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Abstract. In this article, we shall study a problem of the following nature.
Given a natural number N ≥ 2, does there exist a positive integer p0(N) such
that for every prime p ≥ p0(N), there is x ∈ (Z/pZ)∗ with x, x+1, · · · , x+N−1
are all quadratic residues (respectively, quadratic non-residues) modulo p?. In
1928, Brauer [3] proved the existence of p0(N) for quadratic residues as well as
quadratic non-residues mod p. In this article, we shall give an explicit bound
for p0(N) for both the cases. Also, we study a related problem in this direction.

1. Introduction

For any prime number p, the distribution of residues modulo p has been of great
interest to Number Theorists for many decades. The set of all non-zero residues
modulo p can be divided into two classes, namely, the set of all quadratic residues
(or squares) and quadratic non-residues (or non-squares) modulo p. In natural
numbers, there are no consecutive squares as the difference of two consecutive
squares is at least twice of the least one. In modulo p situation, one can expect a
string of consecutive squares. In this article, we deal with the following question,
first dealt by Brauer [3].

Question. For any given natural number N ≥ 2, can we find an integer p0(N)
such that for every prime p ≥ p0(N), there exists an element x ∈ (Z/pZ)∗ with
x, x + 1, x + 2, · · · , x + N − 1 are all quadratic residues (respectively, quadratic
non-residues) modulo p? If p0(N) exists, then can we find the explicit value?

In 1928, Brauer [3] answered the above question and proved the existence of
p0(N) for quadratic residues and non-residues cases.

For a given prime p, the set of all non-residues modulo p can be, further, divided
into two classes, namely, the set of all primitive roots (or generators of (Z/pZ)∗)
and non-residues which are not primitive roots modulo p.

In 1956, L. Carlitz [5] answered the above question for the set of all primitive
roots modulo p and proved the existence of p0(N) in this case. This was indepen-
dently proved by Szalay [25] and [26]. Recently, Gun et al. in [13], [14] and [19],
answered the above question for the complementary case and gave an explicit
value of p0(N) in that case.
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It is worth to mention that Vegh [28], [29], [30] and [31] also, studied similar
related problems for case of primitive roots modulo p.

Another related problem along this direction was considered by D. H. Lehmer
and E. Lehmer [18] as follows.

Definition. Let N ≥ 2 be an integer and p be a sufficiently large prime number.
Define r(N, p) (respectively n(N, p)) to be the least positive integer r such that

r, r + 1, · · · , r +N − 1

are all quadratic residues (respectively, quadratic non-residues) mod p.

Define

Γ(N) = lim sup
p→∞

r(N, p); γ(N) = lim inf
p→∞

r(N, p)

and

∆(N) = lim sup
p→∞

n(N, p); δ(N) = lim inf
p→∞

n(N, p).

In [18], they proved that Γ(2) = 9 and Γ(N) = ∞ for all N ≥ 3. In this article,
while surveying these results, we prove the upper bounds for p0(N) for the case
of quadratic residues and non-residues modulo p. Also, we discuss the values of
∆(N), γ(N) and δ(N) for every N ≥ 2.

2. Quadratic Residues modulo p

We shall start with the following theorem.

Theorem 1. Let N ≥ 2 be a given integer and p(N) denote the least prime
number which is > N . Then there are infinitely many primes p which are ≡ 1
(mod 4) such that

1, 2, · · · , p(N)− 1,−p(N) + 1,−p(N) + 2, · · · ,−1

all are quadratic residues modulo p.

Remark. The idea of the proof this theorem lies in the paper [22] of S. S. Pillai.

Proof. Let N ≥ 2 be a given integer. First we claim that if p = 4m+ 1, then any
divisor d of m is a quadratic residue modulo p.

If a and b are quadratic residues mod p, then ab is a quadratic residue modulo
p. Therefore, it is enough to prove the claim for any prime divisor of m.

Let q be a prime divisor of m. If q = 2, then p ≡ 1 (mod 8). Therefore, by
quadratic reciprocity law, we get,(

2

p

)
= (−1)(p2−1)/8 = 1.
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Let q be an odd prime. Then, by the quadratic reciprocity law, we have(
q

p

)
=

(
p

q

)
=

(
1

q

)
= 1,

since q|m and hence p− 1 ≡ 0 (mod q). Thus, the claim follows.

Consider the sequence of positive integers

S := 4(N !) + 1, 2(4(N !)) + 1, 3(4(N !)) + 1, · · · , k(4(N !)) + 1, · · · .
Then the Dirichlet Prime Number Theorem predicts that there are infinitely many
prime numbers q in this sequence S. For these primes, by the above claim, we
see that 1, 2, · · · , N are all quadratic residues.

Also, note that −1 is a quadratic residues modulo these primes q, as q ≡ 1
(mod 4). Therefore for these primes, −1,−2, · · · ,−N are all quadratic residues
modulo q.

Note that for any given N , the integers N + 1, N + 2, · · · , p(N) − 1 are all
composed of primes that are less than or equal to N . This is because, by the
definition of p(N), there is no prime in between N + 1 to p(N) − 1. Hence, by
the above observation, every divisor of N + 1, N + 2, · · · , p(N)− 1 is a quadratic
residue modulo q. Hence, N + 1, N + 2, · · · , p(N) − 1 are all quadratic residues
modulo q. Thus, the theorem follows. �

Remark. For any prime q satisfying Theorem 1, any quadratic non-residue
modulo q lies between p(N) and −p(N) modulo q.

We give a new proof of the result of Brauer [3] with explicit value p0(N) as
follows.

Theorem 2. Let N ≥ 2 be an integer. Then for every prime p > exp

(
222N2+10

)
,

we can find x, x+1, x+2, · · · , x+N−1, for some x ∈ (Z/pZ)∗, which are quadratic
residues modulo p.

The proof of Theorem 2 is an application of the celebrated Theorem of T.
Gowers [11] which states as follows.

Theorem A. (T. Gowers, [11]) Let M ≥ 2 be any integer and 0 < δ < 1.

Then whenever L ≥ L(M, δ) = exp
(
δ22M+9

)
, any subset A ⊂ {1, 2, · · · , L} with

|A| ≥ δL contains an arithmetic progression of length M .

Proof of Theorem 2. Let N ≥ 2 be a given integer. Let p be any prime such that

p > exp

(
222N2+10

)
. Let A be denote the set of all quadratic residues modulo p.
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Therefore, |A| = p− 1

2
. Put L = p − 1, δ =

1

2
and M = N2 + 1 in Theorem A.

Clearly, by the hypothesis, L satisfies the conditions of Theorem A and hence
there exists an arithmetic progression

a, a+ d, a+ 2d, · · · , a+N2d

of length N2 + 1 in A. That means, a, a+d, a+ 2d, · · · , a+N2d are all quadratic
residues modulo p.

If d is a quadratic residue modulo p, then so is d−1. Thus, we get

ad−1, ad−1 + 1, · · · , ad−1 +N2

are all quadratic residues modulo p and we are done.

Suppose d is a quadratic non-residue modulo p. If there is r ≤ N such that r
is a quadratic non-residue modulo p, then rd is a quadratic residue modulo p and
so is (rd)−1. Hence, we have a sub arithmetic progression

a+ rd, a+ 2rd, · · · , a+Nrd

all are quadratic residues modulo p with the difference rd is also a quadratic
residue modulo p. Therefore, we get,

a(rd)−1 + 1, a(rd)−1 + 2, · · · , a(rd)−1 +N

are all quadratic residue modulo p and we are done again.

If there is no r ≤ N such that r is a quadratic non-residue modulo p, then
1, 2, · · · , N are quadratic residue modulo p and we have done. Thus the theorem
follows. �

Theorem 3. (Lehmer and Lehmer, [18]) Γ(2) = 9 and Γ(N) =∞ for all N ≥ 3.
Also, γ(N) = 1 for all N ≥ 2.

Proof. First we shall prove that Γ(2) ≤ 9. It is enough to prove that r(2, p) ≤ 9
for every prime p ≥ 11. If 10 is a quadratic non-residue mod p, then either 2 or 5
are quadratic residue mod p. Hence (1, 2) or (4, 5) are pairs of quadratic residues
mod p. If 10 is a quadratic residue mod p, then (9, 10) is a pair of quadratic
residue mod p. Also, this happens for all prime p ≥ 11. Thus Γ(2) ≤ 9. To see
the equality, it is enough to prove that r(2, p) = 9 for infinitely many primes p.
That is to prove that 10 is a quadratic residue modulo p for infinitely many primes
p. However, this is, indeed, true. For instance (for the reference, see Chapter 7 in
[8]), the primes p ≡ 1 (mod 40) for which 10 is a quadratic residue mod p and by
Dirichlet’s Prime Number Theorem, we have infinitely many such primes. Hence
Γ(2) = 9 follows.

To prove Γ(N) = ∞, for all N ≥ 3, it is enough to prove that Γ(3) = ∞, as
if Γ(M) = m < ∞ for some M > 3, then it follows that Γ(3) ≤ m. To prove
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Γ(3) = ∞, it suffices to prove that for any given positive integer R, we have
r(3, p) ≥ R for infinitely many primes p.

Let R be a given positive integer. Let q1, q2, · · · , qm be all the primes q ≤ R.
By quadratic reciprocity law, we know that primes p for which qi is a quadratic
residue (respectively, quadratic non-residue) modulo p belong to the set (respec-
tively, the different set) of arithmetic progressions of common difference 4qi. List
those primes p for which qi is a quadratic residue modulo p and qi ≡ 1 (mod 3)
and those primes p for which qj is a quadratic non-residue modulo p and qi ≡ −1
(mod 3). Combine the progressions of the first kind with those of the second
kind. By Dirichlet’s Prime Number Theorem, there are infinitely many primes p
such that (

q

p

)
≡ q (mod 3) (q 6= 3, q ≤ R).

Therefore, by the multiplicativity of the Legendre symbols, we conclude that(
m

p

)
≡ m (mod 3) (m 6≡ 0 (mod 3),m ≤ R).

Among any three consecutive positive integers ≤ R, there is an integer m ≡ −1
(mod 3) and for which(

m

p

)
≡ −1 (mod 3) =⇒

(
m

p

)
= −1.

Thus, we get r(3, p) ≥ R.

To see, γ(N) = 1 for all N ≥ 2, we apply Theorem 1. By Theorem 1, we have
infinitely many primes for which 1, 2, · · · , N are all quadratic residues modulo
these primes. Therefore, r(N, p) = 1 for infinitely many primes p. Hence γ(N) =
1 for all N ≥ 2. �

3. Quadratic Non-Residues modulo p

The proof of Theorem 2, in general, doesn’t work, if we replace the quadratic
residues by quadratic non-residues. By Theorem 1, it is clear that for infinitely
many primes p ≡ 1 (mod 4), the first quadratic non-residue r is ≥ p(N) > N
for any given N ≥ 2. Hence the proof of Theorem 2 doesn’t work in this case.
However, it does work for some cases as follows.

Theorem 4. Let N ≥ 2 be an integer. Then for every prime p which is ≡ ±3

(mod 8) and p > exp
(

2222N+10
)

, we can find x ∈ (Z/pZ)∗ such that x, x + 1, x +

2, · · · , x+N − 1 are all quadratic non-residues modulo p.

Proof. Proceeding as in the proof of Theorem 2 for p ≡ ±3 (mod 8) and A equal
to the set of all quadratic non-residues mod p, we get an arithmetic progression

a, a+ d, a+ 2d, · · · , a+ 2Nd
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each of which is quadratic non-residue modulo p.

If d is a quadratic residue modulo p, then so is d−1. Hence, we get

ad−1, ad−1 + 1, ad−1 + 2, · · · , ad−1 +N

are all quadratic non-residues modulo p.

Suppose d is a quadratic non-residue modulo p. When p ≡ ±3 (mod 8), we
know that 2 is a quadratic non-residue modulo p. Hence 2d is a quadratic non-
residue modulo p. Thus, we get,

a(2d)−1 + 1, a(2d)−1 + 2, · · · , a(2d)−1 +N

are all quadratic residues modulo p. Therefore, the result follows. �

To generalize the idea of the proof of Theorem 4, we need the following lemmas.
Though the following lemma is well-known, for the sake of completeness, we
include the proof here. To prove the proposition, we need the following theorem.

Let n > 1 be an integer and m be an integer such that 1 ≤ m ≤ n and
(m,n) = 1. Let π(x, n,m) be denote the number of primes p ≤ x and p ≡ m
(mod n) and φ(n) denote the Euler Phi-function which counts the number of
integers m with 1 ≤ m ≤ n and (m,n) = 1. Then Siegel-Walfisz theorem states
as follows.

Siegel-Walfisz Theorem. (see e.g., [23], Satz 4.8.3) For any A > 1, we have

π(x, n,m) =
π(x)

φ(n)
+O

(
x

(log x)A

)
holds for all large enough x.

Proposition 5. Let n > 1 be any integer which is not a perfect square of an
integer. Then, for all large enough x, we have,∑

p≤x

(
n

p

)
= o(π(x)),

where π(x) counts the number of primes upto x.

Proof. Define a map

χ : (Z/nZ)∗ −→ {±1}
by

χ(m) =
( n
m

)
for every 1 ≤ m ≤ n, (m,n) = 1,
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where
(

n
m

)
is the Kronecker symbol. Note that when m = 1, we define χ(1) = 1.

By the multiplicativity of the Kronecker symbol, it is clear that χ is a character
modulo n. Hence, by the orthogonality relation, we get∑

1≤m≤n
(m,n)=1

χ(m) = 0.

For simplicity, we define, ∑
m (mod n)∗

:=
∑

1≤m≤n
(m,n)=1

.

Now, consider∑
p≤x

(
n

p

)
=

∑
` (mod n)∗

∑
p≡` (mod n)

p≤x

(n
`

)
=

∑
` (mod n)∗

∑
p≡` (mod n)

p≤x

χ(`).

By interchanging the summation, we get,∑
p≤x

(
n

p

)
=

∑
` (mod n)∗

χ(`)π(x, n; `),

where π(x, n, `) denotes the number of primes p ≡ ` (mod n) and p ≤ x. Walfisz’s
Theorem implies that for any fixed integer A > 1, we have

π(x, n, `) =
π(x)

φ(n)
+O

(
x

(log x)A

)
for every large enough x. Therefore, we get,∑

p≤x

(
n

p

)
=
π(x)

φ(n)

∑
` (mod n)∗

χ(`) +O

(
φ(n)x

(log x)A

)
.

By the orthogonality relation, we, further, get,∑
p≤x

(
n

p

)
= O

(
φ(n)x

(log x)A

)
= o(π(x)).

Hence the lemma. �

Corollary 6. For any integer s ≥ 2 which is not a perfect square of an integer,
then there are infinitely many primes p for which s is a quadratic non-residue
modulo p.

Proof. If there are only finitely many primes, say, p1, p2, · · · , pr for which s is a
quadratic non-residue, then for any x > pr∑

p≤x
p6=pi

(
s

p

)
= π(x)− r 6= o(π(x))
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a contradiction to Proposition 5. Hence, there are infinitely many primes p for
which s is a quadratic non-residue modulo p. �

Remark. Since 3 is a quadratic non-residue modulo p for every prime p ≡ ±5

(mod 12), we see that for every prime p ≡ ±5 (mod 12) and p > exp
(

2223N+10
)

,

we can find x ∈ (Z/pZ)∗ such that x, x+1, · · · , x+N−1 are quadratic non-residue
modulo these primes. More generally, let f(N) denotes an increasing function of

N . Then we can find infinitely many primes satisfying p > exp
(

222sf(N)+10
)

where

2 ≤ s ≤ f(N) is not a perfect square of an integer and s is a quadratic non-residue
for these primes (by Corollary 6). Then these primes satisfy the conclusion of
Theorem 3.

Theorem 7. ∆(N) =∞ for all N ≥ 2.

Proof. Theorem 1 implies that there is a sequence of primes p1, p2, · · · , pr, · · · , for
which n(N, pi) ≥ N for all i. Therefore ∆(N) ≥ p(N) (the smallest prime p > N)
for all N ≥ 2. However, the least quadratic non-residue modulo p (denoted
by g(p)) satisfies g(p) ≥ (log p)(log log log p) (this result is due to Graham and
Ringrose [10]) for infinitely many primes p. Therefore, n(N, p) ≥ (log p)(log log p)
for infinitely many primes p and consequently, we get, ∆(N) =∞. �

Regarding δ(N), first we prove that δ(2) = 2. For that we need to prove 2
and 3 are quadratic non-residues modulo p for infinitely many primes p. In [12],
Gupta and Murty proved, using sieve theory, that

#

{
p ≤ x : p− 1 = 2q or 2q1q2,

(
2

p

)
=

(
3

p

)
= −1

}
≥ cx

log2 x

for some c > 0. Therefore, by taking x → ∞, we get there are infinitely many
primes p for which 2, 3 are quadratic non-residues mod p. Thus, δ(2) = 2 follows.

When N = 3, we can prove that δ(3) = 5. Clearly, δ(3) ≥ 5, because, 1 and 4
are perfect squares. For the upper bound, we need to prove 5, 6, 7 are quadratic
non-residues modulo p for infinitely many primes p. This has been achieved in
[4]. Hence, δ(3) = 5.

In general, we can prove δ(N) ≥
([

N − 1

2

]
+ 1

)2

+ 1. For, note that for a

given integer N ≥ 2, the least positive integer mN satisfying m2
N < N < (mN +1)2

is mN = [(N −1)/2]+1. Therefore, n(N, p) ≥ m2
N +1 for all but possibly finitely

many primes p. Hence δ(N) ≥
([

N − 1

2

]
+ 1

)2

+ 1.

In the case of primitive roots modulo p, as we mentioned in the introduction,
Carlitz [5] and Szalay [25] and [26] proved the existence of p0(N). In [14] and
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[19], we proved the existence of p0(N) for the case of non-residues which are not
the primitive roots modulo p. Also we proved an upper bound for p0(N). In fact,
in [19], we proved the following result which improves the result in [14].

Theorem B. Let ε ∈ (0, 1/2) be fixed and let N ≥ 2 be an integer. If

p ≥ max{N2(4/ε)2N , N651N log log(10N)}
is a prime satisfying

φ(p− 1)

p− 1
≤ 1

2
− ε,

then there are N consecutive integers n, . . . , n + N − 1 that are quadratic non-
residues but not primitive roots modulo p.

It is also possible to give a bound similar to Theorem B for po(N) for the
primitive root mod p case.

In 1976, Hausman [15] proved the existence of po such that for every prime p ≥
po, there exists an integer g ≤ p−1 and (g, p−1) = 1 such that g is a primitive root
modulo p. Recently, R. Thangadurai [27] proved that p0 ≤ e110.8 ∼ 1.318× 1048.

4. Related problem

Another related question is as follows. For a given non-empty subset S =
{a1, a2, . . . , a`} of Z, can we find infinitely many primes p such that every element
of S is a quadratic residue (respectively, non-residue) modulo p? If yes, what is
the density of such primes for a given subset S?

In 1968, M. Fried [9] answered that there are infinitely many primes p for
which a is a quadratic residue modulo p for every a ∈ S. Also, he provided a
necessary and sufficient condition for a to be a quadratic non-residue modulo p for
every a ∈ S. More recently, S. Wright [32] and [33] also studied this qualitative
problem.

For a given prime p, the set of all quadratic non-residue modulo p is a disjoint
union of the set of all generators g of (Z/pZ)∗ (which are called primitive roots
modulo p) and the complement set contains all the non-residues which are not
primitive roots modulo p.

A set P of prime numbers is said to have the relative density ε with 0 ≤ ε ≤ 1,
if

ε = lim
x→∞

|P ∩ [1, x]|
π(x)

exits. Also, the following numbers count some special subsets of S.
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(i) Let αS denote the number of subsets T of S, including the empty one,

such that |T | is even and
∏
s∈T

s = m2 for some integer m; hence, αS ≥ 1

for every S.
(ii) Let βS denote the number of subsets T of S such that |T | is odd and∏

s∈T

s = m2 for some integer m.

Then the following theorems were proved by R. Balasubramanian, F. Luca and
R. Thangadurai [2].

Theorem 8. ([2], 2010) The relative density of the set of prime numbers p for
which a is a quadratic residue modulo p for every a ∈ S is

αS + βS

2`
.

Theorem 9. ([2], 2010) We have, βS = 0 if and only if the density of the set of
primes p for which a is a quadratic non-residue modulo p for every a ∈ S is

αS

2`
.

We shall present the proof of Theorem 8 and Theorem 9 follows similarly.

Proof of Theorem 8. Let P(S) be the set of all distinct prime factors of a1a2 · · · a`.
Clearly, |P(S)| is finite. Let x > 1 be a real number. Consider the following
counting function

Sx =
1

2`

∑
p≤x

p6∈P(S)

(
1 +

(
a1

p

))
· · ·
(

1 +

(
a`

p

))
.

Since the Legendre symbol is completely multiplicative,

(
ai

p

)(
aj

p

)
=

(
aiaj

p

)
,

we see that

Sx =
1

2`

∑
p≤x

p 6∈P(S)

∑
0≤bi≤1

n=a
b1
1 ···a

b`
`

(
n

p

)
=

∑
0≤bi≤1

n=a
b1
1 ···a

b`
`

1

2`

∑
p≤x

p 6∈P(S)

(
n

p

)
.

Note that if n is a perfect square, then

(
n

p

)
= 1 for each p 6∈ P(S). Thus, for

these αS + βS values of n, the inner sum is

1

2`

∑
p≤x

p 6∈P(S)

(
n

p

)
=

1

2`
(π(x)− |P(S)|).
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For the remaining values of n (i.e., when n is not a perfect square), we apply
Proposition 5 to get

1

2`

∑
p≤x

p 6∈P(S)

(
n

p

)
= o(π(x)) as x→∞.

Therefore,

Sx =
1

2`
(αS + βS)(π(x)− |P(S)|) + o(π(x))

and hence
Sx

π(x)
=
αS + βS

2`

(
1− |P(S)|

π(x)

)
+ o(1).

Since |P(S)| is a finite number and it is elementary to see that as x → ∞,
π(x)→∞, we get

lim
x→∞

Sx

π(x)
=
αS + βS

2`
.

This completes the proof of Theorem 8. �

This can be applied to the quadratic non-residue case as well. Take

Sx =
1

2`

∑
p≤x

p 6∈P(S)

(
1−

(
a1

p

))
· · ·
(

1−
(
a`

p

))

and proceed as in the proof of Theorem 8. This yields Theorem 9.

For a given prime p, the set of all quadratic non-residue modulo p is a disjoint
union of the set of all generators g of (Z/pZ)∗ (which are called primitive roots
modulo p) and the complement set contains all the non-residues which are not
primitive roots modulo p.

In 1927, E. Artin [1] conjectured the following;

Artin’s primitive root conjecture. Let g 6= ±1 be a square-free integer. Then
there are infinitely many primes p such that g is a primitive root modulo p.

Note that it is not even known that for a given square-free integer, g 6= ±1,
there exists a prime p such that g is a primitive root modulo p. The above
Artin’s conjecture asks for the existence infinitely many such primes. In 1967,
Hooley [17] proved this conjecture assuming the (as yet) unresolved genearlized
Riemann hypothesis for Dedekind zeta functions of certain number fields. In
1983, R. Gupta and M. R. Murty [12] made the first breakthrough by showing
the following: given three prime numbers a, b, c, then at least one of the thirteen
numbers {

ac2, a3b2, a2b, b3c, b2c, a2c3, ab3, a3bc2, bc3, a2b3c, a3c, ab2c3, abc
}
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is a primitive root modulo p for infinitely many primes p. Then later Heath-Brown
[16] proved that {a, b, c} one is primitive root modulo p for infinitely many primes
p. Similarly, using the method of Hooley, in 1976, K. R. Matthews [20] found a
necessary and sufficient condition for a to be primitive root modulo p for every
a ∈ S, under unproved hypothesis.

Analogue question for a non-residue which is not a primitive root modulo a
prime is relatively easier to handle. For example, in [21] it is proved that for
a given g which is not a perfect square of an integer, there are infinitely many
primes p for which g is a quadratic non-residue but not a primitive root modulo
p, using the arithmetic of certain number fields. Of course computing the density
of such primes is not done yet.
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