
310



On the Coefficients of Cyclotomic Polynomials

R. Thangadurai

1. Properties of Cyclotomic Polynomials

Cyclotomy is the process of dividing a circle into equal parts, which is
precisely the effect obtained by plotting the n-th roots of unity in the complex
plane.

For integers n ≥ 1, we know that Xn−1 =
∏n−1
m=0(X−e

2πim
n ) over C. The

n-th cyclotomic polynomial can be defined as

Φn(X) =
n∏

m=1,(m,n)=1

(X − e
2πim
n )

where e
2πi
n is a primitive n-root of unity. Clearly, the degree of Φn(X) is

φ(n) where φ is the Euler totient function. We have Xn − 1 =
∏
d|n Φd(X).

Lemma 1.1 The cyclotomic polynomial Φn(X) is a monic polynomial over
integers.
Proof. We use induction to prove this result. We have Φ1(X) = X − 1.
We assume that the result is true for all d < n and we prove the result for
n. By the induction hypothesis, we have F (X) def=

∏
d<n,d|n Φd(X) ∈ Z[X]

and its leading coefficient is 1. As F (X) is monic, by division algorithm,
∃ h(X), r(X) ∈ Z[X] such that h(X) is monic and Xn − 1 = F (X)h(X) +
r(X), where r(X) = 0 or degr(X) < degF (X).

But, Xn − 1 = F (X)Φn(X). Therefore, by uniqueness of quotient and
remainder in C[X], we must have h(X) = Φn(X). Also it is clear that Φn(X)
has leading coefficient 1. �

The Möbius function, µ(n), is defined by

µ(n) =


1 if n = 1,
(−1)k if n = p1p2 · · · pk for distinct primes pi ,
0 otherwise.

Note that it can be easily seen that µ(mn) = µ(m)µ(n) whenever (m,n) = 1.

Also,
∑
d|n µ(d) =

{
1 if n = 1,
0 otherwise

Lemma 1.2 If µ(n) denotes the Möbius function, then,

Φn(X) =
∏
d|n

(Xn/d − 1)µ(d) =
∏
d|n

(Xd − 1)µ(n/d).
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Proof. We shall prove that if f(n) =
∏
d|n g(d), then g(n) =

∏
d|n f(n/d)µ(d).

We have,
∏
d|n
f(n/d)µ(d) =

∏
d|n

 ∏
m|(n/d)

g(m)

µ(d)

=
∏
m|n

(∏
d|(n/m)

g(m)µ(d)
)

=
∏
m|n

g(m)
∑

d|(n/m)
µ(d) = g(n).

Since Xn − 1 =
∏
d|n Φd(X), we are done. �

Lemma 1.3
(i) If n = pa1

1 p
a2
2 · · · p

a`
` , ai > 0, and N = p1p2 · · · p`, then Φn(X) =

ΦN (Xn/N ).
(ii) If n > 1 and (2, n) = 1, then Φ2n(X) = Φn(−X).
(iii) For all positive integers n > 1, we have Xφ(n)Φn(1/X) = Φn(X).
Proof. (i) Since µ(m) = 0 for all integers m which are not square free, we
have,

Φn(X) =
∏
d|n

(Xn/d − 1)µ(d) =
∏

d|n,d|N
(Xn/d − 1)µ(d)

=
∏
d|N

((Xn/N )N/d − 1)µ(d) = ΦN (Xn/N ).

This proves part (i).
(ii) Consider

Φ2n(X) =
∏
d|(2n)

(Xd − 1)µ(2n/d)

=
∏
2|d

(Xd − 1)µ((2n)/d)
∏
d|n

(Xd − 1)µ((2n)/d)

=
∏
d|n

[
(Xd − 1)µ(2n/d)(X2d − 1)µ(n/d)

]
=

∏
d|n

(Xd + 1)µ(n/d), as µ(2m) = −µ(m) for odd m

=
∏
d|n

(−Xd − 1)µ(n/d) = Φn(−X).

(iii) Now, consider

Φn(1/X) =
∏
d|n

(1/Xd − 1)µ(n/d) =
∏
d|n

(1−Xd)µ(n/d)
∏
d|n

(1/Xd)µ(n/d).
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Therefore we get,

X
∑

d|n dµ(n/d)Φn(1/X) =
∏
d|n

(−1)µ(n/d)(Xd − 1)µ(n/d)

= (−1)
∑

d|n µ(n/d)∏
d|n

(Xd − 1)µ(n/d) = Φn(X).

Since
∑
d|n dµ(n/d) = φ(n), we get the result. �

2. The Coefficients of Cyclotomic Polynomials

Since Φn(X) is a polynomial with degree φ(n), we can write

Φn(X) =
φ(n)∑
i=0

an(i)Xi

where an(i) denotes the i-th coefficient.

Lemma 2.1
(i) an(i) ∈ Z for all i, 0 ≤ i ≤ φ(n), n ∈ N.
(ii) an(i) = an(φ(n) − i) for all i, 0 ≤ i ≤ φ(n), n (> 1) ∈ N. That is, the
coefficients of cyclotomic polynomials are symmetric.
Proof. (i) follows from Lemma 1.1. Also (ii) follows from

Lemma 1.3(iii) immediately. �

Remark 2.2
(1) Lemma 1.3(i) says that

an(i) =
{
aN (iN/n) if n

N |i
0 otherwise.

(2) From Lemma 1.3(ii) we get for odd n > 1, a2n(i) = (−1)ian(i).
(3) When n = p a prime number, from Lemma 1.2 we have

Φp(X) = (Xp − 1)/(X − 1) = Xp−1 +Xp−2 + · · ·+X + 1.

Hence ap(i) = 1 for all i = 0, 1, · · · , p− 1.

Thus in any investigation about the coefficients of cyclotomic polynomi-
als we can reduce our enquiry to the case when n is odd, square-free and
composite.

When n = p a prime number, as we had seen earlier,

ap(i) =
{

1 if i = 0, 1, · · · , p− 1
0 for all integers i > p− 1.
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We shall now pass on to the next interesting case when n = pq where p
and q are two distinct odd prime numbers. Here are two explicit examples:

Φ15(X) = X8 −X7 +X5 −X4 +X3 −X + 1

and Φ21(X) = X12 −X11 +X9 −X8 +X6 −X4 +X3 −X + 1.

In 1883, Migotti [27] showed that all apq(i) ∈ {0,±1}. Marion Beiter [5] and
[8] gave a criterion on i for apq(i) to be 0, 1 or −1. Also Carlitz [11] computed
the number of non-zero apq(i)’s. Here, we shall give a simpler proof of the
following theorem due to Lam and Leung [19].

Theorem 2.3 Let r and s be non-negative integers such that (p−1)(q−1) =
rp+ sq written uniquely. Then we have

Φpq(X) =

(
r∑
i=0

Xip

) s∑
j=0

Xjq

−
 q−1∑
i=r+1

Xip

 p−1∑
j=s+1

Xjq

X−pq.
Also, for 0 ≤ k ≤ (p− 1)(q − 1), we have
(1) apq(k) = 1 if and only if k = ip+ jq for some i ∈ [0, r] and j ∈ [0, s];
(2) apq(k) = −1 if and only if k + pq = ip + jq for some i ∈ [r + 1, q − 1]
and j ∈ [s+ 1, p− 1]; and
(3) apq(k) = 0 otherwise.

The number of terms of the former two kinds are, respectively, (r+1)(s+1)
and (p− s− 1)(q − r − 1), with difference 1.
Proof. We know that φ(pq) = (p − 1)(q − 1) can be expressed uniquely in
the form rp + sq where r, s are non-negative integers (see for instance [23],
Page 22, Ex. 4). Since (p− 1)(q− 1) = rp+ sq, it is clear that r ≤ q− 2 and
s ≤ p− 2.

Now, we shall prove that

Φpq(X) =

(
r∑
i=0

Xip

) s∑
j=0

Xjq

−
 q−1∑
i=r+1

Xip

 p−1∑
j=s+1

Xjq

X−pq.
Let ζ = e2iπ/(pq) be a primitive pq-th root of unity. Then since ζp = e2iπ/q

and ζq = e2iπ/p, we have Φp(ζq) = Φq(ζp) = 0. That is, we have

q−1∑
i=0

(ζp)i = 0 =
p−1∑
j=0

(ζq)j .

Therefore,
r∑
i=0

(ζp)i = −
q−1∑
i=r+1

(ζp)i and
s∑
j=0

(ζq)j = −
p−1∑
i=s+1

(ζq)j .
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Hence multiplying these two, we get the identity(
r∑
i=0

(ζp)i
) s∑

j=0

(ζq)j
−

 q−1∑
i=r+1

(ζp)i
 p−1∑

i=s+1

(ζq)j
 = 0.

Thus ζ is a zero of the polynomial

f(X) :=

(
r∑
i=0

Xpi

) s∑
j=0

Xqj

−
 q−1∑
i=r+1

Xpi

 p−1∑
i=s+1

Xqj

X−pq. (1)

Since rp+ sq = (p− 1)(q− 1), the first product in (1) is a monic polynomial
of degree (p − 1)(q − 1). In the second product, the lowest term has degree
(r + 1)p+ (s+ 1)q − pq = rp+ sq + p+ q − pq = 1 and its highest term has
degree (q−1)p+(p−1)q−pq = (p−1)(q−1)−1. Hence the second product is
also a monic polynomial of degree (p− 1)(q− 1)− 1. Therefore f(X) ∈ Z[X]
is a monic polynomial of degree (p− 1)(q − 1) = φ(pq). Moreover, we know
that f(ζ) = 0. If ζ ′ is any other primitive pq-th root of unity, then also
we have f(ζ ′) = 0. Since f(X) is monic polynomial of degree φ(pq) with
f(e2iπm/(pq)) = 0 for all integers m such that (m, pq) = 1, we must have
f(X) = Φpq(X).

Now note that if i, i′ ∈ [0, q − 1], j, j′ ∈ [0, p − 1], and ip + jq is equal to
i′p+ j′q or i′p+ j′q−pq, then q|(i− i′) and p|(j− j′). This implies that i = i′

and j = j′.
If we expand the products in equation (1), then using the above note, the

rest of the assertions follow immediately. �

Remark 2.4 Theorem 2.3 together with our earlier observations proves that
the coefficients of the first 104 cyclotomic polynomials are all ±1, 0.

Corollary 2.5 Assume that q > p, and let ` = (p − 1)(q − 1)/2. Then the
middle coefficient apq(`) of Φpq(X) is (−1)r.

Proof. By Remark 2.2(2), we can assume that p > 2. Since (p− 1)(q− 1) =
rp+ sq, r and s have the same parity. If r is even, then ` = (r/2)p+ (s/2)q.
Therefore, by Theorem 2.3, we have apq(`) = 1. If r is odd, then so is s, and
we can write,

`+ pq =
(
r + q

2

)
p+

(
s+ p

2

)
q.

Since r ≤ q − 2 and s ≤ p − 2, we have (r + q)/2 ∈ [r + 1, q − 1] and
(s + p)/2 ∈ [s + 1, p − 1]. Therefore by Theorem 2.3, we have apq(`) = −1.
Note that when p = 2, by Remark 2.2(2), we have a2q(`) = (−1)`aq(`) =
(−1)(q−1)/2 = (−1)r. (since 2r + sq = q − 1 =⇒ r = (q − 1)/2). �
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Thus, Theorem 2.3 finishes the problem of finding the values of the coef-
ficients of cyclotomic polynomials explicitly in the case when n = pq where
p and q are two distinct odd primes.

If n is a product of more than two distinct primes, then the explicit values
of the coefficients are not known in general. But in the case when n = pqr,
some good amount of progress has been made. Let us discuss this case
briefly.

In 1895, Bang [2] proved that the upper bound for the magnitude of the
coefficients of Φpqr(X) where p, q, r are odd primes such that p < q < r
is p − 1. Then, in 1968, Marion Beiter [6] and Bloom [9] simultaneously
established (p+ 1)/2 as the upper bound in the special case where q and/or
r is congruent to ±1 modulo p. In 1971, Beiter [7] gave the following better
general bound.

Theorem 2.6 [7] The magnitude of the largest coefficient of Φpqr(X) where
p, q, r are odd primes such that p < q < r is less than or equal to p − k or
p− (k + 1) for p = 4k + 1 or 4k + 3 respectively.

We shall skip the proof of this theorem.

Remark 2.7 Note that when p = 3, Theorem 2.6 says that |a3qr(i)| ≤ 2 for
all i. Remark 2.5 together with this, we see that the first cyclotomic polyno-
mial Φ105(X) where we can look for a non-zero coefficient whose magnitude
is not just one; but two. In fact this is the case. Indeed, it was shown
by Migotti [27] in 1883 that the coefficient of X7 in the 105-th cyclotomic
polynomial is equal to −2. In fact, the 105th cyclotomic polynomial is as
follows:

Φ105(X) = X48 +X47 +X46 −X43 −X42 − 2X41 −X40 −X39+
X36 +X35 +X34 +X32 +X31 −X28 −X26 −X24−
X22 −X20 +X17 +X16 +X15 +X14 +X13 +X12−
X9 −X8 − 2X7 −X6 −X5 +X2 +X + 1

Later, P. Erdös [13] showed that an(i) = 0,±1 for all i and for all n < 105
and that a105(7) = 2. Also M. Endo [12] proved that (k, n) = (7, 105) is the
smallest pair for which |an(k)| > 1 by a different method.
Conjecture (Beiter, 1971) apqr(i) ≤ (p+1)/2 for all i and for any p < q < r
and this upper bound is the best possible.

Indeed, Beiter remarks in the same paper [7] that the above conjecture
is true for p = 3, 5 and for any q < r. In support of the above conjecture,
Möller [29] proved the following theorem.
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Theorem 2.8 Let 3 < p < q < r be prime numbers satisfying q ≡ 2 (mod p)
and r = 1

2(mpq − 1) for some integer m. Then,

apqr((p− 1)(qr + 1)/2) =
1
2

(p+ 1).

Recently, W. Bosma [10] has written an expository article on the various
methods which are helpful in computing cyclotomic polynomials and its
coefficients.

Thus from the above theorems and remarks, it appears that the growth
of the magnitude of the coefficients of cyclotomic polynomials is very slow.
However, it is not very clear at this stage whether the coefficients can take
arbitrarily large values.

Schur [33] was the first one to show that there are cyclotomic polynomials
whose coefficients are arbitrarily large. If we let A(n) = maxm |an(m)|, then
Schur showed that lim supn−→∞A(n) =∞.

We shall give a trivial upper bound for |an(m)| for all m in terms of n
alone as follows.

Lemma 2.9 We have log(A(n))�
√
n.

Proof. Since using Lemma 1.2, it can be seen that the coefficient of zm in∏
d≥1(1−zd)−1 is greater than or equal to |an(m)| and the former is nothing

but p(m) where p(m) is the number of partitions of m, we get |an(m)| ≤ p(m)
for all m.

This inequality together with the Hardy-Ramanujan [18] asymptotic for-
mula for p(m) in the form

log |p(m)| ∼ π
√

2/3
√
m as m→∞

implies the estimate log(an(m))�
√
m. Since an(m) = 0 for all m > n, the

above estimate yields the bound that log(A(n))�
√
n. �

Since A(p) = 1, the only lower bound for A(n) which is valid for all n is
the trivial bound A(n) ≥ 1.

Erdös [14] and [15] has shown that occasionally the coefficients can get
very large indeed. More precisely, he showed that ∃ c > 0 such that

logA(n)� exp
(
c log n

log logn

)
.

Using the refinement of the above argument in Lemma 2.9, Bateman im-
proved the bound in Lemma 2.9 which gives the following bound for the
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maximum of the absolute values of the coefficients of cyclotomic polynomi-
als:

logA(n) <
{

exp
(

(log 2 + o(1))
log n

log log n

)}
.

The constant log 2, here, is the best possible. This was first asked by P.
Erdös [14] and then shown by Vaughan [31].

In 1981, Bateman, Pomerence and Vaughan [4] have refined these results
by giving estimates for A(n) in terms of prime factors of n. More recently,
Maier [26] showed that for any function χ(n) tending to infinity, the inequal-
ity A(n) ≤ nχ(n) for almost all n.

On the other hand, Maier [24] had earlier proved that, for any function
ε(n) defined for all positive integers such that ε(n) tends to zero as n tends to
infinity, the inequality A(n) ≥ nε(n) holds except perhaps for a set of positive
integers of zero natural density. This settled a long-standing conjecture
(A(n) → ∞ for almost all n) of Erdös. Later, he [25] proved that for any
N > 0, there exists a positive constant C(N) depending on N such that the
lower density of the set of n’s for which the inequality A(n) ≥ nN is at least
C(N). Therefore, Maier’s upper bound for A(n) is the best possible one.

In the proof of Lemma 2.9, we first gave an upper bound for |an(m)|
which is independent of n. More precisely, we proved that |an(m)| ≤ p(m)
where p(m) is the number of partitions of m. Indeed, Möller [28] showed
that |an(m)| ≤ p(m)− p(m− 2).

Now we define a dual function (which was first considered by Erdös and
Vaughan [16])

B(m) = max
n
|an(m)|.

Note that in the definition of B(m), we can replace maximum by limit
supremum. This is because an(m) = anpq(m) for all primes p and q with
(n, p) = 1 = (m, q) and they are greater than m. Hence from the arguments
given in the proof of Lemma 2.9, we can conclude that

logB(m)�
√
m.

The first non-trivial result in this direction is due to Erdös and Vaughan
[16] who showed that

|an(m)| < exp
{(
τ1/2 + o(1)

)
m1/2

}
uniformly in n as m tends to infinity, where

τ =
∏
p

(
1− 2

p(p+ 1)

)
.
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They also further showed that for every large m

logB(m)�
√

m

logm

and conjectured that log(B(m)) = o(m1/2).
Vaughan [31] has obtained a sharper bound for infinitely many m; viz.

lim sup
n→∞

(
m−1/2(logm)1/4 log(B(m))

)
> 0.

Montgomery and Vaughan [30] proved the conjecture of Erdös et al. in
this connection, by proving that B(m) is of exact order m1/2(logm)−1/4.

Recently, Bachman [1] improved the work of Montgomery and Vaughan.
He derived the asymptotic formula

logB(m) = Co

√
m

(logm)1/4

(
1 +O

(
log logm√

logm

))
.

Though some coefficients of cyclotomic polynomials can grow arbitrarily
large, it is not still apparent that the collection of all of an(m) for all n and
m can cover the whole set of integers. This was proved by Jiro Suzuki [34]
in 1987.

Theorem 2.10 [34]
Z = {an(k)| k, n ∈ N} .

Proof. Let us first prove the following claim. The claim says that if t is any
integer greater than 2, then there exist t distinct primes p1 < p2 < · · · < pt
such that p1 + p2 > pt.

Assume the contrary, that is, there exists an integer t > 2 for which the
claim is false. For this t, given any t distinct primes p1 < p2 · · · < pt, we
have p1 + p2 ≤ pt. This implies 2p1 < pt. Therefore, for any given integer
k, the number of primes between 2k−1 and 2k is always less than t. This
is because if we have t distinct primes between 2k−1 and 2k, then we have
p1 > 2k−1 =⇒ 2p1 > 2k > pt which is not true by our assumption. Hence the
number of primes less than 2k is π(2k) < kt which is false by prime number
theorem, since π(x) > x/ log x for all x ≥ 17. Thus the claim is true.

Now we shall prove the theorem. Let t be any odd positive integer greater
than 2. From the above claim, we can find t distinct primes p1 < p2 < · · · < pt
such that p1 + p2 > pt.

Let p = pt and n = p1p2 · · · pt. Now consider Φn(X). We have, Φn(X) =∏
d|n(Xd − 1)µ(n/d). We go modulo Xp+1 and since n is square-free integer,

because of the conditions on these set of primes, whenever d 6= pi, 1 for all
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i = 1, 2, · · · , t we have

Φn(X) =
∏
d|n

(Xd − 1)µ(n/d) ≡
t∏
i=1

(Xpi − 1)
(X − 1)

(mod Xp+1).

≡ (1−Xp)
(1−X)

(1−Xp1) · · · (1−Xpt−1) (mod Xp+1).

≡ (1 +X + · · ·+Xp−1)(1−Xp1 − · · · −Xpt−1) (mod Xp+1).

This yields that an(p) = −t+ 1 and an(p− 2) = −t+ 2. Hence if we let

S := {an(m) | ∀ n,m ∈ N} ,

then, S contains {` ∈ Z | ` ≤ −1} as t varies over all the odd integer greater
than or equal to 3. By Theorem 2.3, already we know {0,±1} ⊂ S. In
order to prove that S contains all positive integers greater than or equal
to 2, consider Φ2n(X) where n = p1p2 · · · pt. By Lemma 1.3(ii), we have
a2n(p) = (−1)pan(p) = t − 1 and a2n(p − 2) = (−1)p−2an(p − 2) = t − 2.
Hence by varying t over all the odd integers ≥ 3, we see that S contains all
the positive integers greater than or equal to 1. �

Theorem 2.10 says that given any integer k, then there exist natural num-
bers n and m for which an(m) = k. In 1991, Grytczuk and Tropak [17]
considered the following problem:

Given integer k such that |k| ≥ 2, find the minimal m for which there
exists a natural number n such that an(m) = k.

If m is one such, then for all n, we must have an(r) 6= k for all r < m.
For example, if k = −2, then we know that m = 7 is the minimal integer

for which a105(7) = −2.
From Lemma 1.2, we know that

Φn(X) =
∏
d|n

(1−Xd)µ(n/d) =
∞∏
d=1

(1−Xd)µ(n/d)

by setting µ(n/d) = 0 whenever n/d is not an integer.
From this identity, it follows that, for a square-free integer n, the value

an(m) depends only on the values of µ(n), µ(n/d) and on the primes less
than m+ 1 which happent to divide n.

Using this identity, we can derive a formula for an(m) for a fixed m as
follows.

an(1) = −µ(n), an(2) = 1/2µ(n)(µ(n)− 1)− µ(n/2)

an(3) = 1/2µ(n)2 − 1/2µ(n) + µ(n/2)µ(n)− µ(n/3), · · ·
This method has been used by D. H. Lehmer [20] and H. Möller [28].
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A. Grytczuk and B. Tropak [17] derived a recurrence relation for the
coefficients of n-cyclotomic polynomial as follows.

an(m) = − 1
m

m−1∑
`=0

an(`)Tm−`

where Tm−` = µ(n)µ((n,m− `))φ((n,m− `)) with an(0) = 1.
Using this recurrence relation, they found for k = ±2,±3, · · · ,±9 and 10,

the minimal values of m for which there exist n such that an(m) = k.
Acknowledgement: I would like to thank Professor S. A. Katre for care-
fully going through the manuscript and pointing out several corrections.
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