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A note on a conjecture of Borwein and Choi

By

R. THANGADURAI

Abstract. A polynomial P(X) with coefficients {£1} of odd degree N — 1 is cyclo-
tomic if and only if

P(X) = £®,, (£X) D, (£XP1) - - D), (£XPIP2Pro)

where N = p;py---p, and the p; are primes, not necessarily distinct, and where
@, (X) ;= (XP = 1)/(X — 1) is the p—th cyclotomic polynomial. This is a conjecture
of Borwein and Choi [1]. We prove this conjecture for a class of polynomials of degree
N —1=2"p* —1 for any odd prime p and for integers r, £ = 1.

1. Introduction. Let

n

®,(2) = l—[ (Z_eb;ui>

a=1,(a,n)=1

denote the n—th cyclotomic polynomial. This polynomial is monic with integral coefficients,
irreducible, of degree ¢(n), and its roots are the primitive n—th roots of unity. More generally,
we call amonic polynomial P(z) cyclotomic if it has integral coefficients and its roots lie on the
unit circle |z| = 1. A classical theorem of Kronecker says that an algebraic integer having all
its conjugates absolute value 1, then it is a root of unity. (See for instance, L. Washington [6],
Chap. 1). Since any root of our cyclotomic polynomial P(z) is an algebraic integer and by
the definition all its conjugates have absolute value 1, by the above Kronecker’s theorem it
is a root of unity. Thus all the roots of P(z) are some roots of unity and hence it justified
the name. Consequently, a cyclotomic polynomial P(z) is simply a product of the irreducible
polynomials ®,,.

The main object is to characterise these cyclotomic polynomials in some way. The question
of characterising these polynomials arises naturally when one considers the problem of listing
all monic polynomials K(X) € Z[X] of degree N whose Mahler measure lies below a given
bound. Since the cyclotomic polynomials will fall in such a class, the number of cyclotomic
polynomials provides a trivial lower bound for the computational complexity of the task (See
for instance [3]). Moreover, in [1] Borwein and Choi used this characterization to count the
explict number of cyclotomic Littlewood polynomials of even degree having odd coefficients.
Thus this number provides a trivial lower bound for the same; but for the smaller class.
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Here we are interested to study the cyclotomic polynomials whose coefficients are just 1.
More generally, the polynomials with coefficients +1 are called Littlewood polynomials as
Borwein [2] calls. Recently, Borwein and Choi [1] proved the following theorem.

Theorem 1.1 (Borwein and Choi). A polynomial P(X) with coefficients £1 of even degree
N — 1 is cyclotomic if and only if

P(X) = £®, (£X)®

P2

(£XP1) - D, (£XP1P2Pr1)
where N = pyp,--- p,_1 pr and the p; are primes, not necessarily distinct.

Indeed, using this characterisation, Borwein and Choi [1] counted the number of such
polynomials of even degree explicitly. Now, the question is left unanswered for the odd

degree cyclotomic Littlewood polynomials. In fact, in the same paper they conjectured that
P(X) will be of the same form when N — 1 is odd. More precisely, they conjectured

Conjecture. A polynomial P(X) with coefficients 1 of odd degree N — 1 is cyclotomic
if and only if

P(X) = £®, (£X)D,, (£XP1)--- ], (XP1FP27Pr-1),

where N = p;p,--- p,_1 p- and the p; are primes, not necessarily distinct.

Borwein and Choi [1] proved this conjecture when N = 2¢ for any ¢ = 1 and they have
checked this conjecture for those polynomials degree upto 210 except for the degree N = 192.

We would like to use, for the rest of this article, the following properties of n—th cyclotomic
polynomials &, (X) which can be seen, for instance, in [4] and [5].

Lemma 1.2.

QD) D (X)=X—1, Dy(X) = X + 1.
(11) If(2, n) = 17 then q)Zn(X) = CD,,(—X)
(iii) We have, ®ps,,(X) = P, (X”S)/dJm(X”Sfl) whenever p fm,s = 1. In other words,
D, (X7") = By (X) P (X7 ) = By (X) D1, (X) -+ By (X) D, (X)
whenever pfm and s = 1.

(iv) We have ®,,,(X) = ®@,,(X?) whenever p|m.

In the same paper mentioned above, Borwein and Choi [1] proved the following theorem.

Theorem 1.3 [1]. Let N =2'M with t =2 0 and M is odd. A polynomial P(X) with odd
coefficients of degree N — 1 is cyclotomic if and only if

P(X) = [] @ (X)DZ (X) - @2 4(X),
diM

where e, = 0 integers satisfying the following relation

o+l 2! ord|M,d > 1
ey + 2217162"1/[ — f |
i=1 20—1 ford=1.

i

25%
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For the illustration of Theorem 1.3, let us consider the case N = 2p for an odd prime p. In
this case, our cyclotomic polynomial

P(X) = @] (X) D (X) D5 (X) @y (X) @57 (X) @4 (X)

where e; satisfy e; +e,+2e, =1 and ¢, + ¢, +2es, = 2. Since ¢; are non-negative,
we have (e;, e, e4) = (1,0, 0) or (0, 1, 0) and (e,, ezp, €sp) = (1, 1, 0) or (0, 0, 1) or
(2,0,0) or (0,2,0). Therefore, any cyclotomic polynomial P(X) of degree 2p — 1 will
be equal to @(X)P,(X)P,,(X) or & (X)Dy,(X) or <I>1(X)CI>]§(X) or CI>1(X)CI>§p(X) or
D (X)D,(X) D2, (X) or P (X) Py, (X) or ®2(X)®§(X) or d)z(X)d)%p(X).

Remark 1.4.In the above illustration, the case when at least one of the ¢;’s such that
e; = 2, we have P(X) = &1 (X)®2(X) or P(X) = ®1(X)®P3,(X) or P(X) = ®,(X)®}(X) or
P(X) = <I>2(X)d>%p(X ). Thus, in this situation our cyclotomic polynomial P(X) is not the
product of distinct factors of irreducible d—th cyclotomic polynomials.

Remark 1.5. In the Theorem 1.3, the ¢;’s are non-negative integers. If we restrict ourself
e; to either O or +1, then the cyclotomic polynomial P(X) will be the product of distinct
factors of d-th irreducible cyclotomic polynomials ®,(X) as remarked in Remark 1.4. More
precisely, as in the notations of Theorem 1.3, we have

P(X) = [] @3 (X)@F (X) -+ &2 (%),
dim

where ¢; belongs to {0, 41} and satisfy the relation

=+l 2! ford|M,d > 1
eq+ > 27e, =
1t L2700 0 tora— 1,

i

Definition. A cyclotomic Littlewood polynmial P(X) is said to be square-free if P(X)
can be written as a product of distinct factors of d-th irreducible cyclotomic polynomi-
als ®,4(X).

For example, consider P(X) = X° + X* + X* + X? + X + 1 which is clearly a cyclotomic
Littlewood square-free polynomial, since P(X) is equal to the product of ®,(X)®;(X)D4(X).
On the other hand, if we consider P(X) = X+ X*+ X? — X?> — X — 1 is a cyclotomic
Littlewood polynomial, since P(X) = ®;(X )<I>I§ (X); but not square free.

In this small note, we shall prove the following theorems.

Theorem 1. Let N = 2" p* for any odd prime p and for any integers £,r = 1. Let P(X) be
a square-free cyclotomic Littlewood polynomial of degree N — 1. Then if we write p1 = p, =
..=p,=2and p.yy = prya = ... = Prre = P, then we have,

P(X) = £®, (£X)®

P2

(XPV) o Dy (XPIP27Pr=1) oy (R XPIP2Prae-t),

Theorem 2. Let N = 2p for any odd prime p. Let P(X) be the cyclotomic Littlewood
polynomial of degree N — 1. Then, the conjecture is true.
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2. Proof of Theorem 1.

A Key Lemma. Let N = 2" p* for an odd prime p and for any integers r, £ = 1. Let P(X)
be a square-free cyclotomic Littlewood polynomial of degree N — 1. Also, assume that the
conjecture is true for P(X). Then,

P(X) = :IZCDZ(:EX)(I)Z(XZ)(I)Z(XZZ) e ¢2(X2r71)¢p(iX2r) C q)p(ix2'17671)'
Proof. Given that P(X) is a square-free cyclotomic Littlewood polynomial of degree

N — 1 where N = 2" p for an odd prime p and for an integer ¢ = 1. Let ¢ be a collection of
polynomials such that

¢ = {£02EN DX B2(XT) -+ (X EXT) - @, (X7

Claim 1. If P(X) € ¢, then P(X) is a square-free cyclotomic Littlewood polynomial.
That is, in the view of Theorem 1.3, this polynomial P(X) will have the e;’s which are
belonging to {0, +1}. To prove this claim first let us observe the following;

(1) Foreachi =1,2,... ,rand foreach j =1,2,...,¢— 1, we have
®,(X*"") = @ ;11 (X*) (by Lemma 1.2(ii))
= ®yi+1(X)®, 741 (X* ) (by Lemma 1.2(iii)
= D1 1 (X) Dyt 1 ()P40 (X7 7) (by Lemma 1.2(iii))
= @y, j+1 (X) @it jt1 (X) - - Dy i1 (X) D1 (X).
(2) Foreachi =1,2,...,r—landforeach j =1,2,...,¢— 1 we have
0,(—X>7) = @11 (= X7) = D, 111 (X7) = Byir 1 (X)

by Lemma 1.2(ii) and (iv).
(3) Foreachi = 2,3, ... ,r we have

Dy(—X2) = Byis1 (—X) = Dyis1 (X)
and
Dy (X?) = Dyt (X).
Observe that if P(X) € ¥, then it is a cyclotomic Littlewood polynomial. Let P(X) € % be
of the form, for instance, (the other cases are similar)
P(X) = — 3 (= X) Dy (X)Dp(—X7) -+ By (— X7 ) By (—X77) - -
n dDP(—er”e*z)d),,(er”eil)
=D P Pp3 - Por Doyrtt , Portt 2+ - Portt 1 Pyt Pyt e -+ - Dy e P

using the observations (1), (2) and (3). Therefore, in this case, in the view of Theorem 1.3,
P(X) has irreducible factors which are determined by the ¢;’s as follows;

(e1,e2,e02,...,ep11) =(1,0,1,1,...,1,0),
—_—————
r—1 1's
(epi, €pis €22 pis - s €qr iy €qril i) = 0,0,...,0,1)
————

r+l 0's
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foralli=1,2,...,¢—1and

(epz, €pls €22 505+ oo s Eor s €2r+1p£) =(1,1,...,1,0).
~——
r4+1 1's

Thus, P(X) is a square-free cyclotomic Littlewood polynomial as we have claimed.

Claim 2. The number of square-free cyclotomic Littlewood polynomials is equal to the
cardinality of the set 7.

Note that it is fairly clear that the cardinality of the set € is 22

Now let us count the number of square-free cyclotomic Littlewood polynomials. Theo-
rem 1.3 gives a clue how to count this number. More precisely, Theorem 1.3 says that if we
let N =2'"M with t = 0 and M is odd, then a polynomial P(X) with odd coefficients of degree
N — 1 is cyclotomic if and only if

P(X) = [] @ (X)DZ (X) - @2 4(X),
diM

where ¢, = 0 integers satisfying the following relation

ol 2! ford|M,d > 1
eq+ Y 27, =
¢ ; T2 —1 ford = 1.

In our case t = r and M = p* for an odd prime p. Also P(X) has to have coefficients 41 and
it is square-free. Therefore, those non-negative integers e; should be either 0 or +1 for all i
satisfying the following relations;

er+ey+2en+2%s + -+ 2 ey +27ep =27 — 1
and foreachi =1,2,...,¢

e+ ey +2en,i++2 ey +2 ey, =2
Since ¢;’s belongs to {0, +1} and they are satisfying the above relations, it is enough to count
the number of possible cases of ¢; satisfying these relations. Since there are ¢ + 1 equations
each of them having 2 choices, the total number of choices forming different sets of solutions
of the above equations with the condition that ¢; € {0, +1} is 2°*!. For the total number of
square-free cyclotomic polynomials, we have to multiply 2 with 2¢*! because if by letting
Q(X) = —P(X), then Q(X) is not counted in that. Thus as we claimed, the number of square-
free cyclotomic polynomials with odd coefficients is equal to 2*2 which is the cardinality of
the set €.

By Claim 1, we have ¥ is a subset of the set of square-free cylotomic Littlewood polyno-
mials. By Claim 2, it is clear that the cardinality of the both above mentioned sets are equal.
Thus, the set ¢ exhaust all the square-free cyclotomic Littlewood polynomials. Hence the
lemma. O

We shall prove the Theorem 1 inductively as follows. For our convenience, we shall define
a statement A(r, £) as follows;

A(r, £) : If P(X) is a square-free cyclotomic Littlewood polynomial of degree N — 1 where
N = 2" p* for any odd prime p and for any integers r, £ = 1, then

P(X) = :|:c]>p1 (:I:X)CDI,Z(XPI) Dy, (XPrp2Pr=1y. .. c[:.er (£ XP1P2Pret—1)
where p; = py =...=p, =2and p,11 = pri2 = ... = prse = P
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Lemma 2.1. The statement A(r, 1) is true for all integer r = 1.

Proof. Let P(X) be a square-free cyclotomic Littlewood polynomial of degree N — 1
where N = 2"p for any odd prime p and any integer » = 1. In the view of Theorem 1.3, we
have

Bl B2 22 ertl cep 2 €p 2 2p Cortlp
P(X) = @, @, d)22 "'d’2r+1 o, d)2p q)zzl, T+,

where e; + e, 4+ )" 2'eji1 =2 — land e, 4+ 3, + ) 2'eyiv1, = 2". Since ¢; € {0, +1}, there
i i=1

i=1
are only four cases as follows.

Case 1. (e, €2, ..., eys1) = (1,0, 1, 1, ..., 1, 0) and (g, €, ..., €y41,) =
r—11's
(1,1,...,1,0).
——————
rl's

In this case, we have

P(X) = q)1q>22¢‘23 e q)zrq)pq)zp e (I>2rp.
Since, & (X) P2 (X) D3 (X) - - - Por (X) = — Dy (—X) Do (X2 Dy (X?) - - (X2 ) using Lem-
ma 1.2(i) and (iv) and since

By (X)D2y(X) - Bar (X) = B, (X) (B (X2) /D, (X)) -+ (B, (X*) /D, (X* )

= ®,(X¥),

we have

P(X) = —®,(—X)®2(X)D2(X7) - 02X )@, (X7)

which is of desired form.

Case 2. ((er. €, ... ,ep1) = (1,0,1,1,...,1,0) and ey+1, =1 with e, =0 for i =
—_——
r—11's
0,1,...,r.
In this case, we have
PX) =P PPy - (I)zrd)zrﬂp.

Since, as in the Case 1,
zr—l

D1 (X) P2 (X)Py3(X) - - Por(X) = _¢2(_X)¢2(X2)¢.2(X22) e Oy(XT )
using Lemma 1.2(i) and (iv) and since Dyri1,(X) = <I>p(—X2r), we have
P(X) = —¢2(—X)¢2(X2)¢2(X22) B ¢2(X2r71)¢p(—X2r)
as desired.
Case 3. ((e1.e2,... ,epr1) = (0,1,1,...,1,0) and eys1, =1 with e,y =0 for i =
~——

r—=11s

0,1,---,r.
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In this case, we have
P(X) = 0000y -+ Por By .
Since, as in the Case 1,
D2(X) P2 (X)y3(X) -+ By (X) = Do (X)Do(XD) Do (XT) - By(XP )
using Lemma 1.2(i) and (iv) and since Dyri1,(X) = <I>p(—X2r), we have
P(X) = &,(X)D2(XD)y(X7) - 02X ) D, (—X7)

as desired.
Case4. (e, e, ..., ey1) = (0, 1,1, ..., 1,0) and ((g. €2, .., €ys1,) =
r—11s
a1, ...,1,0
—_————
r1's

In this case, we have
P(X) = ®1®Pys -+ Bor B, Dy - Bir .
Since, as in the Case 1,
O2(X) D (X) Py (X) -+~ Dyr (X) = Do(X)Do(XD)D2(XT) - Dy(X> )
using Lemma 1.2(i) and (iv) and since ®,(X)®;,(X) - -+ ®or,(X) = ®,(X) (D,(X?)/D,(X))
(@ ()2, (X)) = @, (X), we have

P(X) = &2(X) By (X By (X7 -+ Da(X* )@, (X¥)
as desired. Thus the statement A(r, 1) is true for every integer r = 1. 0O

Lemma 2.2. [f the statement A(r, £) is true for some integer £ = 1, then A(r, £ + 1) is also
true.

Proof. Suppose the statement A(r, £) is true. Let P(X) be a square-free cyclotomic Lit-
tlewood polynomial whose degree is N — 1 where N = 2" p**!. Since P(X) is square-free, we
have,

P(X) = @} 0702 - 02! 1 (o) @ @ 2r o2,

or+1 i pl 221 2)+1pz

where e; e, + )" 2'¢,iv1 =2" — lande,
i=1
and ¢; € {0, +1} for all ;.
Let Q(X) be the polynomial defined by

+ey, +j§12j€2j+lpi =2"foreveryi=1,2,...,¢0+1

e] x e = © 7 2 i Cor+1 )i
0(X) = cI)11<I>22<I>2%2 ’ q)zzjll l—I <CI> cI) 2p cI) K ; .“q>2%+1p]i ) )
where e; + e, + 22 e+t =2"—lande, +e,, + 22 eyj+1,i =2 foreveryi=1,2,....,¢
Jj=
and ¢; € {0, +1} for all i. Let H(X) be the polynomlal defined as

HX @ 1 @ Eppltl €2 041 o1 1
(X) = PEFL T opthl Fo2 ekl T E ol el o

where e,i1 + ey ,01 + Z 2eyj+1 001 = 2" and ¢; € {0, 41} for all 7.

j=1
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Now, let us compute the degree of the polynomial H(X). To do that we have to check
which ¢;’s are 0 and which are 1. Because of their relation, there are two cases as fol-

lows; The case (1) is (epz+1,e2pz+1,... ,ez,-+1pzz+1) =(0,0,...,0,1) and the case (2) is
———
r410's
(€011, €gpttls ooy Exril i) = (1,1,...,1,0). In the first case, the degree of H(X) =
e ——
r+1 1's

@it o1 (X) is Q27 ptt) =27p"(p—1). In the second case, the degree of H(X) =
D41 Dy et - Doy et i pA(p— DA+ 142442771 =2"p'(p — 1). Thus in the both
the cases the degree of H(X) is 2" p*(p — 1).

Now, the degree of Q(X) is the degree of P(X) minus the degree of H(X). That is, the
degree of Q(X)is 2" p*™' — 1 —2"p*(p — 1) = 2" p* — 1. Also note that Q(X) is a square-free
cyclotomic Littlewood polynomial of degree 2" p* — 1 with ¢; € {0, +1}. Since by assumption,
the statement A(r, £) is true, Q(X) is of desired form.

To prove the result it is enough to prove that H(X) is of desired form and if so, by glueing
together Q(X) and H(X) we get P(X) is of desired form and hence the statement A(r, £ + 1)
is true.

Case 1. (epe+1, ezpe+1, ey 62r+1pe+1) = (0, 0, . ,0, l).
~— e ——
r+10's

In this case,
HXO) = @yt o1 (X) = B2 (X77) = @, (=X77)

as desired. Here we are using Lemma 1.2 (ii), (iii) and (iv).

Case 2. (epz+1, €ttt .. ,ez,-+1pzz+1) =(1,1,...,1,0).
~— —
r41 Us

In this case,
H(X) = @011 (X))@, 041 (X) - Do 1 (X).
By Lemma 1.2 (iii) we have
@y i1 (X) = B, (X7 /0, (X7
foreachi =r,r —1,...,2, 1. Clearly, for i and i + 1 we have,

o ()Pt (X) = (@, (X7 /0, (X 7)) (€, (X717 0, (x77))

_ <I>p(X2i+lpZ)/<I>p(X2iilpZ)
fori =r—1,r—2,..., 1. Therefore, clearly,

H(X) = &,(X*7")
as desired. 0O

Proof of the Theorem 1. Let P(X) be a square-free cyclotomic Littlewood poly-
nomial of degree N — 1 where N = 2" p* for some odd prime p and for any integer r, £ = 1.
Since by Lemma 2.1 the statement A(m, 1) is true for all integer m = 1, in pariticular, the
statement A(r, 1) is true. Now we apply Lemma 2.2 to get the statement A(r, 2) is true and
hence by applying Lemma 2.2 recursively ¢ — 1 times, we get the statement A(r, £) is true.
Thus P(X) is of desired form. O



394 R. THANGADURAI ARCH. MATH.

3. Proof of Theorem 2.

Theorem 2. Let N = 2p for an odd prime p. Let P(X) be a cyclotomic Littlewood poly-
nomial whose degree is N — 1 =2p — 1. Then

P(X) = :|:<I>2(:|:X)<I>p(:|:X2) or £ @,(£X)D,(£X7).
Proof. As in the notations of Theorem 1.3, in this case, we have t =1 and M = p.
Therefore,
P(X) = @] (X)PZ(X) DL (X) D) (X) Dy (X) P, (X)
satisfying e; + e, + 2e4 = 1 and ¢, + ¢;,, + 2e4, = 2. Since ¢; are non-negative integers, there
arise eight different cases as follows.

Case i ((@1, €, 6‘4) = (17 Oa 0) and (epa €2p, 6‘4],) = (17 la 0))
In this case, the cyclotomic polynomial P(X) looks like

P(X) = @1(X) D) (X) D) (X).

Since ®;(X) =X — 1= —(=X + 1) = —d,(—X) and as (2, p) = 1, D, = D,(X2)/d,(X)
(using Lemma 1.2(iii)), we have

P(X) = =2 (=X) D, (X) D, (X*) /D) (X) = =P (= X) D, (X?)

as desired.
Case ii. ((e1, €2, €4) = (1,0,0) and (e,, €3, €s,) = (0,0, 1)).
Since @4,(X) = ,(X?) = ,(—X?) and ®,(X) = —P,(—X), in this case we get
P(X) = @1(X)P4p(X) = —Pao(=X) P2y (X?) = —@2(=X) Py (—X?)
as desired.
Case iii. ((e1, ez, e4) = (1,0,0) and (e,, €2, €4p) = (2,0, 0)).
Since ®,(X) = ®,,(—X) and ®;(X) = —P,(—X), we have
D1 (X) P, (X)P,(X) = = Do (—=X) P (= X) P, (X) = =D, (X)Po(—X")
as desired.
Case iv. ((e1, e2,e4) = (1,0,0) and (e, e, €4,) = (0,2, 0)).

Since & (X )CID%p(X ) is a cyclotomic polynomial but not a Littlewood polynomial, since,
P(X)= X" —3X*2 45X — ... —5X* +3X — 1.

Therefore in this case we may not expect the desired form.
For the other cases, we simply write the result, since they are similar in nature.

(v) In this case, (e, 2, e4) = (0, 1,0) and (e,, €2, €s,) = (1, 1, 0). Therefore
D5 (X) D, (X) D1, (X) = P (X) D, (X?).
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(vi) In this case, (e, 2, e4) = (0, 1,0) and (e,, e, es) = (0,0, 1). Therefore
B2(X) Py, (X) = D2(X) D,y (—XP).

(vii) In this case, (e, 2, e4) = (0, 1,0) and (e,, €2, es,) = (0, 2, 0). Therefore,
O2(X)D3,(X) = B, (X)Da(XP).

(viii) In this case, (ey, €2, e4) = (0, 1,0) and (e,, €25, €4p) = (2,0, 0). But the polynomial
O, (X )<I>]§(X ) contains coefficients other than &1 and hence it is not a Littlewood
polynomial, since,

Dy(X)P2(X) =1+ 3X +5X> + -+ 5X7 7 43X 2 4 X7

Thus we have exhausted all the cases, in which all cyclotomic Littlewood polynomials have
the desired form. [

4. Concluding remarks. Let us consider the case when N = 2 pg where p < ¢ are two odd
primes. Let P(X) be the cyclotomic Littlewood polynomial whose degree is N — 1. Then if
we assume that P(X) is of one of the following forms

P(X) = £&,(£X) D, (£X?) D, (£X7),
then P(X) is a product of distinct factors of irreducible cyclotomic polynomials.

(1) :|:<I>2(X)<I>p(X2)<I>q(X2p) =20, (X) P, (X) D, (X) P, (X) D3y (X) P Prpyy (X) by the
Lemma 1.2(iii). In these cases, (ey, €2, e4) =(0, 1,0), (¢,, €2, €4,) = (1, 1,0), (e, €24, €44)
= (1,1,0), and (6g. €2pq. €4p) = (1, 1,0). Clearly,

+0,(X)P, (XD, (X)) =1+ X+ X+ + X2+ X7,

(2) £P,(X) D, (XD P, (—X?P) = £ D2 (X) D, (X) P p(X) Dy (X) Dy (X) by Lemma 1.2(ii),
(iii) and (iv). In these cases, (1, €2, e4) = (0, 1,0), (¢,, €2, €a,) = (1,1, 0), (e, €24, €15) =
0,0, 1), and (epqv €2pq> e4pq) = (0,0, 1).

(3) £ ©2(X) B, (—X?) D, (X7P) = £ D2(X) By (X) D (X) D1y (X) By B2y (X) by Lem-
ma 1.2(ii), (iii) and (iv). In these cases, (e}, €2, e4) = (0, 1, 0), (e, €2p, e4,) = (0,0, 1),
(eqa €2 e4q) = (17 17 O)a and (epq7 €2pq> e4pq) = (17 la 0)

4) £0,(X)D,(—X?) D, (—X?) = £D5(X) Dy p(X) Py (X)Pypy(X) using Lemma 1.2(ii),
(iii) and(iv). In these cases, (e, 2, e4) = (0, 1,0), (e, €2, €s,) = (0,0, 1), (e, €24, €49) =
(0,0, 1), and (e,q, €24, €apg) = (0,0, 1).

(5) :t(b2(_X)(bp(X2)(bq(X2p) = :Fq)l(X)d)p(X)(b2p(X)(bq(X)(b2q(X)(bpqd)2pq(X) by the
Lemma 1.2(i) and (iii). In these cases, (e;, €2, e4) = (1,0, 0), (¢, €2p, €4p) = (1, 1,0),
(eqv €24, e4q) =(1,1,0), and (epqv €2pq> e4pq) =(1,1,0).

(6) £ Dy (—X) D\ (X?) ©y(—X*7) = F P (X) Dp(X) Pop(X) Py (X) Pypg(X) by Lem-
ma 1.2(i), (ii), (iii) and (iv). In these cases, (e1, €2, e4) = (1,0, 0), (e,, €2, €4,) = (1,1, 0),
(eqv €24, e4q) = (0,0, 1), and (epqv €2pq> e4pq) = (0,0, 1).

(7) £P2(=X) D, (—X?) Dy (X?7) = F O (X) Dy (X) Py (X) P30 (X) Py Prpg(X) by Lem-
ma 1.2(i), (ii), (iii) and (iv). In these cases, (e1, €2, e4) = (1,0, 0), (e,, €2, e4,) = (0,0, 1),
(eqv €24, e4q) =(1,1,0), and (epqv €2pq> e4pq) =(1,1,0).

(8) £P2(—X) D, (—X*) D, (—X*) = FD; (X) Dy p(X) Puy (X)DPspy(X) by Lemma 1.2(ii),
(iii) and (iv). In these cases, (e;, €2, e4) = (1,0,0), (e, €2p, €4,) = (0,0, 1), (¢4, €24, €49) =
(0,0, 1), and (e,g, €24, €apg) = (0,0, 1).
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Thus when N = 2pg where p < ¢ are odd primes, if any cyclotomic Littlewood polynomial
P(X) satisfying the Conjecture and which is of one of the above the above forms, then P(X)
is a square-free cyclotomic Littlewood polynomial.

Let % be a collection of polynomials defined as

C = {£0(£X)D,(£X) D, (X"}

Clearly, the cardinality of ¢ is 2* = 16. All these 16 polynomials which we have discussed
above belong to ¢". As we have seen above, these polynomials are square-free. As in the Key
Lemma in Section 2, can we expect this set ¢ to exhaust all square-free cyclotomic Littlewood
polynomials? The answer is NO. In this case, unlike the Key Lemma in Section 2, ¥ can
not exhaust all the square-free cyclotomic Littlewood polynomials. For example, consider
the case when (e, es,e4) = (0,1,0), (e, €2, €4,) = (1,1,0), (¢4, €24, €45) = (0,0, 1), and
(€pgs €2pg» €apg) = (1, 1,0). That is, we are considering the following polynomial

d)2(X)q)p(X)(b2p(X)d)4q(X)q)pq(X)(b2pq(X) = (I)z(X)(bq(—Xz)(bp(qu)

This case was not covered in any of the above 16 cases.

References

[1] P. BORWEIN and K.-K. S. CHOI, On Cyclotomic polynomials with £1 coefficients. Experimental
Math. 8, No. 4, 399-407 (1999).

[2] P. BORWEIN, Paul Erdos and Polynomials. Preprint.

[3] D. W. BoYD and H. L. MONTGOMERY, Cyclotomic Partitions. In: Number theory (Banff, AB,
1988), 7-25. Berlin 1990.

[4] P. RIBENBOIM, Fermat’s last theorem for amateurs. New York 1999.

[5] R. THANGADURAI, On the coefficients of cyclotomic polynomials. To appear in the Proceedings on
“Cyclotomic Fields”, Pune 1999.

[6] L. WASHINGTON, Introduction to cyclotomic fields, Second edition. Graduate Texts in Math. 83,
New York 1997.

Eingegangen am 6. 7. 2000

Anschrift des Autors:

R. Thangadurai

The Institute of Mathematical Sciences
C.I.T. Campus, Taramani

Chennai 600 113

India

thanga@ @imsc.ernet.in

Current address:

R. Thangadurai
Stat-Math Division
Indian Statistical Institute
203, B.T. Road

Kolkata — 700108

India
thanga_v@isical.ac.in



