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ABSTRACT. In this article, we shall study a problem of the following nature.
Given a natural number N > 2, does there exist a positive integer po(N) such
that for every prime p > po(N), thereis x € (Z/pZ)" with x,z+1,--- ,2+N—1
are all quadratic residues (respectively, quadratic non-residues) modulo p?. In
1928, Brauer [3] proved the existence of pg(N) for quadratic residues as well as
quadratic non-residues mod p. In this article, we shall give an explicit bound
for po(IV) for both the cases. Also, we study a related problem in this direction.

1. INTRODUCTION

For any prime number p, the distribution of residues modulo p has been of great
interest to Number Theorists for many decades. The set of all non-zero residues
modulo p can be divided into two classes, namely, the set of all quadratic residues
(or squares) and quadratic non-residues (or non-squares) modulo p. In natural
numbers, there are no consecutive squares as the difference of two consecutive
squares is at least twice of the least one. In modulo p situation, one can expect a
string of consecutive squares. In this article, we deal with the following question,
first dealt by Brauer [3].

Question. For any given natural number N > 2, can we find an integer po(NN)
such that for every prime p > po(NN), there exists an element x € (z/pz)* with
r,x+ 1,z +2,--- o+ N — 1 are all quadratic residues (respectively, quadratic
non-residues) modulo p? If po(NN) exists, then can we find the explicit value?

In 1928, Brauer [3] answered the above question and proved the existence of
po(N) for quadratic residues and non-residues cases.

For a given prime p, the set of all non-residues modulo p can be, further, divided
into two classes, namely, the set of all primitive roots (or generators of (Z/pz)")
and non-residues which are not primitive roots modulo p.

In 1956, L. Carlitz [5] answered the above question for the set of all primitive
roots modulo p and proved the existence of py(/V) in this case. This was indepen-
dently proved by Szalay [25] and [26]. Recently, Gun et al. in [13], [14] and [19],
answered the above question for the complementary case and gave an explicit
value of po(IV) in that case.
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It is worth to mention that Vegh [28], [29], [30] and [31] also, studied similar
related problems for case of primitive roots modulo p.

Another related problem along this direction was considered by D. H. Lehmer
and E. Lehmer [18] as follows.

Definition. Let N > 2 be an integer and p be a sufficiently large prime number.
Define (N, p) (respectively n(N,p)) to be the least positive integer r such that

ror+1,---,r+N—1

are all quadratic residues (respectively, quadratic non-residues) mod p.

Define
['(N) = limsup r(N,p); v(N) = liminf r(N,p)

P00 p—00
and
A(N) = limsupn(N, p); d(N) = liminf n(N, p).

P00 p—00

In [18], they proved that I'(2) = 9 and I'(N) = oo for all N > 3. In this article,
while surveying these results, we prove the upper bounds for py(V) for the case
of quadratic residues and non-residues modulo p. Also, we discuss the values of

A(N),~v(N) and 6(N) for every N > 2.
2. QUADRATIC RESIDUES MODULO p
We shall start with the following theorem.
Theorem 1. Let N > 2 be a given integer and p(N) denote the least prime

number which is > N. Then there are infinitely many primes p which are = 1
(mod 4) such that

all are quadratic residues modulo p.
Remark. The idea of the proof this theorem lies in the paper [22] of S. S. Pillai.

Proof. Let N > 2 be a given integer. First we claim that if p = 4m + 1, then any
divisor d of m is a quadratic residue modulo p.

If a and b are quadratic residues mod p, then ab is a quadratic residue modulo
p. Therefore, it is enough to prove the claim for any prime divisor of m.

Let ¢ be a prime divisor of m. If ¢ = 2, then p = 1 (mod 8). Therefore, by
quadratic reciprocity law, we get,

(%) ()0 g,
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Let ¢ be an odd prime. Then, by the quadratic reciprocity law, we have

§-(3-()
p q q
since ¢|m and hence p — 1 =0 (mod ¢). Thus, the claim follows.

Consider the sequence of positive integers
S:=4(N)+1,2(4(N)) + 1,3(4ND)) + 1, Jk(4(ND)) +1,---.

Then the Dirichlet Prime Number Theorem predicts that there are infinitely many
prime numbers ¢ in this sequence S. For these primes, by the above claim, we
see that 1,2,---, N are all quadratic residues.

Also, note that —1 is a quadratic residues modulo these primes ¢, as ¢ = 1
(mod 4). Therefore for these primes, —1,—2,--- | —N are all quadratic residues
modulo q.

Note that for any given N, the integers N + 1,N +2,--- ;p(N) — 1 are all
composed of primes that are less than or equal to N. This is because, by the
definition of p(N), there is no prime in between N + 1 to p(N) — 1. Hence, by
the above observation, every divisor of N +1, N 4+2,---  p(N) —1 is a quadratic
residue modulo g. Hence, N + 1, N +2,--- p(N) — 1 are all quadratic residues
modulo ¢. Thus, the theorem follows. |

Remark. For any prime ¢ satisfying Theorem 1, any quadratic non-residue
modulo ¢ lies between p(/N) and —p(/N) modulo q.

We give a new proof of the result of Brauer [3] with explicit value py(IN) as
follows.

N24+10
Theorem 2. Let N > 2 be an integer. Then for every prime p > exp (222 ),

we can find v, x+1,2+2, - ,x+N—1, for some x € (Z/pZ)*, which are quadratic
residues modulo p.

The proof of Theorem 2 is an application of the celebrated Theorem of T.
Gowers [11] which states as follows.

Theorem A. (T. Gowers, [11]) Let M > 2 be any integer and 0 < § < 1.
oM~+9

Then whenever L > L(M, ) = exp (52 ), any subset A C {1,2,---, L} with
|A| > 0L contains an arithmetic progression of length M.

Proof of Theorem 2. Let N > 2 be a given integer. Let p be any prime such that
N2410
p > exp (222 ) Let A be denote the set of all quadratic residues modulo p.
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-1 1
Therefore, |A| = pT Pt L=p—-1,6= 5 and M = N? + 1 in Theorem A.

Clearly, by the hypothesis, L satisfies the conditions of Theorem A and hence
there exists an arithmetic progression

a,a+d,a+2d,--- ,a+ N*d

of length N2+ 1 in A. That means, a,a+d,a+2d,--- ,a+ N?d are all quadratic
residues modulo p.

If d is a quadratic residue modulo p, then so is d~'. Thus, we get
adt,ad ' +1,--- ,ad”t + N?

are all quadratic residues modulo p and we are done.

Suppose d is a quadratic non-residue modulo p. If there is » < N such that r
is a quadratic non-residue modulo p, then rd is a quadratic residue modulo p and
so is (rd)~!. Hence, we have a sub arithmetic progression

a+rd,a+2rd,--- ,a+ Nrd

all are quadratic residues modulo p with the difference rd is also a quadratic
residue modulo p. Therefore, we get,

a(rd)™ + La(rd)™ +2,--+ ;a(rd) " + N

are all quadratic residue modulo p and we are done again.

If there is no r < N such that r is a quadratic non-residue modulo p, then
1,2,---, N are quadratic residue modulo p and we have done. Thus the theorem
follows. 0

Theorem 3. (Lehmer and Lehmer, [18]) I'(2) = 9 and I'(N) = oo for all N > 3.
Also, v(N) =1 for all N > 2.

Proof. First we shall prove that I'(2) < 9. It is enough to prove that r(2,p) <9
for every prime p > 11. If 10 is a quadratic non-residue mod p, then either 2 or 5
are quadratic residue mod p. Hence (1,2) or (4,5) are pairs of quadratic residues
mod p. If 10 is a quadratic residue mod p, then (9,10) is a pair of quadratic
residue mod p. Also, this happens for all prime p > 11. Thus I'(2) < 9. To see
the equality, it is enough to prove that r(2,p) = 9 for infinitely many primes p.
That is to prove that 10 is a quadratic residue modulo p for infinitely many primes
p. However, this is, indeed, true. For instance (for the reference, see Chapter 7 in
8]), the primes p =1 (mod 40) for which 10 is a quadratic residue mod p and by
Dirichlet’s Prime Number Theorem, we have infinitely many such primes. Hence
I'(2) = 9 follows.

To prove I'(N) = oo, for all N > 3, it is enough to prove that I'(3) = oo, as
if I'(M) = m < oo for some M > 3, then it follows that I'(3) < m. To prove
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['(3) = oo, it suffices to prove that for any given positive integer R, we have
r(3,p) > R for infinitely many primes p.

Let R be a given positive integer. Let q1,q2,- - , ¢y be all the primes ¢ < R.
By quadratic reciprocity law, we know that primes p for which ¢; is a quadratic
residue (respectively, quadratic non-residue) modulo p belong to the set (respec-
tively, the different set) of arithmetic progressions of common difference 4¢;. List
those primes p for which ¢; is a quadratic residue modulo p and ¢; = 1 (mod 3)
and those primes p for which g; is a quadratic non-residue modulo p and ¢; = —1
(mod 3). Combine the progressions of the first kind with those of the second
kind. By Dirichlet’s Prime Number Theorem, there are infinitely many primes p
such that

(%) —q (mod3) (¢£3.q<R).
Therefore, by the multiplicativity of the Legendre symbols, we conclude that

(%) =m (mod3) (m#0 (mod3),m<R).

Among any three consecutive positive integers < R, there is an integer m = —1
(mod 3) and for which

(%) =1 (mod3) — (%) =1

Thus, we get 7(3,p) > R.

To see, v(N) =1 for all N > 2, we apply Theorem 1. By Theorem 1, we have

infinitely many primes for which 1,2,--- /N are all quadratic residues modulo
these primes. Therefore, (N, p) = 1 for infinitely many primes p. Hence v(N) =
1 for all N > 2. O

3. QUADRATIC NON-RESIDUES MODULO p

The proof of Theorem 2, in general, doesn’t work, if we replace the quadratic
residues by quadratic non-residues. By Theorem 1, it is clear that for infinitely
many primes p = 1 (mod 4), the first quadratic non-residue r is > p(N) > N
for any given N > 2. Hence the proof of Theorem 2 doesn’t work in this case.
However, it does work for some cases as follows.

Theorem 4. Let N > 2 be an integer. Then for every prime p which is = £3
2N+10

2 >, we can find v € (2/pZ)" such that x,x + 1,z +

2,---,x+ N —1 are all quadratic non-residues modulo p.

(mod 8) and p > exp (2

Proof. Proceeding as in the proof of Theorem 2 for p = £3 (mod 8) and A equal
to the set of all quadratic non-residues mod p, we get an arithmetic progression

a,a+d,a+2d,--- ,a+2Nd
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each of which is quadratic non-residue modulo p.

If d is a quadratic residue modulo p, then so is d~!. Hence, we get
ad tad '+ 1,ad7 ' +2,- Jad P+ N

are all quadratic non-residues modulo p.

Suppose d is a quadratic non-residue modulo p. When p = +3 (mod 8), we
know that 2 is a quadratic non-residue modulo p. Hence 2d is a quadratic non-
residue modulo p. Thus, we get,

a(2d)' +1,a(2d)"" +2,--+ ,a(2d) "' + N

are all quadratic residues modulo p. Therefore, the result follows. Il

To generalize the idea of the proof of Theorem 4, we need the following lemmas.
Though the following lemma is well-known, for the sake of completeness, we
include the proof here. To prove the proposition, we need the following theorem.

Let n > 1 be an integer and m be an integer such that 1 < m < n and
(m,n) = 1. Let 7(xz,n,m) be denote the number of primes p < z and p = m
(mod n) and ¢(n) denote the Euler Phi-function which counts the number of
integers m with 1 < m < n and (m,n) = 1. Then Siegel-Walfisz theorem states
as follows.

Siegel-Walfisz Theorem. (see e.g., [23], Satz 4.8.3) For any A > 1, we have

w(z,n,m) = % +0 ((1o;w)A>

holds for all large enough x.

Proposition 5. Let n > 1 be any integer which is not a perfect square of an
integer. Then, for all large enough x, we have,

> (%) = oteta

where 7(x) counts the number of primes upto x.
Proof. Define a map

X : (z/nz)" — {£1}
by

x(m) = (%) for every 1 <m <n, (m,n) =1,
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n

where (£) is the Kronecker symbol. Note that when m = 1, we define x(1) = 1.
By the multiplicativity of the Kronecker symbol, it is clear that X is a character
modulo n. Hence, by the orthogonality relation, we get

> x(m)=o.

1<m<n
(m,n)=1

For simplicity, we define,

Now, consider

S3H- X L (H- X %

p<z ¢ (mod n) (mod n) ¢ (mod n) (mod n)
p<:(: p<a:

By interchanging the summation, we get,

n
S(E)- X o
p<lz p £ (mod n)*

where 7(x, n, £) denotes the number of primes p = ¢ (mod n) and p < x. Walfisz’s
Theorem implies that for any fixed integer A > 1, we have

m(z,n,l) = % +0 <m)

for every large enough x. Therefore, we get,

) =75 x(6) +0 (—A :
p<z (p gb(n) ¢ (mod n)* (log CL’)

By the orthogonality relation, we, further, get,

2 () =0 Gagay) =it

p<z

Hence the lemma. O

Corollary 6. For any integer s > 2 which is not a perfect square of an integer,
then there are infinitely many primes p for which s is a quadratic non-residue
modulo p.

Proof. If there are only finitely many primes, say, py, p2, - - - , p, for which s is a
quadratic non-residue, then for any x > p,

> (2) =)~ # ofata)

p<x p
PEDi
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a contradiction to Proposition 5. Hence, there are infinitely many primes p for
which s is a quadratic non-residue modulo p. O

Remark. Since 3 is a quadratic non-residue modulo p for every prime p = £5
3N+10
(mod 12), we see that for every prime p = +5 (mod 12) and p > exp (222 ),

we can find x € (Z/pZ)" such that x,x+1,--- ,x+N—1 are quadratic non-residue

modulo these primes. More generally, let f(IN) denotes an increasing function of

225f(N)+10 >

N. Then we can find infinitely many primes satisfying p > exp <2 where

2 < s < f(N) is not a perfect square of an integer and s is a quadratic non-residue
for these primes (by Corollary 6). Then these primes satisfy the conclusion of
Theorem 3.

Theorem 7. A(N) = oo for all N > 2.

Proof. Theorem 1 implies that there is a sequence of primes pq, po, -+ ,py, - - - , for
which n(N, p;) > N for all i. Therefore A(N) > p(NNV) (the smallest prime p > N)
for all N > 2. However, the least quadratic non-residue modulo p (denoted
by g(p)) satisfies g(p) > (logp)(logloglogp) (this result is due to Graham and
Ringrose [10]) for infinitely many primes p. Therefore, n(N, p) > (log p)(log log p)
for infinitely many primes p and consequently, we get, A(N) = oc. O

Regarding d(N), first we prove that 6(2) = 2. For that we need to prove 2
and 3 are quadratic non-residues modulo p for infinitely many primes p. In [12],
Gupta and Murty proved, using sieve theory, that

2 3
#{péw:p—1=2q0r2q1qQ,(—)=<—>=—1}2 C‘f
p p log® x

for some ¢ > 0. Therefore, by taking x — oo, we get there are infinitely many
primes p for which 2, 3 are quadratic non-residues mod p. Thus, §(2) = 2 follows.

When N = 3, we can prove that §(3) = 5. Clearly, 6(3) > 5, because, 1 and 4
are perfect squares. For the upper bound, we need to prove 5,6, 7 are quadratic
non-residues modulo p for infinitely many primes p. This has been achieved in
[4]. Hence, §(3) = 5.

N-1 ?
In general, we can prove 6(N) > ({T} + 1) + 1. For, note that for a

given integer N > 2, the least positive integer my satisfying m% < N < (my+1)?
is my = [(N —1)/2]+ 1. Therefore, n(N,p) > m3 + 1 for all but possibly finitely

, N-1 2
many primes p. Hence 6(N) > — +1) +1.

In the case of primitive roots modulo p, as we mentioned in the introduction,
Carlitz [5] and Szalay [25] and [26] proved the existence of po(N). In [14] and
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[19], we proved the existence of py(IN) for the case of non-residues which are not
the primitive roots modulo p. Also we proved an upper bound for po(N). In fact,
in [19], we proved the following result which improves the result in [14].

Theorem B. Let ¢ € (0,1/2) be fized and let N > 2 be an integer. If
p > maX{N2(4/g)2N, N651N10glog(10N)}

s a prime satisfying

¢op—1) _ 1 _ ‘.
p—1 — 2
then there are N consecutive integers n,...,n + N — 1 that are quadratic non-

restdues but not primitive roots modulo p.

It is also possible to give a bound similar to Theorem B for p,(N) for the
primitive root mod p case.

In 1976, Hausman [15] proved the existence of p, such that for every prime p >
Do, there exists an integer g < p—1 and (g, p—1) = 1 such that g is a primitive root
modulo p. Recently, R. Thangadurai [27] proved that py < e''*® ~ 1.318 x 10",

4. RELATED PROBLEM

Another related question is as follows. For a given non-empty subset S =
{a1,as,...,a,} of Z, can we find infinitely many primes p such that every element
of S is a quadratic residue (respectively, non-residue) modulo p? If yes, what is
the density of such primes for a given subset S7

In 1968, M. Fried [9] answered that there are infinitely many primes p for
which a is a quadratic residue modulo p for every a € S. Also, he provided a
necessary and sufficient condition for a to be a quadratic non-residue modulo p for
every a € S. More recently, S. Wright [32] and [33] also studied this qualitative
problem.

For a given prime p, the set of all quadratic non-residue modulo p is a disjoint
union of the set of all generators g of (Z/pZ)* (which are called primitive roots
modulo p) and the complement set contains all the non-residues which are not
primitive roots modulo p.

A set P of prime numbers is said to have the relative density ¢ with 0 < e <1,
if
PNl
e ()
exits. Also, the following numbers count some special subsets of S.
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(i) Let ag denote the number of subsets T of S, including the empty one,

such that |T'| is even and H s =m? for some integer m; hence, ag > 1

seT
for every S.

(ii) Let Os denote the number of subsets T" of S such that |T| is odd and
H s = m? for some integer m.
seT

Then the following theorems were proved by R. Balasubramanian, F. Luca and
R. Thangadurai [2].

Theorem 8. ([2], 2010) The relative density of the set of prime numbers p for
which a is a quadratic residue modulo p for every a € S is

ag + fBs
2t '

Theorem 9. ([2], 2010) We have, S5 = 0 if and only if the density of the set of
primes p for which a is a quadratic non-residue modulo p for every a € S is

Qg

y.

We shall present the proof of Theorem 8 and Theorem 9 follows similarly.

Proof of Theorem 8. Let P(S) be the set of all distinct prime factors of ajas - - - ay.
Clearly, |P(S)| is finite. Let x > 1 be a real number. Consider the following
counting function

w3 5 ()0 6)

p€P(S)

Since the Legendre symbol is completely multiplicative, (%) (—) = (aiaj )7
p
we see that
1 n 1 n
s=x X ¥ (5)- X 2 (5)
p<z - 0<b;i<1 0<b;i<1 p<a

PEP(S) p=all...alt n=all.alt  PEP(S)

Note that if n is a perfect square, then <2) =1 for each p ¢ P(S). Thus, for
b
these ag + (g values of n, the inner sum is

% 3 (g) :%w(@—wsm-

p<w
pgP(S)
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For the remaining values of n (i.e., when n is not a perfect square), we apply
Proposition 5 to get

% 3 (g) —o(n(z)) as x— oo.

pé)%gjs)
Therefore, X
Sz = gyas + fs)(n(z) = [P(S)]) + o(m(2))
and hence
Sx _O‘S+65 . ’P(S)‘ 0
= () e

Since |P(S)| is a finite number and it is elementary to see that as © — oo,
m(x) — oo, we get

. Sx ag + BS
lim = .
z—oo () 2t
This completes the proof of Theorem 8. 0

This can be applied to the quadratic non-residue case as well. Take

w2 () ()

pEP(S)
and proceed as in the proof of Theorem 8. This yields Theorem 9.

For a given prime p, the set of all quadratic non-residue modulo p is a disjoint
union of the set of all generators g of (z/pz)* (which are called primitive roots
modulo p) and the complement set contains all the non-residues which are not
primitive roots modulo p.

In 1927, E. Artin [1] conjectured the following;

Artin’s primitive root conjecture. Let g # +1 be a square-free integer. Then
there are infinitely many primes p such that ¢ is a primitive root modulo p.

Note that it is not even known that for a given square-free integer, g # +1,
there exists a prime p such that g is a primitive root modulo p. The above
Artin’s conjecture asks for the existence infinitely many such primes. In 1967,
Hooley [17] proved this conjecture assuming the (as yet) unresolved genearlized
Riemann hypothesis for Dedekind zeta functions of certain number fields. In
1983, R. Gupta and M. R. Murty [12] made the first breakthrough by showing
the following: given three prime numbers a, b, ¢, then at least one of the thirteen
numbers

{ac2, adb?, b, b3e, b2e, ac?, ab®, a®bc?, be?, a*bie, a’e, ab?c?, abc}
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is a primitive root modulo p for infinitely many primes p. Then later Heath-Brown
[16] proved that {a, b, ¢} one is primitive root modulo p for infinitely many primes
p. Similarly, using the method of Hooley, in 1976, K. R. Matthews [20] found a
necessary and sufficient condition for a to be primitive root modulo p for every
a € S, under unproved hypothesis.

Analogue question for a non-residue which is not a primitive root modulo a
prime is relatively easier to handle. For example, in [21] it is proved that for
a given g which is not a perfect square of an integer, there are infinitely many
primes p for which ¢ is a quadratic non-residue but not a primitive root modulo
p, using the arithmetic of certain number fields. Of course computing the density
of such primes is not done yet.
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