑎0𝑏2)𝑝2 +⋯ + (𝑏𝑖0𝑎𝑖0−1 − 𝑎0𝑏𝑖0−1)𝑝𝑖0−1

+ 𝑏𝑖0𝑎𝑖0𝑝𝑖0 +⋯ + (𝑏𝑖0𝑎𝑟 − 𝑎0𝑏𝑟)𝑝𝑟 = 0,

which holds true for all tuples (𝑝1, … , 𝑝𝑟)where (𝑢0, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ ′′. Since 𝑎𝑖0 and 𝑏𝑖0 are non-
zero, we conclude that the above relation is non-trivial. This proves the claim.
Now, dividing by 𝑞 and letting the tuples (𝑝1, … , 𝑝𝑟) vary over all tuples in ′′, we get

𝛼1𝑢0, … , 𝛼𝑟𝑢0 are ℚ-linearly dependent, which is a contradiction as 𝛼1, 𝛼2, … , 𝛼𝑟 are ℚ-linearly
independent. Hence,𝐻(𝑢) → ∞, as desired. □

The following lemmas are key to prove Theorems 1.1 and 1.2.

Lemma 2.4. Let 𝐾 be a number field of degree 𝑛 which is Galois over ℚ and 𝑘 ⊂ 𝐾 be a sub-
field of degree 𝑑 over ℚ. Let 𝛼1, … , 𝛼𝑟 be ℚ-linearly independent elements of 𝐾 for some integer
𝑟 ⩾ 1. Let 𝑆 be a finite set of places on 𝐾 which contains all the archimedean places and let 𝜀 > 0

be a given real number. Let  be a subset of (×
𝑆
∩ 𝑘) × ℤ𝑟+1 as defined in (2.2) such that for each

tuple (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ , there exists an integer 𝑖 ∈ {1, … , 𝑟} satisfying |𝑞𝛼𝑖𝑢| > 1 and 𝑞𝛼𝑖𝑢 is not
a pseudo-Pisot number. If  is infinite, then there exist a proper subfield 𝑘′ ⊂ 𝑘, a non-zero element
𝑢′ ∈ 𝑘 and an infinite subset ′ ⊂  such that 𝑢∕𝑢′ ∈ 𝑘′ for all (𝑢, 𝑞, 𝑝1, 𝑝2, … , 𝑝𝑟) ∈ ′.

Proof. First note that 𝑑 ⩾ 2 as ℚ does not admit any proper subfield in it. Let  = Gal(𝐾∕ℚ) be
the Galois group of 𝐾 over ℚ. Since 𝐾 over 𝑘 is Galois, we let  ∶= Gal(𝐾∕𝑘) ⊂  be the sub-
group fixing 𝑘. Hence, |∕| = [𝑘 ∶ ℚ] = 𝑑. Therefore, among the 𝑛 embeddings of 𝐾, there are
𝑑 embeddings, say, 𝐼𝑑 = 𝜎1, … , 𝜎𝑑 which are the complete set of representatives for the left cosets
of in  and more precisely, we have

∕ ∶= {, 𝜎2, … , 𝜎𝑑}.

Each 𝜌 ∈  defines an archimedean valuation on 𝐾 by the formula

|𝛼|𝜌 ∶= |𝜌−1(𝛼)|𝑑(𝜌)∕[𝐾∶ℚ], (2.6)

where | ⋅ | denotes the usual absolute value in ℂ. Two elements 𝜌1 ≠ 𝜌2 in  define the same
valuation if and only if 𝜌−1

1
◦𝜌2 is the complex conjugation. Then for a fixed 𝑖 with 1 ⩽ 𝑖 ⩽ 𝑟, by

(2.6), for each 𝜌 ∈ Gal(𝐾∕ℚ) and for each tuple (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ , we have,

|𝛼𝑖𝑞𝑢 − 𝑝𝑖|𝑑(𝜌)∕[𝐾∶ℚ] = |𝜌(𝛼𝑖)𝜌(𝑞𝑢) − 𝜌(𝑝𝑖)|𝜌 = |𝜌(𝛼𝑖)𝑞𝜌(𝑢) − 𝑝𝑖|𝜌. (2.7)

For each 𝑣 ∈ 𝑀∞, let 𝜌𝑣 be an automorphism defining the valuation 𝑣, according to (2.6): |𝛼|𝑣 ∶=|𝛼|𝜌𝑣 ; Then the set {𝜌𝑣 ∶ 𝑣 ∈ 𝑀∞} represents the left cosets of the subgroup generated by the
complex conjugation in . For each 𝑗 = 1, 2, … , 𝑑, let

𝑆𝑗 =
{
𝑣 ∈ 𝑀∞ ∶ 𝜌𝑣|𝑘 = 𝜎𝑗 ∶ 𝑘 → ℂ

}
,

and hence 𝑆1 ∪ … ∪ 𝑆𝑑 = 𝑀∞. Thus, we have𝑀∞ = {𝜌𝑣 ∶ 𝑣 ∈ 𝑀∞} and by (2.7), we get∏
𝑣∈𝑀∞

|𝜌𝑣(𝛼𝑖)𝜌𝑣(𝑞𝑢) − 𝑝𝑖|𝑣 = 𝑑∏
𝑗=1

∏
𝑣∈𝑆𝑗

|𝜌𝑣(𝛼𝑖)𝜎𝑗(𝑞𝑢) − 𝑝𝑖|𝑣. (2.8)
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By (2.7), we see that∏
𝑣∈𝑀∞

|𝜌𝑣(𝛼𝑖)𝜌𝑣(𝑞𝑢) − 𝑝𝑖|𝑣 = ∏
𝑣∈𝑀∞

|𝛼𝑖𝑞𝑢 − 𝑝𝑖|𝑑(𝜌𝑣)∕[𝐾∶ℚ] = |𝛼𝑖𝑞𝑢 − 𝑝𝑖|∑𝑣∈𝑀∞
𝑑(𝜌𝑣)∕[𝐾∶ℚ].

Then, from (2.8) and the well-known formula
∑

𝑣∈𝑀∞
𝑑(𝜌𝑣) = [𝐾 ∶ ℚ], it follows that

𝑑∏
𝑗=1

∏
𝑣∈𝑆𝑗

|𝜌𝑣(𝛼𝑖)𝜎𝑗(𝑞𝑢) − 𝑝𝑖|𝑣 = |𝛼𝑖𝑞𝑢 − 𝑝𝑖| (2.9)

for all integers 𝑖 = 1, … , 𝑟.
Now, for each 𝑣 ∈ 𝑆, we define 𝑑 + 𝑟 linearly independent linear forms in 𝑑 + 𝑟 variables as

follows: For 𝑗 = 1, 2, … , 𝑑 and for 𝑣 ∈ 𝑆𝑗 and for each integer 𝑖 satisfying 1 ⩽ 𝑖 ⩽ 𝑟, we let

𝐿𝑣,𝑖(𝑥1, … , 𝑥𝑟, … , 𝑥𝑟+𝑑) = 𝑥𝑖 − 𝜌𝑣(𝛼𝑖)𝑥𝑗+𝑟,

and when the integer 𝑖 in the range 𝑟 + 1 ⩽ 𝑖 ⩽ 𝑑 + 𝑟, we let

𝐿𝑣,𝑖(𝑥1, … , 𝑥𝑟, … , 𝑥𝑟+𝑑) = 𝑥𝑖.

For each 𝑣 ∈ 𝑆∖𝑀∞ and for each integer 𝑖 satisfying 1 ⩽ 𝑖 ⩽ 𝑟 + 𝑑, we let

𝐿𝑣,𝑖(𝑥1, … , 𝑥𝑟, … , 𝑥𝑟+𝑑) = 𝑥𝑖.

Let 𝐗 be the element in 𝐾𝑑+𝑟 of the form

𝐗 = (𝑝1, 𝑝2, … , 𝑝𝑟, 𝑞𝜎1(𝑢), … , 𝑞𝜎𝑑(𝑢)) ∈ 𝐾𝑑+𝑟.

In order to apply Theorem 2.1, we need to estimate the following quantity

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=1

|𝐿𝑣,𝑗(𝐗)|𝑣‖𝐗‖𝑣 . (2.10)

Using the fact that 𝐿𝑣,𝑗(𝐗) = 𝑞𝜎𝑗(𝑢), for 𝑟 + 1 ⩽ 𝑗 ⩽ 𝑑 + 𝑟, we obtain

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=𝑟+1

|𝐿𝑣,𝑗(𝐗)|𝑣 = ∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=𝑟+1

|𝑞𝜎𝑗(𝑢)|𝑣 = ∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=𝑟+1

|𝑞|𝑣 𝑑+𝑟∏
𝑗=𝑟+1

∏
𝑣∈𝑆

|𝜎𝑗(𝑢)|𝑣.
Since 𝜎𝑗(𝑢) are 𝑆-units, by the product formula, we obtain∏

𝑣∈𝑆

|𝜎𝑗(𝑢)|𝑣 = ∏
𝑣∈𝑀𝐾

|𝜎𝑗(𝑢)|𝑣 = 1.

Consequently, the above equality implies

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=𝑟+1

|𝐿𝑣,𝑗(𝐗)|𝑣 = ∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=𝑟+1

|𝑞|𝑣 ⩽ ∏
𝑣∈𝑀∞

𝑑+𝑟∏
𝑗=𝑟+1

|𝑞|𝑣 = 𝑑+𝑟∏
𝑗=𝑟+1

|𝑞|∑𝑣∈𝑀∞
𝑑(𝜌𝑣)∕[𝐾∶ℚ].
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Then, from the formula
∑

𝑣∈𝑀∞
𝑑(𝜌𝑣) = [𝐾 ∶ ℚ], we get

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=𝑟+1

|𝐿𝑣,𝑗(𝐗)|𝑣 ⩽ ∏
𝑣∈𝑀∞

𝑑+𝑟∏
𝑗=𝑟+1

|𝑞|𝑣 = 𝑑+𝑟∏
𝑗=𝑟+1

|𝑞|∑𝑣∈𝑀∞
𝑑(𝜌𝑣)∕[𝐾∶ℚ] = |𝑞|𝑑. (2.11)

Now we estimate the denominators of the product in (2.10) as follows: We have

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=1

‖𝐗‖𝑣 ⩾ ∏
𝑣∈𝑀𝐾

𝑑+𝑟∏
𝑗=1

‖𝐗‖𝑣 = 𝑑+𝑟∏
𝑗=1

( ∏
𝑣∈𝑀𝐾

‖𝐗‖𝑣
)
=

𝑑+𝑟∏
𝑗=1

𝐻(𝐗),

since ‖𝐗‖𝑣 ⩽ 1 for all 𝑣 ∉ 𝑆. Thus, we get

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=1

‖𝐗‖𝑣 ⩾ 𝐻(𝐗)𝑑+𝑟. (2.12)

By (2.10), (2.11), and (2.12), it follows that

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=1

|𝐿𝑣,𝑗(𝐗)|𝑣‖𝐗‖𝑣 ⩽
1

𝐻𝑑+𝑟(𝐗)
|𝑞|𝑑 𝑟∏

𝑖=1

|𝛼𝑖𝑞𝑢 − 𝑝𝑖|.
Thus, from (2.2), we have

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=1

|𝐿𝑣,𝑗(𝐗)|𝑣||𝐗||𝑣 ⩽
1

𝐻𝑑+𝑟(𝐗)
|𝑞|𝑑 1

𝐻𝑟𝜀(𝑢)

1|𝑞|𝑑+𝑟𝜖 = 1

𝐻𝑑+𝑟(𝐗)

1

(|𝑞|𝐻(𝑢))𝑟𝜀 .
Notice that

𝐻(𝐗) =
∏
𝑣∈𝑀𝐾

max{|𝑝1|𝑣, … , |𝑝𝑟|𝑣, |𝑞𝜎1(𝑢)|𝑣, … , |𝑞𝜎𝑑(𝑢)|𝑣}
=

∏
𝑣∈𝑆

max{|𝑝1|𝑣, … , |𝑝𝑟|𝑣, |𝑞𝜎1(𝑢)|𝑣, … , |𝑞𝜎𝑑(𝑢)|𝑣}
⩽
∏
𝑣∈𝑆

max{|𝑞𝑝1⋯𝑝𝑟|𝑣, … , |𝑞𝑝1⋯𝑝𝑟|𝑣, |𝑞𝑝1⋯𝑝𝑟𝜎1(𝑢)|𝑣, … , |𝑞𝑝1⋯𝑝𝑟𝜎𝑑(𝑢)|𝑣}
⩽ |𝑞𝑝1⋯𝑝𝑟|∏

𝑣∈𝑆

max{1, |𝜎1(𝑢)|𝑣, … , |𝜎𝑑(𝑢)|𝑣}
⩽ |𝑞𝑝1⋯𝑝𝑟|

(∏
𝑣∈𝑆

max{1, |𝜎1(𝑢)|𝑣}
)
⋯

(∏
𝑣∈𝑆

max{1, |𝜎𝑑(𝑢)|𝑣}
)

= |𝑞𝑝1⋯𝑝𝑟|𝐻𝑑(𝑢).

By using the inequality ||𝑥| − |𝑦|| ⩽ |𝑥 − 𝑦| and the fact, by Lemma 2.3, that 𝐻(𝑢) → ∞ when 𝑢
varies over all the tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ , by (2.2), we conclude that |𝑝𝑖| ⩽ |𝛼𝑖𝑞𝑢| + 1. Since
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|𝑢| 1𝑑 ⩽ 𝐻(𝑢), for all integers 𝑖 satisfying 1 ⩽ 𝑖 ⩽ 𝑟, we get

|𝑝𝑖| ⩽ |𝛼𝑖𝑞𝑢| + 1 ⩽ |𝑞||𝛼𝑖|𝐻𝑑(𝑢) + 1 ⩽ |𝑞|𝐻2𝑑(𝑢)

holds true for all but finitely many tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ . By combining both these
observations, we obtain 𝐻(𝐗) ⩽ |𝑞|𝑟+1𝐻(𝑢)2𝑟𝑑+𝑑, and hence, we get 𝐻(𝐗)1∕(𝑑(2𝑟+1)) ⩽ |𝑞|𝐻(𝑢).
Therefore,

∏
𝑣∈𝑆

𝑑+𝑟∏
𝑗=1

|𝐿𝑣,𝑗(𝐗)|𝑣||𝐗||𝑣 ⩽
1

𝐻𝑑+𝑟(𝐗)

1

(|𝑞|𝐻(𝑢))𝑟𝜀 ⩽
1

𝐻(𝐗)𝑑+𝑟+(𝑟𝜀)∕(2𝑟𝑑+1)
=

1

𝐻(𝐗)𝑑+𝑟+𝜀′
,

for some 𝜀′ > 0 holds true for infinitely many tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ . Then, by Theorem 2.1,
there exists a proper subspace of 𝐾𝑑+𝑟 that contain infinitely many 𝐗 ∈ . That is, we have a
non-trivial relation

𝑎1𝑝1 + 𝑎2𝑝2 +⋯ + 𝑎𝑟𝑝𝑟 + 𝑏1𝑞𝜎1(𝑢) +⋯ + 𝑏𝑑𝑞𝜎𝑑(𝑢) = 0, 𝑎𝑖, 𝑏𝑗 ∈ 𝐾, (2.13)

holds true for all the tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 1 for some infinite subset 1 of .
By the hypothesis, we know that 𝛼𝑖𝑞𝑢 is not a pseudo-Pisot number for some integer 𝑖. Without

loss of generality, we can assume that for each (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 1, we have |𝛼𝑟𝑞𝑢| > 1 and 𝛼𝑟𝑞𝑢
is not a pseudo-Pisot number. Under the same hypothesis as in [3, Lemma 3], Corvaja and Zannier
established a relation of the form 𝑎1𝑝 + 𝑏1𝑞𝜎1(𝑢) +⋯ + 𝑏𝑑𝑞𝜎𝑑(𝑢) = 0. Therefore, in view their
work, it is enough to show the existence of a non-trivial linear relation as in (2.13) with 𝑎1 = 𝑎2 =

⋯ = 𝑎𝑟−1 = 0.

Claim 1. At least one of the functions of 𝑏𝑗 is non-zero in the relation (2.13).

If possible, suppose 𝑏𝑖 = 0 for all integers 𝑖 = 1, 2, … , 𝑟. Then from (2.13), we get

𝑎1𝑝1 + 𝑎2𝑝2 +⋯ + 𝑎𝑟𝑝𝑟 = 0 with 𝑎𝑖 ∈ 𝐾. (2.14)

If all the functions of 𝑎𝑖 are rational numbers, then, dividing by 𝑞𝑢, we obtain

𝑎1
𝑝1
𝑞𝑢

+⋯ + 𝑎𝑟
𝑝𝑟
𝑞𝑢

= 0 (2.15)

holds true for all tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 1. For each such tuple, the inequality

0 < |𝛼𝑖𝑞𝑢 − 𝑝𝑖| < 1

𝐻𝜀(𝑢)|𝑞| 𝑑𝑟 +𝜖 ⟺ 0 <
||||𝛼𝑖 − 𝑝𝑖

𝑞𝑢

|||| < 1

𝐻𝜀(𝑢)|𝑢||𝑞|1+ 𝑑
𝑟
+𝜖

holds true for every 𝑖 = 1, … , 𝑟. As the tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) vary over all the elements in 1, by
Lemma 2.3, we have 𝐻(𝑢) → ∞. Therefore, we conclude, by (2.15), that

𝑎1𝛼1 +⋯ + 𝑎𝑟𝛼𝑟 = 0.
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Since not all functions of 𝑎𝑖 are 0, this is a contradiction to the fact that functions of 𝛼𝑖 are ℚ-
linearly independent. Hence we conclude that at least one of functions of 𝑎𝑖 is algebraic irrational.
Also, the sequence ( 𝑝1

𝑞𝑢
, … ,

𝑝𝑟
𝑞𝑢
) tends to (𝛼1, …𝛼𝑟) and since none of the functions of 𝛼𝑖 are zero,

there exists an infinite subset 2 of 1 such that for any tuple (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 2 satisfying
𝑝𝑖 ≠ 0 for all integers 𝑖 = 1, 2, … , 𝑟.
Let {𝑎1, 𝑎2, … , 𝑎𝑚} be the maximal ℚ-linearly independent subset of the set {𝑎1, … , 𝑎𝑟}, if

necessary, by renaming the indices. Then we can write

𝑎𝑚+𝑖 = 𝑐𝑖1𝑎1 +⋯ + 𝑐𝑖𝑚𝑎𝑚, where 𝑐𝑖𝑚 ∈ ℚ, for all 1 ⩽ 𝑖 ⩽ 𝑟 − 𝑚.

Thus, by substituting the values of 𝑎𝑚+𝑖 in (2.14), we get

𝑎1𝑝1 +⋯ + 𝑎𝑚𝑝𝑚 + (𝑐11𝑎1 +⋯ + 𝑐1𝑚𝑎𝑚)𝑝𝑚+1⋯ + (𝑐(𝑟−𝑚)1𝑎1 +⋯ + 𝑐(𝑟−𝑚)𝑚𝑎𝑚)𝑝𝑟 = 0.

We rewrite this equality in the following form:

𝑎1(𝑝1 + 𝑐11𝑝𝑚+1 +⋯ + 𝑐(𝑟−𝑚)1𝑝𝑟) +⋯ + 𝑎𝑚(𝑝𝑚 + 𝑐1𝑚𝑝𝑚+1 +⋯ + 𝑐(𝑟−𝑚)𝑚𝑝𝑟) = 0. (2.16)

Since 𝑎1, … , 𝑎𝑚 are ℚ-linearly independent, by (2.16), we obtain

𝑝1 + 𝑐11𝑝𝑚+1 +⋯ + 𝑐(𝑟−𝑚)1𝑝𝑟 = 0 = ⋯ = 𝑝𝑚 + 𝑐1𝑚𝑝𝑚+1 +⋯ + 𝑐(𝑟−𝑚)𝑚𝑝𝑟. (2.17)

From (2.17), we get a relation of the form (2.14) with rational coefficients, which is again not
possible as observed earlier. Thus this proves Claim 1.

Claim 2. There exists a non-trivial relation as in (2.13) with 𝑎𝑖 = 0 for all 𝑖 = 1, 2, … , 𝑟 − 1.

We first prove that there exists a relation as in (2.13) with 𝑎1 = 0. If possible, we assume that
𝑎1 ≠ 0. Then by rewriting the relation (2.13) we obtain

𝑝1 = −
𝑎2
𝑎1
𝑝2 −⋯ −

𝑎𝑟
𝑎1
𝑝𝑟 −

𝑏1
𝑎1
𝑞𝜎1(𝑢) −⋯ −

𝑏𝑑
𝑎1
𝑞𝜎𝑑(𝑢). (2.18)

Case 1. 𝜎𝑗(
𝑏1
𝑎1
) ≠

𝑏𝑗

𝑎1
for some integer 𝑗 satisfying 2 ⩽ 𝑗 ⩽ 𝑑.

By applying the automorphism 𝜎𝑗 on both sides of (2.18), we get

𝑝1 = −𝜎𝑗

(
𝑎2
𝑎1

)
𝑝2 −⋯ − 𝜎𝑗

(
𝑎𝑟
𝑎1

)
𝑝𝑟 − 𝜎𝑗

(
𝑏1
𝑎1

)
𝑞𝜎𝑗◦𝜎1(𝑢) −⋯ − 𝜎𝑗

(
𝑏𝑑
𝑎1

)
𝑞𝜎𝑗◦𝜎𝑑(𝑢).

By subtracting this relation with (2.18), we get a relation involving the terms only with 𝑝2, …, 𝑝𝑟,
𝜎1(𝑢), …, 𝜎𝑑(𝑢). Such a relation is non-trivial, as the coefficient of 𝜎𝑗(𝑢) is 𝜎𝑗(𝑏1∕𝑎1) −

𝑏𝑗

𝑎1
≠ 0.

Case 2. 𝑏𝑗
𝑎1

= 𝜎𝑗(
𝑏1
𝑎1
) for all integers 𝑗 = 2, 3, … , 𝑑.
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Note that 𝑏1 ≠ 0. If not, then 0 = 𝜎𝑗(𝑏1∕𝑎1) = 𝑏𝑗∕𝑎1 for every integer 𝑗 and hence 𝑏𝑖 = 0 for all
integers 𝑖, which contradicts Claim 1. By putting 𝜆 = −𝑏1∕𝑎1, we rewrite (2.18) as

𝑝1 = −
𝑎2
𝑎1
𝑝2 −⋯ −

𝑎𝑟
𝑎1
𝑝𝑟 + 𝑞(𝜎1(𝜆)𝜎1(𝑢) +⋯ + 𝜎𝑑(𝜆)𝜎𝑑(𝑢)). (2.19)

Clearly 𝑎𝑖, 𝑏𝑗 ∈ 𝐾, but it is not necessary that 𝜆 belongs to 𝑘. If 𝜆 ∉ 𝑘, then there exists an automor-
phism 𝜏 ∈  with 𝜏(𝜆) ≠ 𝜆. By applying the automorphism 𝜏 on both sides of (2.19) and subtract
with (2.19) to eliminate 𝑝1, we obtain

𝑝2(𝜏(𝑎2∕𝑎1) − 𝑎2∕𝑎1) +⋯ + 𝑝𝑟(𝜏(𝑎𝑟∕𝑎1) − 𝑎𝑟∕𝑎1) + (𝜆 − 𝜏(𝜆))𝜎1(𝑢)

+

𝑑∑
𝑖=2

(𝜎𝑖(𝜆)𝜎𝑖(𝑢) − 𝜏◦𝜎𝑖(𝑢)) = 0.

Note that 𝜏◦𝜎𝑗 coincides on 𝑘 with 𝜎𝑖 for some integer 𝑖 and since 𝜏 ∈  and 𝜎2, … , 𝜎𝑑 ∉ ,
none of the 𝜏◦𝜎𝑗 with 𝑗 ⩾ 2 belongs in . Hence the above relation can be written as a linear
combination of 𝑝2, … , 𝑝𝑟 and 𝜎𝑖(𝑢) with the property that the coefficient of 𝜎1(𝑢) is 𝜆 − 𝜏(𝜆) ≠ 0.
Therefore, we obtain a non-trivial linear relation among the 𝑝2, … , 𝑝𝑟 and 𝜎𝑖(𝑢).
If 𝜆 ∈ 𝑘, then by adding −𝛼1𝑞𝑢 on both sides of the equality (2.19), we get

|𝑝1 − 𝛼1𝑞𝑢| = ||||−𝑎2
𝑎1
𝑝2 −⋯ −

𝑎𝑟
𝑎1
𝑝𝑟 + (𝜆 − 𝛼1)𝑞𝜎1(𝑢) + 𝑞𝜎2(𝜆)𝜎2(𝑢) +⋯ + 𝑞𝜎𝑑(𝜆)𝜎𝑑(𝑢)

||||.
Then from (2.2), we get

||||−𝑎2
𝑎1
𝑝2 −⋯ −

𝑎𝑟
𝑎1
𝑝𝑟 + (𝜆 − 𝛼1)𝑞𝜎1(𝑢) + 𝑞𝜎2(𝜆)𝜎2(𝑢) +⋯ + 𝑞𝜎𝑑(𝜆)𝜎𝑑(𝑢)

|||| < 1

𝐻𝜀(𝑢)𝑞
𝑑
𝑟
+𝜀
.

(2.20)

Then just like the inequality in (2.9), we have the following important observation:

𝑑∏
𝑗=1

∏
𝑣∈𝑆𝑗

|||||−𝜌𝑣
(
𝑎2
𝑎1

)
𝑝2 −⋯ − 𝜌𝑣

(
𝑎𝑟
𝑎1

)
𝑝𝑟

+ (𝜌𝑣(𝜆) − 𝜌𝑣(𝛼1))𝑞(𝜌𝑣◦𝜎1)(𝑢) +⋯ + 𝑞(𝜌𝑣◦𝜎𝑑)(𝜆)(𝜌𝑣◦𝜎𝑑)(𝑢)
|||||𝑣

=
||||−𝑎2

𝑎1
𝑝2 −⋯ −

𝑎𝑟
𝑎1
𝑝𝑟 + (𝜆 − 𝛼1)𝑞𝜎1(𝑢) + 𝑞𝜎2(𝜆)𝜎2(𝑢) +⋯ + 𝑞𝜎𝑑(𝜆)𝜎𝑑(𝑢)

||||.
For each 𝑣 ∈ 𝑀∞ and 𝑗 = 1,… , 𝑑, we define 𝑣(𝑗) such that 𝜌𝑣◦𝜎𝑗 = 𝜎𝑣(𝑗) on the field 𝑘,
where {𝑣(1), … , 𝑣(𝑑)} is a permutation of {1, … , 𝑑}. Hence the above relation can be written as
a linear combination of 𝑝2, … , 𝑝𝑟 and 𝜎𝑣(1), … , 𝜎𝑣(𝑑). Therefore there exist algebraic numbers
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𝑐𝑣(1), … , 𝑐𝑣(𝑑) ∈ 𝐾, not all zero, such that

𝑑∏
𝑗=1

∏
𝑣∈𝑆𝑗

|||||−𝜌𝑣
(
𝑎2
𝑎1

)
𝑝2 −⋯ − 𝜌𝑣

(
𝑎𝑟
𝑎1

)
𝑝𝑟

+ (𝜌𝑣(𝜆) − 𝜌𝑣(𝛼1))𝑞(𝜌𝑣◦𝜎1)(𝑢) +⋯ + 𝑞(𝜌𝑣◦𝜎𝑑)(𝜆)(𝜌𝑣◦𝜎𝑑)(𝑢)
|||||𝑣

=

𝑑∏
𝑗=1

∏
𝑣∈𝑆𝑗

|||||−𝜌𝑣
(
𝑎2
𝑎1

)
𝑝2 −⋯ − 𝜌𝑣

(
𝑎𝑟
𝑎1

)
𝑝𝑟 + 𝑐𝑣(1)𝑞𝜎𝑣(1)(𝑢) +⋯ + 𝑐𝑣(𝑑)𝑞𝜎𝑣(𝑑)(𝑢)

|||||𝑣.
Hence, by (2.20), we have

𝑑∏
𝑗=1

∏
𝑣∈𝑆𝑗

|||||−𝜌𝑣
(
𝑎2
𝑎1

)
𝑝2 −⋯ − 𝜌𝑣

(
𝑎𝑟
𝑎1

)
𝑝𝑟 + 𝑐𝑣(1)𝑞𝜎𝑣(1)(𝑢) +⋯ + 𝑐𝑣(𝑑)𝑞𝜎𝑣(𝑑)(𝑢)

|||||𝑣 < 1

𝐻𝜖(𝑢)𝑞
𝑑
𝑟
+𝜖
.

(2.21)

Since the inequality (2.21) holds true for all the tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 1, we can apply
Theorem 2.1 suitably.
For each 𝑣 ∈ 𝑀∞, since 𝑐𝑣(1), … , 𝑐𝑣(𝑑) ∈ 𝐾, not all zero, we let 𝑘𝑣 ∈ {𝑣(1), … , 𝑣(𝑑)} such that

𝑐𝑘𝑣 ≠ 0. Now, for each 𝑣 ∈ 𝑆, we define 𝑟 + 𝑑 − 1 linearly independent linear forms in 𝑟 + 𝑑 − 1

variables as follows: for each 𝑗 = 1, 2, … , 𝑑 and for each 𝑣 ∈ 𝑆𝑗 , we define

𝐿𝑣,𝑖(𝑥1, … , 𝑥𝑟, … , 𝑥𝑟+𝑑−1) = 𝑥𝑖 − 𝜌𝑣(𝛼𝑖)𝑥𝑟+𝑗−1

for each 𝑖 = 1, 2, … , 𝑟 − 1;

𝐿𝑣,𝑟−1+𝑘𝑣 (𝑥1, … , 𝑥𝑟, … , 𝑥𝑟+𝑑−1)

= −𝜌𝑣

(
𝑎2
𝑎1

)
𝑥1 −⋯ − 𝜌𝑣

(
𝑎𝑟
𝑎1

)
𝑥𝑟−1 + 𝑐𝑣(1)𝑥𝑟−1+𝑣(1) +⋯ + 𝑐𝑣(𝑑)𝑥𝑟−1+𝑣(𝑑);

for each 𝑟 ⩽ 𝑚 ≠ 𝑟 − 1 + 𝑘𝑣 ⩽ 𝑟 + 𝑑 − 1, we define

𝐿𝑣,𝑚(𝑥1, … , 𝑥𝑟, … , 𝑥𝑟+𝑑−1) = 𝑥𝑚;

and for each 𝑣 ∈ 𝑆∖𝑀∞ and for each integer 𝑖 in the range 1 ⩽ 𝑖 ⩽ 𝑟 + 𝑑 − 1, we consider

𝐿𝑣,𝑖(𝑥1, … , 𝑥𝑟, … , 𝑥𝑟+𝑑−1) = 𝑥𝑖.

Since 𝑐𝑘𝑣 ≠ 0, it follows that for each 𝑣 ∈ 𝑆, the linear forms 𝐿𝑣,1, … , 𝐿𝑣,𝑟+𝑑−1 are linearly inde-
pendent.
Write the special points in 𝐾𝑟+𝑑−1 as

𝐗 = (𝑝2, … , 𝑝𝑟, 𝑞𝜎1(𝑢), … , 𝑞𝜎𝑑(𝑢)) ∈ 𝐾𝑟+𝑑−1.
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Then, by Theorem 2.1, there exists a proper subspace of 𝐾𝑟+𝑑−1 which contain infinitely many
points 𝐗 = (𝑝2, … , 𝑝𝑟, 𝑞𝜎1(𝑢), … , 𝑞𝜎𝑑(𝑢)). Hence, we get a non-trivial relation

𝑎′2𝑝2 +⋯ + 𝑎′𝑟𝑝𝑟 + 𝑏′1𝑞𝜎1(𝑢) +⋯ + 𝑏′
𝑑
𝑞𝜎𝑑(𝑢) = 0, 𝑎′

𝑖
, 𝑏′

𝑖
∈ 𝐾 (2.22)

holds true for infinitely many tuples (𝑝2, … , 𝑝𝑟, 𝑞𝜎1(𝑢), … , 𝑞𝜎𝑑(𝑢)). By Claim 1, we can always
assume that not all functions of 𝑏𝑖 are zero. Thus, we obtain a non-trivial relation in 𝑟 + 𝑑 −

1 tuples.
By continuing this process, inductively, we can get a non-trivial relation with 𝑎𝑖 = 0 for all

integers 𝑖 = 1, 2, … , 𝑟 − 1. That is,

𝑎′′𝑟 𝑝𝑟 + 𝑏′′1 𝑞𝜎1(𝑢) +⋯ + 𝑏′′
𝑑
𝑞𝜎𝑑(𝑢) = 0, 𝑎′′𝑟 , 𝑏′′

𝑖
∈ 𝐾

holds true for infinitelymany tuples (𝑝𝑟, 𝑞𝜎1(𝑢), … , 𝑞𝜎𝑑(𝑢))where functions of 𝑏′′𝑖 are not all zero.
This proves Claim 2. We then conclude exactly as in [3, Lemma 3] to complete the proof of this
lemma. □

Lemma 2.5. Let𝐾 be a number field of degree 𝑛 which is Galois overℚ and 𝑆 be a finite set of places
on 𝐾 which contains all the archimedean places. Let 𝑘 ⊂ 𝐾 be a subfield of degree 𝑑 overℚ for some
integer 𝑑 ⩾ 1 and 𝛼1, … , 𝛼𝑑 be any elements of 𝐾. For a given real number 𝜖 > 0, let

 =

{
(𝑢, 𝑞, 𝑝) ∈ (×

𝑆
∩ 𝑘) × ℤ2 ∶ 0 < |𝛼1𝑞𝑢1 +⋯ + 𝛼𝑑𝑞𝑢𝑑 − 𝑝| < 1

𝐻𝜀(𝑢1)|𝑞|𝑑+𝜀
}
, (2.23)

where 𝑢 = 𝑢1 and 𝑢2, … , 𝑢𝑑 are the other conjugates of 𝑢 and for each triple (𝑢, 𝑞, 𝑝) ∈ , there exists
an integer 𝑖 ∈ {1, … , 𝑑} such that |𝑞𝛼𝑖𝑢𝑖| > 1 and 𝑞𝛼𝑖𝑢𝑖 is not a pseudo-Pisot number. If is infinite,
then there exist a proper subfield 𝑘′ ⊂ 𝑘, a non-zero element 𝑢′ ∈ 𝑘 and an infinite subset ′ ⊂ 

such that for all triples (𝑢, 𝑞, 𝑝) ∈ ′, we have 𝑢∕𝑢′ ∈ 𝑘′.

Proof. Note that 𝑑 ⩾ 2 because ℚ does not admit any proper subfield in it. Let ∶= Gal(𝐾∕𝑘) ⊂
Gal(𝐾∕ℚ) =  be the subgroup of the Galois group  fixing 𝑘. Since 𝐾 is Galois over ℚ, we have
that 𝐾 is Galois over 𝑘 and |∕| = 𝑑. Therefore, among the 𝑛 embeddings on 𝐾, there are 𝑑
embeddings 𝜎1, … , 𝜎𝑑 (with 𝜎1 is the identity) which are the complete set of representatives of the
left cosets of in  and more precisely, we have

∕ ∶= {, 𝜎2, … , 𝜎𝑑}.

For each 𝜌 ∈ Gal(𝐾∕ℚ) and for any triple (𝑢, 𝑞, 𝑝) ∈ , with the rule in (2.6), we have

|𝛼1𝑞𝑢1 +⋯ + 𝛼𝑑𝑞𝑢𝑑 − 𝑝|𝑑(𝜌)∕[𝐾∶ℚ] = |𝜌(𝛼1)𝜌(𝑞𝑢1) +⋯ + 𝜌(𝛼𝑑)𝜌(𝑞𝑢𝑑) − 𝜌(𝑝)|𝜌
= |𝜌(𝛼1)𝑞𝜌(𝑢1) +⋯ + 𝜌(𝛼𝑑)𝑞𝜌(𝑢𝑑) − 𝑝|𝜌. (2.24)

For each 𝑣 ∈ 𝑀∞, let 𝜌𝑣 be an automorphism defining the valuation 𝑣, according to (2.6): |𝑥|𝑣 ∶=|𝑥|𝜌𝑣 . Then the set {𝜌𝑣 ∶ 𝑣 ∈ 𝑀∞} represents the left cosets of the subgroup generated by the com-
plex conjugation in . For 𝑗 = 1, 2, … , 𝑑, let 𝑆𝑗 be the subset of𝑀∞ formed by those valuation 𝑣
such that 𝜌𝑣|𝑘 = 𝜎𝑗 ∶ 𝑘 → ℂ. Note that 𝑆1 ∪ … ∪ 𝑆𝑑 = 𝑀∞. Thus, we have𝑀∞ = {𝜌𝑣 ∶ 𝑣 ∈ 𝑀∞}
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and for each triple (𝑢, 𝑞, 𝑝) ∈ , we obtain∏
𝑣∈𝑀∞

|𝜌𝑣(𝛼1)𝑞𝜌𝑣(𝑢1) +⋯ + 𝜌𝑣(𝛼𝑑)𝑞𝜌𝑣(𝑢𝑑) − 𝑝|𝑣
=

𝑑∏
𝑗=1

∏
𝑣∈𝑆𝑗

|𝜌𝑣(𝛼1)𝑞𝜎𝑗(𝑢1) +⋯ + 𝜌𝑣(𝛼𝑑)𝑞𝜎𝑗(𝑢𝑑) − 𝑝|𝑣.
By (2.24), we see that∏
𝑣∈𝑀∞

|𝜌𝑣(𝛼1)𝑞𝜌𝑣(𝑢1) +⋯ + 𝜌𝑣(𝛼𝑑)𝑞𝜌𝑣(𝑢𝑑) − 𝑝|𝑣 = ∏
𝑣∈𝑀∞

|𝛼1𝑞𝑢1 +⋯ + 𝛼𝑑𝑞𝑢𝑑 − 𝑝|𝑑(𝜌)∕[𝐾∶ℚ]
= |𝛼1𝑞𝑢1 +⋯ + 𝛼𝑑𝑞𝑢𝑑 − 𝑝|∑𝑣∈𝑀∞

𝑑(𝜌𝑣)∕[𝐾∶ℚ].

Then, by the formula
∑

𝑣∈𝑀∞
𝑑(𝜌𝑣) = [𝐾 ∶ ℚ], it follows that

𝑑∏
𝑗=1

∏
𝑣∈𝑆𝑗

|𝜌𝑣(𝛼1)𝑞𝜎𝑗(𝑢1) +⋯ + 𝜌𝑣(𝛼𝑑)𝑞𝜎𝑗(𝑢𝑑) − 𝑝|𝑣 = |𝛼1𝑞𝑢1 +⋯ + 𝛼𝑑𝑞𝑢𝑑 − 𝑝|. (2.25)

Now, for each 𝑣 ∈ 𝑆, we define 𝑑 + 1 linearly independent linear forms in 𝑑 + 1 variables as
follows: For each 𝑗 = 1, 2, … , 𝑑 and for an archimedean place 𝑣 ∈ 𝑆𝑗 , we define

𝐿𝑣,0(𝑥0, … , 𝑥𝑑) = −𝑥0 + 𝜌𝑣(𝛼1)𝑥1 +⋯ + 𝜌𝑣(𝛼𝑑)𝑥𝑑

and for any integer 𝑖 satisfying 0 < 𝑖 ⩽ 𝑑, we define

𝐿𝑣,𝑖(𝑥0, … , 𝑥𝑑) = 𝑥𝑖.

Also, for any 𝑣 ∈ 𝑆∖𝑀∞ and for any integer 𝑖 satisfying 0 ⩽ 𝑖 ⩽ 𝑑, we put

𝐿𝑣,𝑖(𝑥0, … , 𝑥𝑑) = 𝑥𝑖.

Clearly, these linear forms are ℚ-linearly independent. Let the special points 𝐗 ∈ 𝐾𝑑+1 be of the
form

𝐗 = (𝑝, 𝑞𝜎1(𝑢), … , 𝑞𝜎𝑑(𝑢)) ∈ 𝐾𝑑+1.

In order to apply Theorem 2.1, we need to estimate the following quantity:

∏
𝑣∈𝑆

𝑑∏
𝑗=0

|𝐿𝑣,𝑗(𝐗)|𝑣‖𝐗‖𝑣 . (2.26)

Using the fact that 𝐿𝑣,𝑗(𝐗) = 𝑞𝜎𝑗(𝑢), for all 1 ⩽ 𝑗 ⩽ 𝑑 and for all 𝑣, we obtain

∏
𝑣∈𝑆

𝑑∏
𝑗=1

|𝐿𝑣,𝑗(𝐗)|𝑣 = ∏
𝑣∈𝑆

𝑑∏
𝑗=1

|𝑞𝜎𝑗(𝑢)|𝑣 = ∏
𝑣∈𝑆

𝑑∏
𝑗=1

|𝑞|𝑣 𝑑∏
𝑗=1

∏
𝑣∈𝑆

|𝜎𝑗(𝑢)|𝑣.
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Since 𝜎𝑗(𝑢) are 𝑆-units, then by the product formula we obtain∏
𝑣∈𝑆

|𝜎𝑗(𝑢)|𝑣 = ∏
𝑣∈𝑀𝐾

|𝜎𝑗(𝑢)|𝑣 = 1.

Consequently, from the above equality, we get

∏
𝑣∈𝑆

𝑑∏
𝑗=1

|𝐿𝑣,𝑗(𝐗)|𝑣 = ∏
𝑣∈𝑆

𝑑∏
𝑗=1

|𝑞|𝑣 ⩽ ∏
𝑣∈𝑀∞

𝑑∏
𝑗=1

|𝑞|𝑣 = 𝑑∏
𝑗=1

|𝑞|∑𝑣∈𝑀∞
𝑑(𝜌𝑣)∕[𝐾∶ℚ].

Then, from the formula
∑

𝑣∈𝑀∞
𝑑(𝜌𝑣) = [𝐾 ∶ ℚ], we get

∏
𝑣∈𝑆

𝑑∏
𝑗=1

|𝐿𝑣,𝑗(𝐗)|𝑣 ⩽ ∏
𝑣∈𝑀∞

𝑑∏
𝑗=1

|𝑞|𝑣 = 𝑑∏
𝑗=1

|𝑞|∑𝑣∈𝑀∞
𝑑(𝜌𝑣)∕[𝐾∶ℚ] = |𝑞|𝑑. (2.27)

Now we estimate the product of the denominators in (2.26) as follows: Consider

∏
𝑣∈𝑆

𝑑∏
𝑗=0

‖𝐗‖𝑣 ⩾ ∏
𝑣∈𝑀𝐾

𝑑∏
𝑗=0

‖𝐗‖𝑣 = 𝑑∏
𝑗=0

( ∏
𝑣∈𝑀𝐾

‖𝐗‖𝑣
)
,

since ||𝐗||𝑣 ⩽ 1 for all 𝑣 ∉ 𝑆. Thus, by the definition of𝐻(𝐗), we conclude that

∏
𝑣∈𝑆

𝑑∏
𝑗=0

‖𝐗‖𝑣 ⩾ 𝑑∏
𝑗=0

𝐻(𝐗). (2.28)

By (2.25), (2.27), and (2.28), we get

∏
𝑣∈𝑆

𝑑∏
𝑗=0

|𝐿𝑣,𝑗(𝐗)|𝑣||𝐗||𝑣 ⩽
1

𝐻𝑑+1(𝐗)
|𝑞|𝑑|𝛼1𝑞𝑢1 +⋯ + 𝛼𝑑𝑞𝑢𝑑 − 𝑝|.

Therefore, by (2.23), we get

∏
𝑣∈𝑆

𝑑∏
𝑗=0

|𝐿𝑣,𝑗(𝐗)|𝑣||𝐗||𝑣 ⩽
1

𝐻𝑑+1(𝐗)
|𝑞|𝑑 1

𝐻𝜖(𝑢)

1|𝑞|𝑑+𝜀 = 1

𝐻𝑑+1(𝐗)

1

(|𝑞|𝐻(𝑢))𝜀 .
First note that

|𝑝| ⩽ |𝛼1𝑞𝑢1 +⋯ + 𝛼𝑑𝑞𝑢𝑑| + 1 ⩽ |𝑞||𝛼| 𝐻(𝑢)𝑑 𝑑,
where |𝛼| = max{|𝛼𝑖| ∶ 𝑖 = 1, 2, … , 𝑑} and every conjugate of 𝑢 has absolute value bounded by its
Weil height power 𝑑. Hence, we get

|𝑝| ⩽ 𝐶(𝛼, 𝑑)|𝑞|𝐻𝑑(𝑢),
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where 𝐶(𝛼, 𝑑) is a positive constant depends only on 𝛼 and 𝑑. Since𝐻(𝐗) ⩽ |𝑞||𝑝|𝐻(𝑢)𝑑, we get
𝐻(𝐗) ⩽ 𝐶′|𝑞|2𝐻(𝑢)2𝑑 ⩽ 𝐶′(|𝑞|𝐻(𝑢))2𝑑 ⟹ |𝑞|𝐻(𝑢) ⩾ 𝐶′′𝐻(𝐗)1∕(2𝑑).

where 𝐶′ and 𝐶′′ are positive constants that depend only on 𝛼 and 𝑑 and hence the last inequality
becomes

∏
𝑣∈𝑆

𝑑∏
𝑗=0

|𝐿𝑣,𝑗(𝐗)|𝑣||𝐗||𝑣 ⩽
1

𝐻(𝐗)𝑑+1+𝜀′
,

for some 𝜖′ > 0 which holds for infinitely many points 𝐗. Therefore, by Theorem 2.1, there exists
a proper subspace of 𝐾𝑑+1 which contain infinitely many points 𝐗 = (𝑝, 𝑞𝜎1(𝑢), … , 𝑞𝜎𝑑(𝑢)). It
means that we obtain a non-trivial relation

𝑎0𝑝 + 𝑎1𝑞𝜎1(𝑢) +⋯ + 𝑎𝑑𝑞𝜎𝑑(𝑢) = 0, 𝑎𝑖 ∈ 𝐾, (2.29)

satisfied by all the triples (𝑢, 𝑞, 𝑝) ∈ 1 ⊂  for some infinite subset 1 of . Also, for each triple
(𝑢, 𝑞, 𝑝) ∈ 1, without loss of generality, we can assume that |𝑞𝛼1𝑢| > 1 and 𝑞𝛼1𝑢 is not a pseudo-
Pisot number.
Since not all functions of 𝑎𝑖 are 0, clearly, we can conclude that at least one among 𝑎1, … , 𝑎𝑑 is

non-zero. Now, we have the following claim.

Claim 1. There exists a non-trivial relation as in (2.29) with 𝑎0 = 0.

Suppose that 𝑎0 ≠ 0. Then we rewrite the relation (2.29) as

𝑝 = −
𝑎1
𝑎0
𝑞𝜎1(𝑢) −⋯ −

𝑎𝑑
𝑎0

𝑞𝜎𝑑(𝑢). (2.30)

By considering the case when 𝜎𝑗(𝑎1∕𝑎0) ≠ 𝑎𝑗∕𝑎0, for some index 𝑗 ∈ {2, … , 𝑑}, or the case when
𝑎𝑗∕𝑎0 = 𝜎𝑗(𝑎1∕𝑎0) for all 𝑗, we can conclude that all the coefficients 𝑎𝑗∕𝑎0 are non-zero. Former
case can be handled as in Case 1 in Claim 2 of Lemma 2.4. We deal with the latter case.
Put 𝜆 = −𝑎1∕𝑎0. With these notations, we can re-write (2.30) as follows:

𝑝 = 𝑞(𝜎1(𝜆)𝜎1(𝑢) +⋯ + 𝜎𝑑(𝜆)𝜎𝑑(𝑢)).

In the proof of Claim 2 of Lemma 2.4, we had the two possibilities, namely, either 𝜆 ∈ 𝑘 or 𝜆 ∉ 𝑘.
Here also, the proof for the case 𝜆 ∉ 𝑘 is similar to that of the proof of Claim 2 of Lemma 2.4.
Therefore we consider the case 𝜆 ∈ 𝑘. By adding −𝛼1𝑞𝜎1(𝑢) −⋯ − 𝛼𝑑𝑞𝜎𝑑(𝑢) to both sides in the
above equality, we get

|𝑝 − (𝛼1𝑞𝜎1(𝑢) +⋯ + 𝛼𝑑𝑞𝜎𝑑(𝑢))| = |𝑝 − (𝛼1𝑞𝑢1 +⋯ + 𝛼𝑑𝑞𝑢𝑑)|
= |(𝜆 − 𝛼1)𝑞𝜎1(𝑢) + (𝜎2(𝜆) − 𝛼2)𝑞𝜎2(𝑢) +⋯ + (𝜎𝑑(𝜆) − 𝛼𝑑)𝑞𝜎𝑑(𝑢)|.

Therefore by (2.23), we get

0 < |(𝜆 − 𝛼1)𝑞𝜎1(𝑢) + (𝜎2(𝜆) − 𝛼2)𝑞𝜎2(𝑢) +⋯ + (𝜎𝑑(𝜆) − 𝛼𝑑)𝑞𝜎𝑑(𝑢)| < 1|𝑞|𝑑+𝜀 1

𝐻𝜀(𝑢)
.
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Then dividing by 𝑞 on both sides to get

0 < |(𝜆 − 𝛼1)𝜎1(𝑢) + (𝜎2(𝜆) − 𝛼2)𝜎2(𝑢) +⋯ + (𝜎𝑑(𝜆) − 𝛼𝑑)𝜎𝑑(𝑢)|
<

1|𝑞|𝑑+1+𝜀 1

𝐻𝜀(𝑢)
⩽

1|𝑞|1+𝜀 1

𝐻𝜀(𝑢)
. (2.31)

By putting 𝜎𝑖(𝜆) − 𝛼𝑖 = 𝛽𝑖 for all integers 𝑖, we note that not all functions of 𝛽𝑖 are zero. Then by
re-writing (2.31), we get

|𝛽1𝜎1(𝑢) +⋯ + 𝛽𝑑𝜎𝑑(𝑢)| < 1|𝑞|1+𝜀 1

𝐻𝜀(𝑢)
(2.32)

holds true for all triples (𝑢, 𝑞, 𝑝) ∈ 1. In order to apply Lemma 2.1, we distinguish two cases,
namely, 𝛽1 = 0 and 𝛽1 ≠ 0 as follows.
Suppose 𝛽1 = 0. In this case, 𝜎1(𝜆) = 𝛼1 and hence the algebraic number 𝑞𝛼1𝑢 = 𝑞𝜆𝑢. Since

𝛼1𝑞𝑢 is not a pseudo-Pisot number, we get that 𝑞𝜆𝑢 is not a pseudo-Pisot number. Therefore,

max{|𝜎2(𝑞𝜆𝑢)|, … , |𝜎𝑑(𝑞𝜆𝑢)|} ⩾ 1.

This implies that

max{|𝜎2(𝑢)|, … , |𝜎𝑑(𝑢)|} ⩾ 1|𝑞| max{|𝜎2(𝜆)|, … , |𝜎𝑑(𝜆)|}−1. (2.33)

Since not all functions of 𝛽𝑖 are zero, let 𝛽𝑖1 , … , 𝛽𝑖𝑟 be non-zero elements among 𝛽2, … , 𝛽𝑑 and by
(2.32), we get

|𝛽𝑖1𝜎𝑖1 (𝑢) +⋯ + 𝛽𝑖𝑟𝜎𝑖𝑟 (𝑢)| < 1|𝑞|1+𝜖 1

𝐻𝜀(𝑢)
. (2.34)

holds true for all triples (𝑢, 𝑞, 𝑝) ∈ 1. Thus by (2.33) and (2.34), for all triples (𝑢, 𝑞, 𝑝) ∈ 1, the
inequality

|𝛽𝑖1𝜎𝑖1(𝑢) +⋯ + 𝛽𝑖𝑟𝜎𝑖𝑟 (𝑢)| < max{|𝜎1(𝑢)|, … , |𝜎𝑑(𝑢)|}𝐻−𝜀(𝑢)

holds true. Therefore by Lemma 2.1, with the distinguished place 𝜔 corresponding to the identity
embedding, 𝑛 = 𝑖𝑟 and 𝜆𝑖𝑗 = 𝛽𝑖𝑗 for 1 ⩽ 𝑗 ⩽ 𝑟, we get an infinite subset 2 ⊂ 1 such that for all
triples (𝑢, 𝑞, 𝑝) ∈ 2 there exists a non-trivial relation of the form

𝑠1𝑞𝜎1(𝑢) +⋯ + 𝑠𝑑𝑞𝜎𝑑(𝑢) = 0

holds true for some 𝑠1, … , 𝑠𝑑 ∈ 𝐾. Therefore, by Lemma 2.2, there exist an infinite subset3 of2

and a non-trivial relation of the form 𝑎𝜎𝑗(𝑢) + 𝑏𝜎𝑖(𝑢) = 0 for some distinct integers 𝑖 and 𝑗 and
𝑎, 𝑏 ∈ 𝐾× satisfied by all the triples (𝑢, 𝑞, 𝑝) ∈ 3. Hence,

−𝜎−1
𝑖

(
𝑎

𝑏

)
(𝜎−1

𝑖
◦𝜎𝑗)(𝑢) = 𝑢
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is true for all triples (𝑢, 𝑞, 𝑝) ∈ 3. Therefore, for any two triples (𝑢′, 𝑞′, 𝑝′), (𝑢′′, 𝑞′′, 𝑝′′) ∈3, we
have

𝜎−1
𝑖
◦𝜎𝑗(𝑢

′∕𝑢′′) = 𝑢′∕𝑢′′.

That is, the element 𝑢′∕𝑢′′ is fixed by the automorphism 𝜎−1
𝑖
◦𝜎𝑗 ∉ , and hence 𝑢′∕𝑢′′ belongs

to the proper subfield 𝑘′ of 𝑘 which is fixed by the subgroup generated by  and 𝜎−1
𝑖
◦𝜎𝑗 . To

finish the proof of this lemma, fix a non-zero 𝑢′ ∈ 𝑘 with (𝑢′, 𝑞, 𝑝) ∈ 3 and take any other triple
(𝑢, 𝑞, 𝑝) ∈ 3, then we can get 𝑢∕𝑢′ ∈ 𝑘′.
Nowwe assume that𝛽1 ≠ 0. In this case, the term𝛽1𝜎1(𝑢) does appear in (2.32). Since |𝛼1𝑞𝑢1| =|𝛼1𝑞𝑢| > 1, we see that

max{|𝑢1|, … , |𝑢𝑑|} = {|𝜎1(𝑢)|, … , |𝜎𝑑(𝑢)|} ⩾ |𝑢| > |𝛼1|−1|𝑞|−1
holds true for all pairs (𝑢, 𝑞)where the triples (𝑢, 𝑞, 𝑝) satisfying (2.32). Thus by (2.32), we deduce
that

0 < |𝛽1𝜎1(𝑢) +⋯ + 𝛽𝑑𝜎𝑑(𝑢)| < 1|𝑞|1+𝜀 1

𝐻𝜀(𝑢)
<

|𝛼1|max{|𝜎1(𝑢)|, … , |𝜎𝑑(𝑢)|}|𝑞|𝜖𝐻𝜖(𝑢)
.

By applying Lemma 2.1 with the distinguished place 𝜔 as in the case 𝛽1 = 0 and with the inputs
𝑛 = 𝑑, 𝜆𝑖 = 𝛽𝑖 for each integer 𝑖 = 1, … , 𝑑, we conclude the same as in the case when 𝛽1 = 0. This
completes the proof of the lemma. □

3 PROOF OF THEOREMS 1.1 AND 1.2 AND COROLLARY 1.1

Proof of Theorem 1.1. Since Γ is finitely generated multiplicative subgroup of ℚ
×
, by enlarging Γ,

if necessary, we can reduce to the situation where Γ ⊂ ℚ
×
is a group of 𝑆-units, namely,

Γ = ×
𝑆
=

{
𝑢 ∈ 𝐾 ∶

∏
𝑣∈𝑆

|𝑢|𝑣 = 1

}

of a suitable number field 𝐾 which is Galois over ℚ, with 𝛼1, … , 𝛼𝑟 in 𝐾 and for a suitable finite
set of places 𝑆 of 𝐾 which contains all the archimedean places. Also, note that 𝑆 is stable under
Galois conjugation. □

Suppose that the assertion is not true. That is, the subset  (which is defined in (1.1)) is an
infinite set. Then by inductively, we construct sequences {𝛼(1)

𝑖
}𝑖⩾0, … , {𝛼

(𝑟)
𝑖
}𝑖⩾0, whose elements are

in 𝐾, with the property that for any integer 𝑛 ⩾ 0, the numbers (𝛼(1)
0

⋯𝛼
(1)
𝑛 ), …, (𝛼(𝑟)

0
⋯𝛼

(𝑟)
𝑛 ) are

ℚ-linearly independent, an infinite decreasing chain 𝑖 of an infinite subset of  and an infinite
strictly decreasing chain 𝑘𝑖 of subfields of 𝐾 satisfying the following:

For each integer 𝑛 ⩾ 0,𝑛 ⊂ (𝑘𝑛 × ℤ𝑟+1) ∩ 𝑛−1, 𝑘𝑛 ⊂ 𝑘𝑛−1, 𝑘𝑛 ≠ 𝑘𝑛−1 and all but finitely many
tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 𝑛 satisfying the inequalities: |𝛼(𝑖)

0
⋯𝛼

(𝑖)
𝑛 𝑞𝑢| > 1, 𝛼(𝑖)

0
⋯𝛼

(𝑖)
𝑛 𝑞𝑢 is not a

pseudo-Pisot number for some integer 𝑖 ∈ {1, … , 𝑟}, and

|𝛼(𝑗)
0

⋯𝛼
(𝑗)
𝑛 𝑞𝑢 − 𝑝𝑗| < 1

𝐻𝜖∕(𝑛+1)(𝑢)|𝑞| 𝑑𝑟 +𝜀 for each integer 𝑗 = 1, 2, … , 𝑟. (3.1)



1172 KUMAR and THANGADURAI

If such sequences exist, then we eventually get a contradiction to the fact that the number field 𝐾
does not admit an infinite strictly decreasing chain of subfields. Therefore in order to finish the
proof of the theorem, it suffices to construct such sequences.
We proceed our construction by applying induction on 𝑛: for 𝑛 = 0, put 𝛼(𝑗)

0
= 𝛼𝑗 for 1 ⩽ 𝑗 ⩽ 𝑟,

𝑘0 = 𝐾 and 0 = , and we are done in this case because of our supposition.
By the induction hypothesis, we assume that 𝛼(𝑗)𝑛 , 𝑘𝑛, and𝑛 for an integer 𝑛 ⩾ 0 exist with the

property that (𝛼(1)
0

⋯𝛼
(1)
𝑛 ), … , (𝛼

(𝑟)
0

⋯𝛼
(𝑟)
𝑛 ) are ℚ-linearly independent and satisfying (3.1). Now

we prove 𝑛 + 1th stage.
For each integer 𝑗 = 1, 2, … , 𝑟, we let

𝛿𝑗 = 𝛼
(𝑗)

0
⋯𝛼

(𝑗)
𝑛 .

By the induction hypothesis, the numbers 𝛿1, … , 𝛿𝑟 are ℚ-linearly independent and satisfy (3.1).
Then by applying Lemma2.4with 𝛿1, … , 𝛿𝑟, 𝑘 = 𝑘𝑛, we obtain an element 𝛾𝑛+1 ∈ 𝑘𝑛, a proper sub-
field 𝑘𝑛+1 of 𝑘𝑛 and an infinite set 𝑛+1 ⊂ 𝑛 such that all tuples (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 𝑛+1 satisfy
𝑢 = 𝛾𝑛+1𝑣 with 𝑣 ∈ 𝑘𝑛+1 and 𝛾𝑛+1 ∈ 𝑘𝑛. Note that since 𝑢 ∈ ×

𝑆
, we observe that 𝑣 ∈ ×

𝑆
. Hence,

as 𝑢 varies, we see that 𝑣 also varies over ×
𝑆
. Thus, we can assume that (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 𝑛+1 if

and only if (𝑣, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 𝑛+1.
Set 𝛼(𝑗)

𝑛+1
= 𝛾𝑛+1 for all 1 ⩽ 𝑗 ⩽ 𝑟. Clearly,

𝛼
(𝑗)

0
⋯𝛼

(𝑗)
𝑛 𝛼

(𝑗)

𝑛+1
= 𝛿𝑗𝛾𝑛+1 ∶= 𝛿

(𝑗)

𝑛+1
for all 1 ⩽ 𝑗 ⩽ 𝑟.

Therefore, by induction hypothesis, it is clear that 𝛿(1)
𝑛+1

, … , 𝛿
(𝑟)
𝑛+1

areℚ-linearly independent. Also,
by induction hypothesis, we know that for every tuple (𝑢, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 𝑛+1, there exists an
integer 𝑖 ∈ {1, … , 𝑟} satisfying |𝛿𝑖𝑞𝑢| > 1 and 𝛿𝑖𝑞𝑢 is not a pseudo-Pisot number. Since 𝛿𝑗𝑞𝑢 =

𝛿𝑗𝑞𝛾𝑛+1𝑣 = 𝛿
(𝑗)

𝑛+1
𝑞𝑣, for every tuple (𝑣, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 𝑛+1, there exists an integer 𝑖 such that|𝛿(𝑖)

𝑛+1
𝑞𝑣| > 1 and 𝛿(𝑖)

𝑛+1
𝑞𝑣 is not a pseudo-Pisot number and

|𝛿(𝑗)
𝑛+1

𝑞𝑣 − 𝑝𝑗| = |𝛿𝑗𝛾𝑛+1𝑞𝑣 − 𝑝𝑗| = |𝛿𝑗𝑞𝑢 − 𝑝𝑗| < 1

𝐻(𝛾𝑛+1𝑣)
𝜀∕(𝑛+1)|𝑞| 𝑑𝑟 +𝜀 .

Since 𝑣 ∈ 𝑘𝑛+1, we see that

𝐻(𝛾𝑛+1𝑣) ⩾ 𝐻(𝛾𝑛+1)
−1𝐻(𝑣),

and hence, in particular, for almost all 𝑣 ∈ 𝑘𝑛+1, we get 𝐻(𝛿𝑛+1𝑣) ⩾ 𝐻(𝑣)(𝑛+1)∕(𝑛+2). Therefore,
for all but finitely many tuples (𝑣, 𝑞, 𝑝1, … , 𝑝𝑟) ∈ 𝑛+1 and for all 1 ⩽ 𝑗 ⩽ 𝑟, we have the following
inequality

|𝛿(𝑗)
𝑛+1

𝑞𝑣 − 𝑝𝑗| < 1

𝐻(𝑣)𝜀∕(𝑛+2)|𝑞| 𝑑𝑟 +𝜀 .
This proves the induction and hence the theorem. □

Proof of Theorem 1.2. The proof of this theorem is similar to the proof of Theorem 1.1.
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Suppose that there are infinitely many triples (𝑢, 𝑞, 𝑝) ∈ ×
𝑆
× ℤ2 satisfying the following

inequality:

0 < |𝛼1𝑞𝜎1(𝑢) +⋯ + 𝛼𝑑𝑞𝜎𝑑(𝑢) − 𝑝| ⩽ |𝑞|−𝑑−𝜀𝐻−𝜀(𝑢),

where functions of 𝜎𝑖 are all the embeddings of ℚ(𝑢) to ℂ. Then by inductively, we construct
sequences {𝛼𝑖,0}∞𝑖=0, …, {𝛼𝑖,𝑑}

∞
𝑖=0

whose elements are in 𝐾, an infinite decreasing chain 𝑖 of an
infinite subset of  and an infinite strictly decreasing chain 𝑘𝑖 of subfields of 𝐾 satisfying the
following properties.

For each integer 𝑛 ⩾ 0, 𝑛 ⊂ (𝑘𝑛 × ℤ2) ∩ 𝑛−1, 𝑘𝑛 ⊂ 𝑘𝑛−1, 𝑘𝑛 ≠ 𝑘𝑛−1 and all but finitely many
triples (𝑢, 𝑞, 𝑝) ∈ 𝑛 satisfying the inequalities: |𝛼𝑖,0⋯𝛼𝑖,𝑛𝑞𝑢𝑖| > 1, 𝛼𝑖,0⋯𝛼𝑖,𝑛𝑞𝑢𝑖 is not a pseudo-
Pisot number for some integer 𝑖 ∈ {1, … , 𝑑} and

|𝛼1,0⋯𝛼1,𝑛𝑞𝜎1(𝑢) +⋯ + 𝛼𝑑,0⋯𝛼𝑑,𝑛𝑞𝜎𝑑(𝑢) − 𝑝| < 1

𝐻𝜀∕(𝑛+1)(𝑢)|𝑞|𝑑+𝜀 . (3.2)

If such sequences exist, then we eventually get a contradiction to the fact that the number field𝐾
does not admit any infinite strictly decreasing chain of subfields. Therefore in order to finish the
proof of the theorem, it suffices to construct such sequences.
We proceed our construction by applying induction on 𝑛: for 𝑛 = 0, put 𝛼𝑖,0 = 𝛼𝑖 for each inte-

ger 𝑖 = 1, … , 𝑑, 𝑘0 = 𝐾 and 0 = , and we are done in this case because of our supposition. By
the induction hypothesis, we assume that 𝛼𝑖,𝑛, 𝑘𝑛, and𝑛 for an integer 𝑛 ⩾ 0 and (3.2) holds true.
Then by applying Lemma 2.5 with 𝑘 = 𝑘𝑛 and

𝛿1 = 𝛼1,0⋯𝛼1,𝑛, … , 𝛿𝑑 = 𝛼𝑑,0⋯𝛼𝑑,𝑛,

we obtain an element 𝛾𝑛+1 ∈ 𝑘𝑛, a proper subfield 𝑘𝑛+1 of 𝑘𝑛 and an infinite set 𝑛+1 ⊂ 𝑛

such that all triples (𝑢, 𝑞, 𝑝) ∈ 𝑛+1 satisfy 𝑢 = 𝛾𝑛+1𝑣 with 𝑣 ∈ 𝑘𝑛+1. Note that since 𝑢 ∈ ×
𝑆
, we

observe that 𝑣 ∈ ×
𝑆
. Hence, as 𝑢 varies, we see that 𝑣 varies over ×

𝑆
. Thus, we can assume that

(𝑢, 𝑞, 𝑝) ∈ 𝑛+1 if and only if (𝑣, 𝑞, 𝑝) ∈ 𝑛+1.
Set 𝛼𝑗,𝑛+1 = 𝜎𝑗(𝛾𝑛+1) for all 1 ⩽ 𝑗 ⩽ 𝑑. Clearly,

𝛼𝑗,0⋯𝛼𝑗,𝑛𝛼𝑗,𝑛+1 = 𝛿𝑗𝜎𝑗(𝛾𝑛+1) ∶= 𝛿
(𝑗)

𝑛+1
for all 1 ⩽ 𝑗 ⩽ 𝑑.

By the induction hypothesis, we know that for every triple (𝑢, 𝑞, 𝑝) ∈ 𝑛+1, there exists an inte-
ger 𝑖 satisfying |𝛿𝑖𝑞𝑢| > 1 and 𝛿𝑖𝑞𝑢 is not a pseudo-Pisot number. Since 𝛿𝑗𝑞𝑢𝑗 = 𝛿𝑗𝑞𝜎𝑗(𝛾𝑛+1𝑣) =

𝛿
(𝑗)

𝑛+1
𝑞𝜎𝑗(𝑣), for every triple (𝑢, 𝑞, 𝑝) ∈ 𝑛+1, there exists an integer 𝑖 such that |𝛿(𝑖)𝑛+1𝑞𝑢𝑖| > 1 and

𝛿
(𝑖)
𝑛+1

𝑞𝑢𝑖 is not a pseudo-Pisot number and

|𝛿(1)
𝑛+1

𝑞𝜎1(𝑣) +⋯ + 𝛿
(𝑖)
𝑛+1

𝑞𝜎𝑖(𝑣) +⋯ + 𝛿
(𝑑)
𝑛+1

𝑞𝜎𝑑(𝑣) − 𝑝|
= |𝛿1𝑞𝜎1(𝛾𝑛+1𝑣) +⋯ + 𝛿𝑑𝑞𝜎𝑑(𝛾𝑛+1𝑣) − 𝑝|
= |𝛿1𝑞𝑢1 +⋯ + 𝛿𝑑𝑞𝑢𝑑 − 𝑝| < 1

𝐻𝜀∕(𝑛+1)(𝛾𝑛+1𝑣)|𝑞|𝑑+𝜀 .
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Since 𝑣 ∈ 𝐾, we see that

𝐻(𝛾𝑛+1𝑣) ⩾ 𝐻(𝛾𝑛+1)
−1𝐻(𝑣),

and hence, in particular, for almost all 𝑣 ∈ 𝐾, we have𝐻(𝛿𝑛+1𝑣) ⩾ 𝐻(𝑣)(𝑛+1)∕(𝑛+2). Therefore, for
all but finitely many such triple (𝑣, 𝑞, 𝑝) ∈ 𝑛+1, we have the following inequality:

|𝛿(1)
𝑛+1

𝑞𝑣 +⋯ + 𝛿
(𝑖)
𝑛+1

𝑞𝜎𝑖(𝑣) +⋯ + 𝛿
(𝑑)
𝑛+1

𝑞𝜎𝑑(𝑣) − 𝑝| < 1

𝐻𝜀∕(𝑛+2)(𝑣)|𝑞|𝑑+𝜀
holds true. This proves the induction step and hence the theorem. □

Proof of Corollary 1.1. Suppose that the assertion of Corollary 1.1 is false. Then 𝛼1, … , 𝛼𝑟 are alge-
braic numbers. By choosing 𝜀 < 𝜂 log |𝛼|∕ log𝐻(𝛼), we see that there are infinitely many tuples
(𝑛, 𝑞, 𝑝1, … , 𝑝𝑟) in ℤ2

>0
× ℤ𝑟 satisfying

0 < |𝛼𝑗𝛼𝑛𝑞 − 𝑝𝑗| < 1

𝐻(𝛼𝑛)𝜀𝑞
𝑑
𝑟
+𝜀

for all 1 ⩽ 𝑗 ⩽ 𝑟.

Then by taking Γ = ⟨𝛼⟩ and 𝑢 = 𝛼𝑛 in Theorem 1.1, we get, for infinitelymany values of 𝑛,𝛼𝑖𝑞𝛼𝑛 is
a pseudo-Pisot number for all 1 ⩽ 𝑖 ⩽ 𝑟, and, in particular, all their other conjugates havemodulus
less than 1.
Let 𝐾 be the Galois closure of the number field ℚ(𝛼, 𝛼1, … , 𝛼𝑟) over ℚ. By our assumption on

𝛼, we know that 𝛼 has a conjugate 𝛽 with |𝛽| > |𝛼|. Therefore there exists an automorphism 𝜎 ∶

𝐾 → 𝐾 maps 𝛼 to 𝛽. Hence, for all 𝑛 ∈ ℕ, we have 𝜎(𝑞𝛼𝑖𝛼𝑛) = 𝑞𝜎(𝛼𝑖)𝛽
𝑛. Since 𝛼𝑖𝑞𝛼𝑛 is a pseudo-

Pisot number for infinitely many values of 𝑛, we see that all the other conjugates of 𝛼𝑖𝑞𝛼𝑛 have
modulus < 1. In particular, the same is true for 𝜎(𝑞𝛼𝑖𝛼𝑛). But, since |𝜎(𝑞𝛼𝑖𝛼𝑛)| = |𝑞𝜎(𝛼𝑖)||𝛽|𝑛,
and |𝛽| > |𝛼| > 1, this is impossible. This proves the corollary. □
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