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A note on a conjecture of Borwein and Choi

By

R. THANGADURAI

Abstract. A polynomial P(X ) with coefficients {±1} of odd degree N − 1 is cyclo-
tomic if and only if

P(X ) = ±Φp1 (±X )Φp2(±X p1 ) · · ·Φpr (±X p1 p2···pr−1 )

where N = p1 p2 · · · pr and the pi are primes, not necessarily distinct, and where
Φp(X ) := (X p − 1)/(X − 1) is the p−th cyclotomic polynomial. This is a conjecture
of Borwein and Choi [1]. We prove this conjecture for a class of polynomials of degree
N − 1 = 2r p� − 1 for any odd prime p and for integers r, � � 1.

1. Introduction. Let

Φn(z) =
n∏

a=1,(a,n)=1

(
z − e

2πai
n

)

denote the n−th cyclotomic polynomial. This polynomial is monic with integral coefficients,
irreducible, of degree φ(n), and its roots are the primitive n−th roots of unity. More generally,
we call a monic polynomial P(z) cyclotomic if it has integral coefficients and its roots lie on the
unit circle |z| = 1. A classical theorem of Kronecker says that an algebraic integer having all
its conjugates absolute value 1, then it is a root of unity. (See for instance, L. Washington [6],
Chap. 1). Since any root of our cyclotomic polynomial P(z) is an algebraic integer and by
the definition all its conjugates have absolute value 1, by the above Kronecker’s theorem it
is a root of unity. Thus all the roots of P(z) are some roots of unity and hence it justified
the name. Consequently, a cyclotomic polynomial P(z) is simply a product of the irreducible
polynomials Φn .

The main object is to characterise these cyclotomic polynomials in some way. The question
of characterising these polynomials arises naturally when one considers the problem of listing
all monic polynomials K(X) ∈ Z[X] of degree N whose Mahler measure lies below a given
bound. Since the cyclotomic polynomials will fall in such a class, the number of cyclotomic
polynomials provides a trivial lower bound for the computational complexity of the task (See
for instance [3]). Moreover, in [1] Borwein and Choi used this characterization to count the
explict number of cyclotomic Littlewood polynomials of even degree having odd coefficients.
Thus this number provides a trivial lower bound for the same; but for the smaller class.
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Here we are interested to study the cyclotomic polynomials whose coefficients are just±1.
More generally, the polynomials with coefficients ±1 are called Littlewood polynomials as
Borwein [2] calls. Recently, Borwein and Choi [1] proved the following theorem.

Theorem 1.1 (Borwein and Choi). A polynomial P(X) with coefficients ±1 of even degree
N − 1 is cyclotomic if and only if

P(X) = ±Φp1 (±X)Φp2(±X p1) · · ·Φpr (±X p1 p2···pr−1 ),

where N = p1 p2 · · · pr−1 pr and the pi are primes, not necessarily distinct.

Indeed, using this characterisation, Borwein and Choi [1] counted the number of such
polynomials of even degree explicitly. Now, the question is left unanswered for the odd
degree cyclotomic Littlewood polynomials. In fact, in the same paper they conjectured that
P(X) will be of the same form when N − 1 is odd. More precisely, they conjectured

C o n j e c t u r e. A polynomial P(X)with coefficients±1 of odd degree N − 1 is cyclotomic
if and only if

P(X) = ±Φp1 (±X)Φp2(±X p1) · · ·Φpr (±X p1 p2···pr−1 ),

where N = p1 p2 · · · pr−1 pr and the pi are primes, not necessarily distinct.

Borwein and Choi [1] proved this conjecture when N = 2� for any � � 1 and they have
checked this conjecture for those polynomials degree upto 210 except for the degree N = 192.

We would like to use, for the rest of this article, the following properties of n−th cyclotomic
polynomials Φn(X) which can be seen, for instance, in [4] and [5].

Lemma 1.2.

(i) Φ1(X) = X − 1, Φ2(X) = X + 1.
(ii) If (2, n) = 1, then Φ2n(X) = Φn(−X).

(iii) We have, Φpsm(X) = Φm(X ps
)/Φm(X ps−1

) whenever p 
 |m, s � 1. In other words,

Φm(X
ps
) = Φpsm(X)Φm(X

ps−1
) = Φps m(X)Φps−1m(X) · · ·Φpm(X)Φm(X),

whenever p
 |m and s � 1.
(iv) We have Φpm(X) = Φm(X p) whenever p|m.

In the same paper mentioned above, Borwein and Choi [1] proved the following theorem.

Theorem 1.3 [1]. Let N = 2t M with t � 0 and M is odd. A polynomial P(X) with odd
coefficients of degree N − 1 is cyclotomic if and only if

P(X) = ∏
d|M

Φ
ed
d (X)Φ

e2d
2d (X) · · ·Φ

e
2t+1d

2t+1d
(X),

where e� � 0 integers satisfying the following relation

ed +
t+1∑
i=1

2i−1e2i d =
{

2t for d|M, d > 1

2t − 1 for d = 1.

25*
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For the illustration of Theorem 1.3, let us consider the case N = 2p for an odd prime p. In
this case, our cyclotomic polynomial

P(X) = Φ
e1
1 (X)Φ

e2
2 (X)Φ

e4
4 (X)Φ

ep
p (X)Φ

e2p
2p (X)Φ

e4p
4p (X)

where ei satisfy e1 + e2 + 2e4 = 1 and ep + e2p + 2e4p = 2. Since ei are non-negative,
we have (e1, e2, e4) = (1, 0, 0) or (0, 1, 0) and (ep, e2p, e4p) = (1, 1, 0) or (0, 0, 1) or
(2, 0, 0) or (0,2, 0). Therefore, any cyclotomic polynomial P(X) of degree 2p− 1 will
be equal to Φ1(X)Φp(X)Φ2p(X) or Φ1(X)Φ4p(X) or Φ1(X)Φ2

p(X) or Φ1(X)Φ2
2p(X) or

Φ2(X)Φp(X)Φ2p(X) or Φ2(X)Φ4p(X) or Φ2(X)Φ2
p(X) or Φ2(X)Φ2

2p(X).

R e m a r k 1.4. In the above illustration, the case when at least one of the ei’s such that
ei � 2, we have P(X) = Φ1(X)Φ2

p(X) or P(X) = Φ1(X)Φ2
2p(X) or P(X) = Φ2(X)Φ2

p(X) or
P(X) = Φ2(X)Φ2

2p(X). Thus, in this situation our cyclotomic polynomial P(X) is not the
product of distinct factors of irreducible d−th cyclotomic polynomials.

R e m a r k 1.5. In the Theorem 1.3, the ei’s are non-negative integers. If we restrict ourself
ei to either 0 or +1, then the cyclotomic polynomial P(X) will be the product of distinct
factors of d-th irreducible cyclotomic polynomials Φd(X) as remarked in Remark 1.4. More
precisely, as in the notations of Theorem 1.3, we have

P(X) = ∏
d|M

Φ
ed
d (X)Φ

e2d
2d (X) · · ·Φ

e
2t+1d

2t+1d
(X),

where ei belongs to {0,+1} and satisfy the relation

ed +
t+1∑
i=1

2i−1e2i d =
{

2t for d|M, d > 1

2t − 1 for d = 1.

D e f i n i t i o n. A cyclotomic Littlewood polynmial P(X) is said to be square-free if P(X)
can be written as a product of distinct factors of d-th irreducible cyclotomic polynomi-
als Φd(X).

For example, consider P(X) = X5 + X4 + X3 + X2 + X + 1 which is clearly a cyclotomic
Littlewood square-free polynomial, since P(X) is equal to the product of Φ2(X)Φ3(X)Φ6(X).
On the other hand, if we consider P(X) = X5 + X4 + X3 − X2 − X − 1 is a cyclotomic
Littlewood polynomial, since P(X) = Φ1(X)Φ2

p(X); but not square free.
In this small note, we shall prove the following theorems.

Theorem 1. Let N = 2r p� for any odd prime p and for any integers �, r � 1. Let P(X) be
a square-free cyclotomic Littlewood polynomial of degree N − 1. Then if we write p1 = p2 =
. . . = pr = 2 and pr+1 = pr+2 = . . . = pr+� = p, then we have,

P(X) = ±Φp1 (±X)Φp2(X
p1) · · ·Φpr (X

p1 p2···pr−1 ) · · ·Φpr+� (±X p1 p2···pr+�−1 ).

Theorem 2. Let N = 2p for any odd prime p. Let P(X) be the cyclotomic Littlewood
polynomial of degree N − 1. Then, the conjecture is true.
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2. Proof of Theorem 1.

A Key Lemma. Let N = 2r p� for an odd prime p and for any integers r, � � 1. Let P(X)
be a square-free cyclotomic Littlewood polynomial of degree N − 1. Also, assume that the
conjecture is true for P(X). Then,

P(X) = ±Φ2(±X)Φ2(X
2)Φ2(X

22
) · · ·Φ2(X

2r−1
)Φp(±X2r

) · · ·Φp(±X2r p�−1
).

P r o o f. Given that P(X) is a square-free cyclotomic Littlewood polynomial of degree
N − 1 where N = 2r p� for an odd prime p and for an integer � � 1. Let C be a collection of
polynomials such that

C =
{
±Φ2(±X)Φ2(X

2)Φ2(X
22
) · · ·Φ2(X

2r−1
)Φp(±X2r

) · · ·Φp(±X2r p�−1
)
}
.

C l a i m 1. If P(X) ∈ C , then P(X) is a square-free cyclotomic Littlewood polynomial.
That is, in the view of Theorem 1.3, this polynomial P(X) will have the ei’s which are
belonging to {0,+1}. To prove this claim first let us observe the following;

(1) For each i = 1, 2, . . . , r and for each j = 1, 2, . . . , �− 1, we have

Φp(X
2i p j

) = Φp j+1(X2i
) (by Lemma 1.2(ii))

= Φ2i p j+1(X)Φp j+1(X2i−1
) (by Lemma 1.2(iii))

= Φ2i p j+1(X)Φ2i−1 p j+1(X)Φp j+1(X2i−2
) (by Lemma 1.2(iii))

= · · · · · · · · ·
= Φ2i p j+1(X)Φ2i−1 p j+1(X) · · ·Φ2p j+1(X)Φp j+1(X).

(2) For each i = 1, 2, . . . , r − 1 and for each j = 1, 2, . . . , �− 1 we have

Φp(−X2i p j
) = Φp j+1(−X2i

) = Φ2p j+1(X2i
) = Φ2i+1 p j+1(X)

by Lemma 1.2(ii) and (iv).
(3) For each i = 2, 3, . . . , r we have

Φ2(−X2i
) = Φ2i+1 (−X) = Φ2i+1 (X)

and

Φ2(X
2i
) = Φ2i+1 (X).

Observe that if P(X) ∈ C , then it is a cyclotomic Littlewood polynomial. Let P(X) ∈ C be
of the form, for instance, (the other cases are similar)

P(X) = −Φ2(−X)Φ2(X
2)Φ2(−X22

) · · ·Φp(−X2r
)Φp(−X2r p) · · ·

· · ·Φp(−X2r p�−2
)Φp(X

2r p�−1
)

= Φ1Φ22Φ23 · · ·Φ2r Φ2r+1 pΦ2r+1 p2 · · ·Φ2r+1 p�−1Φ2r p�Φ2r−1 p� · · ·Φ2p�Φp�

using the observations (1), (2) and (3). Therefore, in this case, in the view of Theorem 1.3,
P(X) has irreducible factors which are determined by the ei’s as follows;

(e1, e2, e22 , . . . , e2r+1 ) = (1, 0, 1, 1, . . . , 1︸ ︷︷ ︸
r−1 1′s

, 0),

(epi , e2pi , e22 pi , . . . , e2r pi , e2r+1 pi ) = (0, 0, . . . , 0︸ ︷︷ ︸
r+1 0′s

, 1)
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for all i = 1, 2, . . . , �− 1 and

(ep� , e2p� , e22 p� , . . . , e2r p� , e2r+1 p� ) = (1,1, . . . , 1︸ ︷︷ ︸
r+1 1′s

, 0).

Thus, P(X) is a square-free cyclotomic Littlewood polynomial as we have claimed.

C l a i m 2. The number of square-free cyclotomic Littlewood polynomials is equal to the
cardinality of the set C .

Note that it is fairly clear that the cardinality of the set C is 2�+2.

Now let us count the number of square-free cyclotomic Littlewood polynomials. Theo-
rem 1.3 gives a clue how to count this number. More precisely, Theorem 1.3 says that if we
let N = 2t M with t � 0 and M is odd, then a polynomial P(X)with odd coefficients of degree
N − 1 is cyclotomic if and only if

P(X) = ∏
d|M

Φ
ed
d (X)Φ

e2d
2d (X) · · ·Φ

e
2t+1d

2t+1d
(X),

where e� � 0 integers satisfying the following relation

ed +
t+1∑
i=1

2i−1e2i d =
{

2t for d|M, d > 1

2t − 1 for d = 1.

In our case t = r and M = p� for an odd prime p. Also P(X) has to have coefficients ±1 and
it is square-free. Therefore, those non-negative integers ei should be either 0 or +1 for all i
satisfying the following relations;

e1 + e2 + 2e22 + 22e23 + · · · + 2r−1e2r + 2re2r+1 = 2r − 1

and for each i = 1, 2, . . . , �

epi + e2pi + 2e22 pi + · · · + 2r−1e2r pi + 2re2r+1 pi = 2r .

Since ei’s belongs to {0,+1} and they are satisfying the above relations, it is enough to count
the number of possible cases of ei satisfying these relations. Since there are �+ 1 equations
each of them having 2 choices, the total number of choices forming different sets of solutions
of the above equations with the condition that ei ∈ {0,+1} is 2�+1. For the total number of
square-free cyclotomic polynomials, we have to multiply 2 with 2�+1 because if by letting
Q(X) = −P(X), then Q(X) is not counted in that. Thus as we claimed, the number of square-
free cyclotomic polynomials with odd coefficients is equal to 2�+2 which is the cardinality of
the set C .

By Claim 1, we have C is a subset of the set of square-free cylotomic Littlewood polyno-
mials. By Claim 2, it is clear that the cardinality of the both above mentioned sets are equal.
Thus, the set C exhaust all the square-free cyclotomic Littlewood polynomials. Hence the
lemma. ��

We shall prove the Theorem 1 inductively as follows. For our convenience, we shall define
a statement A(r, �) as follows;

A(r, �) : If P(X) is a square-free cyclotomic Littlewood polynomial of degree N − 1 where
N = 2r p� for any odd prime p and for any integers r, � � 1, then

P(X) = ±Φp1 (±X)Φp2(X
p1) · · ·Φpr (X

p1 p2···pr−1 ) · · ·Φpr+� (±X p1 p2···pr+�−1 ),

where p1 = p2 = . . . = pr = 2 and pr+1 = pr+2 = . . . = pr+� = p.
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Lemma 2.1. The statement A(r, 1) is true for all integer r � 1.

P r o o f. Let P(X) be a square-free cyclotomic Littlewood polynomial of degree N − 1
where N = 2r p for any odd prime p and any integer r � 1. In the view of Theorem 1.3, we
have

P(X) = Φ
e1
1 Φ

e2
2 Φ

e
22

22 · · ·Φ
e
2r+1

2r+1 Φ
ep
p Φ

e2p
2p Φ

e
22 p

22 p
· · ·Φe

2r+1 p

2r+1 p

where e1 + e2 +
r∑

i=1
2ie2i+1 = 2r − 1 and ep + e2p +

r∑
i=1

2ie2i+1 p = 2r . Since ei ∈ {0,+1}, there

are only four cases as follows.

C a s e 1.
(
e1, e2, . . . , e2r+1

) = (1, 0, 1, 1, . . . , 1︸ ︷︷ ︸
r−1 1′s

, 0) and
(
ep, e2p, . . . , e2r+1 p

) =
(1, 1, . . . , 1︸ ︷︷ ︸

r 1′s

, 0).

In this case, we have

P(X) = Φ1Φ22Φ23 · · ·Φ2r ΦpΦ2p · · ·Φ2r p.

Since, Φ1(X)Φ22(X)Φ23(X) · · ·Φ2r (X)=−Φ2(−X)Φ2(X2)Φ2(X22
) · · ·Φ2(X2r−1

)using Lem-
ma 1.2(i) and (iv) and since

Φp(X)Φ2p(X) · · ·Φ2r p(X)=Φp(X)
(
Φp(X

2)/Φp(X)
) · · · (Φp(X

2r
)/Φp(X

2r−1
)
)

= Φp(X
2r
),

we have

P(X) = −Φ2(−X)Φ2(X
2)Φ2(X

22
) · · ·Φ2(X

2r−1
)Φp(X

2r
)

which is of desired form.

C a s e 2.
(
(e1, e2, . . . , e2r+1

) = (1, 0, 1, 1, . . . , 1︸ ︷︷ ︸
r−1 1′s

, 0) and e2r+1 p = 1 with e2i = 0 for i =

0, 1, . . . , r.

In this case, we have

P(X) = Φ1Φ22Φ23 · · ·Φ2r Φ2r+1 p.

Since, as in the Case 1,

Φ1(X)Φ22(X)Φ23(X) · · ·Φ2r (X) = −Φ2(−X)Φ2(X
2)Φ2(X

22
) · · ·Φ2(X

2r−1
)

using Lemma 1.2(i) and (iv) and since Φ2r+1 p(X) = Φp(−X2r
), we have

P(X) = −Φ2(−X)Φ2(X
2)Φ2(X

22
) · · ·Φ2(X

2r−1
)Φp(−X2r

)

as desired.

C a s e 3.
(
(e1, e2, . . . , e2r+1

) = (0, 1, 1, . . . , 1︸ ︷︷ ︸
r−1 1′s

, 0) and e2r+1 p = 1 with e2i = 0 for i =

0, 1, · · · , r.
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In this case, we have

P(X) = Φ2Φ22Φ23 · · ·Φ2r Φ2r+1 p.

Since, as in the Case 1,

Φ2(X)Φ22(X)Φ23(X) · · ·Φ2r (X) = Φ2(X)Φ2(X
2)Φ2(X

22
) · · ·Φ2(X

2r−1
)

using Lemma 1.2(i) and (iv) and since Φ2r+1 p(X) = Φp(−X2r
), we have

P(X) = Φ2(X)Φ2(X
2)Φ2(X

22
) · · ·Φ2(X

2r−1
)Φp(−X2r

)

as desired.

C a s e 4.
(
e1, e2, . . . , e2r+1

) = (0, 1, 1, . . . , 1︸ ︷︷ ︸
r−1 1′s

, 0) and
(
(ep, e2p, . . . , e2r+1 p

) =
(1, 1, . . . , 1︸ ︷︷ ︸

r 1′s

, 0).

In this case, we have

P(X) = Φ2Φ22Φ23 · · ·Φ2r ΦpΦ2p · · ·Φ2r p.

Since, as in the Case 1,

Φ2(X)Φ22(X)Φ23(X) · · ·Φ2r (X) = Φ2(X)Φ2(X
2)Φ2(X

22
) · · ·Φ2(X

2r−1
)

using Lemma 1.2(i) and (iv) and since Φp(X)Φ2p(X) · · ·Φ2r p(X) = Φp(X)
(
Φp(X2)/Φp(X)

)
· · ·

(
Φp(X2r

)/Φp(X2r−1
)
)
= Φp(X2r

), we have

P(X) = Φ2(X)Φ2(X
2)Φ2(X

22
) · · ·Φ2(X

2r−1
)Φp(X

2r
)

as desired. Thus the statement A(r, 1) is true for every integer r � 1. ��
Lemma 2.2. If the statement A(r, �) is true for some integer � � 1, then A(r, �+ 1) is also

true.

P r o o f. Suppose the statement A(r, �) is true. Let P(X) be a square-free cyclotomic Lit-
tlewood polynomial whose degree is N − 1 where N = 2r p�+1. Since P(X) is square-free, we
have,

P(X) = Φ
e1
1 Φ

e2
2 Φ

e
22

22 · · ·Φ
e
2r+1

2r+1

�+1∏
i=1

(
Φ

e
pi

pi Φ
e
2pi

2pi Φ
e
22 pi

22 pi · · ·Φ
e
2r+1 pi

2r+1 pi

)
,

where e1+ e2+
r∑

i=1
2ie2i+1 =2r − 1 and epi + e2pi +

r∑
j=1

2 j e2 j+1 pi =2r for every i=1,2, . . . , �+ 1

and ei ∈ {0,+1} for all i.
Let Q(X) be the polynomial defined by

Q(X) = Φ
e1
1 Φ

e2
2 Φ

e
22

22 · · ·Φ
e
2r+1

2r+1

�∏
i=1

(
Φ

e
pi

pi Φ
e
2pi

2pi Φ
e
22 pi

22 pi · · ·Φ
e
2r+1 pi

2r+1 pi

)
,

where e1 + e2 +
r∑

i=1
2ie2i+1 = 2r − 1 and epi + e2pi +

r∑
j=1

2 j e2 j+1 pi = 2r for every i = 1,2, . . . , �

and ei ∈ {0,+1} for all i. Let H(X) be the polynomial defined as

H(X) = Φ
e
p�+1

p�+1 Φ
e
2p�+1

2p�+1 Φ
e
22 p�+1

22 p�+1 · · ·Φ
e
2r+1 p�+1

2r+1 p�+1 ,

where ep�+1 + e2p�+1 +
r∑

j=1
2 j e2 j+1 p�+1 = 2r and ei ∈ {0,+1} for all i.
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Now, let us compute the degree of the polynomial H(X). To do that we have to check
which ei’s are 0 and which are 1. Because of their relation, there are two cases as fol-
lows; The case (1) is (ep�+1 , e2p�+1 , . . . , e2r+1 p�+1) = (0, 0, . . . , 0︸ ︷︷ ︸

r+1 0′s

, 1) and the case (2) is

(ep�+1 , e2p�+1 , . . . , e2r+1 p�+1) = (1, 1, . . . , 1︸ ︷︷ ︸
r+1 1′s

, 0). In the first case, the degree of H(X) =

Φ2r+1 p�+1(X) is φ(2r+1 p�+1) = 2r p�(p− 1). In the second case, the degree of H(X) =
Φp�+1Φ2p�+1 · · ·Φ2r p�+1 is p�(p− 1)(1+ 1+ 2+ · · · + 2r−1) = 2r p�(p− 1). Thus in the both
the cases the degree of H(X) is 2r p�(p− 1).

Now, the degree of Q(X) is the degree of P(X) minus the degree of H(X). That is, the
degree of Q(X) is 2r p�+1 − 1− 2r p�(p− 1) = 2r p� − 1. Also note that Q(X) is a square-free
cyclotomic Littlewood polynomial of degree 2r p� − 1 with ei ∈ {0,+1}. Since by assumption,
the statement A(r, �) is true, Q(X) is of desired form.

To prove the result it is enough to prove that H(X) is of desired form and if so, by glueing
together Q(X) and H(X) we get P(X) is of desired form and hence the statement A(r, �+ 1)
is true.

C a s e 1. (ep�+1 , e2p�+1 , . . . , e2r+1 p�+1) = (0, 0, . . . , 0︸ ︷︷ ︸
r+1 0′s

, 1).

In this case,

H(X) = Φ2r+1 p�+1(X) = Φ2p(X
2r p� ) = Φp(−X2r p�)

as desired. Here we are using Lemma 1.2 (ii), (iii) and (iv).

C a s e 2. (ep�+1 , e2p�+1 , . . . , e2r+1 p�+1) = (1, 1, . . . , 1︸ ︷︷ ︸
r+1 1′s

, 0).

In this case,

H(X) = Φp�+1 (X)Φ2p�+1(X) · · ·Φ2r p�+1(X).

By Lemma 1.2 (iii) we have

Φ2i p�+1(X) = Φp(X
2i p� )/Φp(X

2i−1 p� )

for each i = r, r − 1, . . . , 2, 1. Clearly, for i and i + 1 we have,

Φ2i p�+1(X)Φ2i+1 p�+1(X) =
(
Φp(X

2i p�)/Φp(X
2i−1 p� )

)(
Φp(X

2i+1 p�)/Φp(X
2i p� )

)
= Φp(X

2i+1 p�)/Φp(X
2i−1 p�)

for i = r − 1, r − 2, . . . , 1. Therefore, clearly,

H(X) = Φp(X
2r p�)

as desired. ��
P r o o f o f t h e T h e o r e m 1. Let P(X) be a square-free cyclotomic Littlewood poly-

nomial of degree N − 1 where N = 2r p� for some odd prime p and for any integer r, � � 1.
Since by Lemma 2.1 the statement A(m, 1) is true for all integer m � 1, in pariticular, the
statement A(r, 1) is true. Now we apply Lemma 2.2 to get the statement A(r, 2) is true and
hence by applying Lemma 2.2 recursively �− 1 times, we get the statement A(r, �) is true.
Thus P(X) is of desired form. ��
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3. Proof of Theorem 2.

Theorem 2. Let N = 2p for an odd prime p. Let P(X) be a cyclotomic Littlewood poly-
nomial whose degree is N − 1 = 2p− 1. Then

P(X) = ±Φ2(±X)Φp(±X2) or ±Φp(±X)Φ2(±X p).

P r o o f. As in the notations of Theorem 1.3, in this case, we have t = 1 and M = p.
Therefore,

P(X) = Φ
e1
1 (X)Φ

e2
2 (X)Φ

e4
4 (X)Φ

ep
p (X)Φ

e2p
2p (X)Φ

e4p
4p (X)

satisfying e1 + e2 + 2e4 = 1 and ep + e2p + 2e4p = 2. Since ei are non-negative integers, there
arise eight different cases as follows.

C a s e i. ((e1, e2, e4) = (1, 0, 0) and (ep, e2p, e4p) = (1, 1, 0)).

In this case, the cyclotomic polynomial P(X) looks like

P(X) = Φ1(X)Φp(X)Φ2p(X).

Since Φ1(X) = X − 1 = −(−X + 1) = −Φ2(−X) and as (2, p) = 1, Φ2p = Φp(X2)/Φp(X)
(using Lemma 1.2(iii)), we have

P(X) = −Φ2(−X)Φp(X)Φp(X
2)/Φp(X) = −Φ2(−X)Φp(X

2)

as desired.

C a s e ii. ((e1, e2, e4) = (1, 0, 0) and (ep, e2p, e4p) = (0, 0, 1)).

Since Φ4p(X) = Φ2p(X2) = Φp(−X2) and Φ1(X) = −Φ2(−X), in this case we get

P(X) = Φ1(X)Φ4p(X) = −Φ2(−X)Φ2p(X
2) = −Φ2(−X)Φp(−X2)

as desired.

C a s e iii. ((e1, e2, e4) = (1,0, 0) and (ep, e2p, e4p) = (2, 0, 0)).

Since Φp(X) = Φ2p(−X) and Φ1(X) = −Φ2(−X), we have

Φ1(X)Φp(X)Φp(X) = −Φ2(−X)Φ2p(−X)Φp(X) = −Φp(X)Φ2(−X p)

as desired.

C a s e iv. ((e1, e2, e4) = (1, 0, 0) and (ep, e2p, e4p) = (0, 2, 0)).

Since Φ1(X)Φ2
2p(X) is a cyclotomic polynomial but not a Littlewood polynomial, since,

P(X) = X2p−1 − 3X2p−2 + 5X2p−3 − · · · − 5X2 + 3X − 1.

Therefore in this case we may not expect the desired form.
For the other cases, we simply write the result, since they are similar in nature.

(v) In this case, (e1, e2, e4) = (0, 1, 0) and (ep, e2p, e4p) = (1,1, 0). Therefore

Φ2(X)Φp(X)Φ2p(X) = Φ2(X)Φp(X
2).
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(vi) In this case, (e1, e2, e4) = (0, 1, 0) and (ep, e2p, e4p) = (0,0, 1). Therefore

Φ2(X)Φ4p(X) = Φ2(X)Φp(−X2).

(vii) In this case, (e1, e2, e4) = (0, 1, 0) and (ep, e2p, e4p) = (0,2, 0). Therefore,

Φ2(X)Φ
2
2p(X) = Φp(X)Φ2(X

p).

(viii) In this case, (e1, e2, e4) = (0, 1, 0) and (ep, e2p, e4p) = (2, 0, 0). But the polynomial
Φ2(X)Φ2

p(X) contains coefficients other than ±1 and hence it is not a Littlewood
polynomial, since,

Φ2(X)Φ
2
p(X) = 1+ 3X + 5X2 + · · · + 5X2p−3 + 3X2p−2 + X2p−1.

Thus we have exhausted all the cases, in which all cyclotomic Littlewood polynomials have
the desired form. ��

4. Concluding remarks. Let us consider the case when N = 2pq where p < q are two odd
primes. Let P(X) be the cyclotomic Littlewood polynomial whose degree is N − 1. Then if
we assume that P(X) is of one of the following forms

P(X) = ±Φ2(±X)Φp(±X2)Φq(±X2p),

then P(X) is a product of distinct factors of irreducible cyclotomic polynomials.

(1) ±Φ2(X)Φp(X2)Φq(X2p) = ±Φ2(X)Φp(X)Φ2p(X)Φq(X)Φ2q(X)ΦpqΦ2pq(X) by the
Lemma 1.2(iii). In these cases, (e1,e2,e4)= (0,1,0), (ep,e2p,e4p)= (1,1,0), (eq,e2q,e4q)

= (1,1, 0), and (epq, e2pq, e4pq) = (1, 1, 0). Clearly,

±Φ2(X)Φp(X
2)Φq(X

2p) = ±(1+ X + X2 + · · · + X2p−2 + X2p−1).

(2) ±Φ2(X)Φp(X2)Φq(−X2p) = ±Φ2(X)Φp(X)Φ2p(X)Φ4q(X)Φ4pq(X) by Lemma 1.2(ii),
(iii) and (iv). In these cases, (e1,e2,e4)= (0,1,0), (ep,e2p,e4p)= (1,1,0), (eq,e2q,e4q)=
(0, 0, 1), and (epq, e2pq, e4pq) = (0,0, 1).

(3) ±Φ2(X)Φp(−X2)Φq(X2p) = ±Φ2(X)Φ4p(X)Φq(X)Φ2q(X)Φpq Φ2pq(X) by Lem-
ma 1.2(ii), (iii) and (iv). In these cases, (e1, e2, e4) = (0,1, 0), (ep, e2p, e4p) = (0, 0, 1),
(eq, e2q, e4q) = (1,1, 0), and (epq, e2pq, e4pq) = (1, 1, 0).

(4) ±Φ2(X)Φp(−X2)Φq(−X2p) = ±Φ2(X)Φ4p(X)Φ4q(X)Φ4pq(X) using Lemma 1.2(ii),
(iii) and(iv). In these cases, (e1,e2,e4)= (0,1,0), (ep,e2p,e4p)= (0,0,1), (eq,e2q,e4q)=
(0, 0, 1), and (epq, e2pq, e4pq) = (0,0, 1).

(5) ±Φ2(−X)Φp(X2)Φq(X2p) = ∓Φ1(X)Φp(X)Φ2p(X)Φq(X)Φ2q(X)ΦpqΦ2pq(X) by the
Lemma 1.2(i) and (iii). In these cases, (e1, e2, e4) = (1, 0, 0), (ep, e2p, e4p) = (1, 1, 0),
(eq, e2q, e4q) = (1,1, 0), and (epq, e2pq, e4pq) = (1, 1, 0).

(6) ±Φ2(−X)Φp(X2)Φq(−X2p) = ∓Φ1(X)Φp(X)Φ2p(X)Φ4q(X)Φ4pq(X) by Lem-
ma 1.2(i), (ii), (iii) and (iv). In these cases, (e1,e2,e4)= (1,0,0), (ep,e2p,e4p)= (1,1,0),
(eq, e2q, e4q) = (0,0, 1), and (epq, e2pq, e4pq) = (0, 0, 1).

(7) ±Φ2(−X)Φp(−X2)Φq(X2p) = ∓Φ1(X)Φ4p(X)Φq(X)Φ2q(X)ΦpqΦ2pq(X) by Lem-
ma 1.2(i), (ii), (iii) and (iv). In these cases, (e1,e2,e4)= (1,0,0), (ep,e2p,e4p)= (0,0,1),
(eq, e2q, e4q) = (1,1, 0), and (epq, e2pq, e4pq) = (1, 1, 0).

(8) ±Φ2(−X)Φp(−X2)Φq(−X2p) = ∓Φ1(X)Φ4p(X)Φ4q(X)Φ4pq(X) by Lemma 1.2(ii),
(iii) and (iv). In these cases, (e1,e2,e4)= (1,0,0), (ep,e2p,e4p)= (0,0,1), (eq,e2q,e4q)=
(0, 0, 1), and (epq, e2pq, e4pq) = (0,0, 1).
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Thus when N = 2pq where p < q are odd primes, if any cyclotomic Littlewood polynomial
P(X) satisfying the Conjecture and which is of one of the above the above forms, then P(X)
is a square-free cyclotomic Littlewood polynomial.

Let C be a collection of polynomials defined as

C = {±Φ2(±X)Φp(±X2)Φq(±X2p)
}
.

Clearly, the cardinality of C is 24 = 16. All these 16 polynomials which we have discussed
above belong to C . As we have seen above, these polynomials are square-free. As in the Key
Lemma in Section 2, can we expect this set C to exhaust all square-free cyclotomic Littlewood
polynomials? The answer is NO. In this case, unlike the Key Lemma in Section 2, C can
not exhaust all the square-free cyclotomic Littlewood polynomials. For example, consider
the case when (e1, e2, e4) = (0, 1, 0), (ep, e2p, e4p) = (1, 1, 0), (eq, e2q, e4q) = (0, 0, 1), and
(epq, e2pq, e4pq) = (1, 1, 0). That is, we are considering the following polynomial

Φ2(X)Φp(X)Φ2p(X)Φ4q(X)Φpq(X)Φ2pq(X) = Φ2(X)Φq(−X2)Φp(X
2q).

This case was not covered in any of the above 16 cases.
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