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Erdős-Ginzburg-Ziv Theorem

W. D. Gao and R. Thangadurai

Center for Combinatorics,
Nankai University,
Tianjin 300071,

China.
e-mail:

wdgao 1963@yahoo.com.cn

and

School of Mathematics, Harish-Chandra
Research Institute,

Chhatnag Road,Jhunsi,
Allahabad - 211019, India.

e-mail:

thanga@hri.res.in

Dedicated to Professor K. Ramachandra on his 70th birthday

Abstract

In this article, apart from giving a survey of known results on Davenport
constant for finite groups, we shall prove the following new result. Let G be
a non-abelian group with Z(G) as its center. Let S = (a1, a2, . . . , aℓ) be a se-
quence in G of length ℓ = |G|+D(G)−1, where D(G) is the Davenport constant
(see below, definition 1) for the group G. Suppose that there exists g ∈ Z(G)
such that g appears in S maximum number of times. Then, there exist distinct
integers i1, i2, . . . , i|G| from 1, 2, . . . , ℓ such that the product ai1ai2 . . . ai|G|

is
the identity element in G.

1 Introduction

In 1961, Erdős, Ginzburg and Ziv [2] proved that given any sequence a1, a2,
. . . , a2n−1 (not necessarily distinct) of elements in Zn, the cyclic group of order
n, there exists a subsequence with n elements whose sum is the identity in Zn.
Moreover, they proved that 2n− 1 cannot be replaced by 2n − 2.

This theorem is a cornerstone of many questions in ‘Zero-sum Problems’ which
is now one of the active fields of research in Combinatorial Number Theory. The
above theorem has many generalizations (See [25] for instance).

From now onwards, we denote any finite group (not necessarily abelian) by G
which is additively written.

Definition 1. By D(G), we denote the smallest positive integer t such that given
any sequence g1, g2, . . . , gℓ in G with ℓ ≥ t there exist distinct integers 1 ≤ i1 <
i2 < · · · < ir ≤ ℓ and a permutation π on the symbols {1, 2, . . . , r} such that
giπ(1)

+ giπ(2)
+ · · · + giπ(r)

= 0 in G.
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2 K. Ramachandra 

When G is abelian, D(G) is nothing but the well-known Davenport constant. This
above generalization is considered, for example, in [3]. Clearly, we have D(G) ≤ |G|.

In the definition 1, if we take π to be identity, then D(G) is called the Strong

Davenport constant and we denote it by d(G).

Definition 2. By ZS(G), we denote the smallest positive integer t such that given
any sequence g1, g2, . . . , gℓ in G with ℓ ≥ t there exists distinct integers 1 ≤ i1 <
i2 < · · · < i|G| ≤ ℓ and a permutation π on the symbols {1, 2, . . . , |G|} such that
giπ(1)

+ giπ(2)
+ · · · + giπ(|G|)

= 0 in G.

When G is abelian, the first author [7] proved that

ZS(G) = |G| − 1 + D(G),

which had been earlier conjectured by Hamidoune. When G = Zn, this result is
nothing but the Erdös, Ginzburg and Ziv theorem.

An interesting problem is to prove or disprove the following conjecture.

Conjecture 1. (Gao and Zhuang, [12]) For every finite group G, we have ZS(G) =
|G| − 1 + D(G).

J. E. Olson [21] proved that ZS(G) ≤ 2|G| − 1. Recently, Dimitrov [4] gave a
very simple proof of this fact for all solvable groups. In 1984, Peterson and Yuster
[23] proved that ZS(G) ≤ 2|G| − 2 for a non-cyclic group G. In 1988, for a positive
integer r, with the restriction that |G| ≥ 600((r − 1)!)2, Yuster [27] proved that
ZS(G) ≤ 2|G| − r; for a non-cyclic solvable group G and 1996, the first author [8]
proved that ZS(G) ≤ 11

6 |G|−1 for a non-cyclic solvable group G. In 2003, Dimitrov
[5] proved a stronger result when G is a non-cyclic p group. More precisely, he
proved:

Let s ≥
(

1 + 2p−1
p2

)

|G| − 1 be any integer. Then for any sequence S = (a1, a2,

. . . , as) in G, there exist 1 ≤ i1 < i2 < · · · < i|G| ≤ s such that ai1 +ai2 +· · ·+ai|G|
=

0 in G.
Using the method of the proof of the above result, in [6], Dimitrov mentions that

ZS(G) ≤ 7
4 |G| − 1 for all non-cyclic nilpotent groups G. More recently, Gao and

Juan [12] proved Conjecture 1 for any Dihedral G of large prime index.
In this article, we shall survey the known results and conjectures on Davenport

constant for all finite groups and prove the following new result which is related to
Conjecture 1.

Main Theorem. Let G be a finite non-abelian group and S = (a1, a2, . . . , aℓ) a
sequence in G of length ℓ = |G| + D(G) − 1. Suppose that there exists g ∈ Z(G),
where Z(G) is the center of G such that g appears in S maximum number of times.
Then, there exist distinct integers i1, i2, . . . , i|G| from 1, 2, . . . , |G| − 1 + D(G) such
that ai1 + ai2 + · · · + ai|G|

= 0 in G.

Notations. Let S = (a1, a2, . . . , aℓ) be a sequence in G. We denote the length ℓ of
S by |S|. If T is a subsequence of S, then ST−1 is a sequence obtained by deleting
the terms of T from S. If T1 and T2 are two disjoint subsequence of S, then we write
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T1T2 for a subsequence of S after a permutation on T1 and T2. We call a sequence
S of length ℓ to be a zero-sum sequence if there is a permutation π on the symbols
{1, 2, . . . , ℓ} such that gπ(1) + gπ(2) + · · · + gπ(ℓ) = 0 in G. We call a sequence in G
a zero-free sequence if none of its subsequences is a zero-sum sequence. We call an
element g of G to be a hole of S if g 6∈

∑
(S) ∪ {0}, where

∑
(S) denotes the set of

all possible finite sums of elements of S.

2 Davenport Constant for any finite group

One can easily see that D(G) ≤ |G| for any finite group G.

2.1 Davenport constant for abelian groups.

Since G is a finite abelian group, by the structure theorem, we have

G ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr

where 1 < n1|n2| · · · |nr and |G| = n1n2 . . . nr. Here r is called the rank (denoted by
r(G)) of G and nr is called the exponent (denoted by exp(G)) of G. Define

M(G) = 1 +

r∑

i=1

(ni − 1) (1)

and

κ(G) =

r∑

i=1

ni. (2)

It is easy to see that D(G) = |G|, whenever G is cyclic. Olson ([21] and [22]) proved
that D(G) = M(G) for all p-groups G and for all G with rank 2. These are the
major classes of groups for which this constant is known explicitly. The first author
[9] studied this constant when G is of rank 3 and he conjectured that

Conjecture 2. (Gao, [9]) For all groups G of rank 3, we have D(G) = M(G).

It is known from the results in [13], [11] and [16] that D(G) > M(G) for infinitely
many groups G.

Recently, P. Rath, K. Srilakshmi and the second author proved the following
theorem in [24].

Theorem 1. Let G be a finite abelian group of rank r and of exponent n. Let
ℓ1, ℓ2, . . . , ℓr−1 and d be integers such that 1 ≤ ℓi ≤ n − 1 for all i = 1, 2, . . . , r − 1
and the positive integer

d :=







n +

[

n

(
r−1∑

i=1

log ℓi − log
nr

|G|

)]

if

r−1∏

i=1

ℓi >
nr

|G|

n otherwise
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4 K. Ramachandra 

Let

S =




 g1, . . . , g1
︸ ︷︷ ︸

(n−ℓ1) times

, . . . , gr−1, . . . , gr−1
︸ ︷︷ ︸

(n−ℓr−1) times

, c1, c2, . . . , cd






be a sequence in G of length ρ =
∑r−1

i=1 (n−ℓi)+d. Then S has a zero-sum subsequence
in it.

Corollary 1. We have

D(G) ≤ nr

(

1 + log

(
nr − 1

nr

)r−1(
|G|

nr

))

.

The Corollary 1 improves the previous best upper bound due to Alford, Granville
and Pomerance[1] and Meshulam [17] in 1993. Also, Corollary 1 can be improved if
one proves the following conjectural bound suggested by W. Narkiewicz and J. Śliwa,
[18] in 1982.

Conjecture 3. (Narkiewicz and Śliwa, [18]) For all finite abelian group G, we have,
D(G) ≤ κ(G).

Conjecture 3 has been verified for many particular groups; for more information
one can refer to [10]. In 2003, Dimitrov [4] proved that D(G) ≤ c(r)κ(G) where
c(r) is a positive constant which depends only on r. Recently the second author [25]
improved this bound to

D(G) <

{

(c(r) − r − 3)κ(G) if 4 ≤ n1 ≤ 2r−1 − 1

(c(r) − rℓr)κ(G) if n1 ≥ 2r−1,

where c(r) is a constant depending only on r and

ℓr =
(2r−1 − 1)(r − 1) + 1

r(r − 1)
.

Definition 3. We denote by ν(G) the smallest non-negative integer t such that
every zero-free sequence S in G of length t ≥ ν has all its holes in some proper
coset of G, i.e., G\ (

∑
(S) ∪ {0}) ⊂ a+H for some proper subgroup H and for some

a ∈ G\H .

Note that ν(Z2) = 0. The first author [9] proved that ν(G) + 1 ≤ D(G) ≤
ν(G) + 2. Also, it is known by the result of van Emde Boas [28] that if G is either
cyclic or a p-group, then D(G) = ν(G) + 2. The following was conjectured by the
first author;

Conjecture 4. (Gao, [9]) For every finite abelian group G, we have D(G) =
ν(G) + 2.

In 2003, Dimitrov gave an upper bound for D(G) when G = Z
d
n using covering

systems modulo n. More precisely, we define the terminology as follows;
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Definition 4. Let n > 1 be any positive integer. Let

M =







a11 a12 . . . a1r

a21 a22 . . . a2r

. . . . . . . . .
am1 am2 . . . amr







aij ∈ Zn

be an m × r matrix over Zn. Let R = (a1a2 . . . am) be a m × 1 column vector
over Zn. We call the tuple (M, R) to be a covering system if for every r-tuple
(x1, x2, . . . , xr) ∈ Z

r, there exists i ∈ {1, 2, . . . , m} such that

r∑

j=1

aijxj ≡ ai (mod n)

has a solution.
A finite dimensional matrix M over Zn is said to be a cover if it is the matrix of

some covering system.
For any given positive integers r and n, we denote c(n, r) to the least positive

integer t such that all t × r matrices over Zn are covers.
Using these notions, Dimitrov [4] proved that for all positive integers r and n > 1,

we have,
D(Zr

n) ≤ c(n, r).

and he conjectured the following.

Conjecture 5. (Dimitrov, [4]) For all positive integers r and n > 1, we have

D(Zr
n) = c(n, r).

2.2 Davenport constant for non-abelian groups.

Olson and White [22] proved that D(G) ≤ (|G| + 1)/2 for any non-cyclic group
G. Also, trivially one observes that D(G) ≤ d(G). Since every group of order p is
cyclic, the first non-trivial class of non-abelian group is of order 2p where p is an
odd prime. If G is of order 2p, then the first author and Zhuang [12] proved that
D(G) = p + 1. Recently, Dimitrov [4] proved that D(G ⊕ Z|G|) ≤ 2|G| − 1 for any
finite solvable group G. If H is a normal subgroup of G, then Delorme et al., [3]
proved that D(G) ≥ D(H) + D(G/H) − 1. It is obvious from the definition that
D(G) ≤ d(G). So, any reasonable bound for d(G) gives a bound for D(G) as well.
But, providing a reasonable bound for d(G) seems to be another hard problem. We
have the following conjecture of Dimitrov [6].

Conjecture 6. (Dimitrov, [6]) Let G be any finite group whose complex irreducible
representations (up to equivalence) have degrees d1, d2, . . . , dr, then

d(G) ≤

r∑

i=1

di.
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When G is a non-abelian p-group, then we have better known result for d(G).
Since G is a p-group, FpG is a group algebra. Its Jacobson radical J is an augmen-
tation ideal and is nilpotent. Then its nilpontency class is called the Loewy length
of FpG and is denoted by L(G). Dimitrov [5] proved that

d(G) ≤ L(G).

He conjectured the following;

Conjecture 7. (Dimitrov, [5]) For all finite p-group G, we have d(G) = L(G).

Note that Conjecture 7 is true for abelian p-group by the result of Olson [21] and
Jennings [14].

3 Proof of Main Theorem

We start this section with the statement of the following deep theorem of Kem-
perman [15].

Theorem 2. If A and B are two non-empty finite subsets of a group G such that
0 ∈ A ∩ B, and 0 = a + b, a ∈ A, b ∈ B implies that a = b = 0. Then,

|A + B| ≥ |A| + |B| − 1.

Lemma 1. Let S be a sequence in G of length at least |G|. Let g ∈ G be the
element appearing in S maximum number of, say h, times. Then 0 ∈

∑

≤h(S)

where
∑

≤h(S) = ∪h
i=1

∑

i(S) and
∑

i(S) denotes the set of all possible sums of i
elements of S.

Proof: One can distribute S into h non-empty subsets B1, B2, . . . , Bh, such that
∑

|Bi| = |S|. For any two nonempty subsets A, B of G, let A⊕B = A∪B∪(A+B),
and this definition can be generalized to three or more subsets by induction.

Assume to the contrary that 0 6∈
∑

≤h(S), then 0 6∈ Bi and

0 6∈ B1 ⊕ B2 ⊂ B1 ⊕ B2 ⊕ B3 ⊂ · · · ⊂ B1 ⊕ B2 ⊕ B3 ⊕ · · · ⊕ Bh.

Set Ai = {0} ∪Bi for i = 1, . . . , h. Then, by Theorem 2, we obtain, |A1 + A2| ≥
|A1| + |A2| − 1 = |B1| + |B2| + 1. Since 0 6∈ B1 ⊕ B2 ⊕ B3, one can apply Theorem
2 to A1 + A2 = {0} ∪ (B1 ⊕ B2) and A3 = {0} ∪ B3 to get

|A1+A2+A3| ≥ |A1+A2|+|A3|−1 ≥ |B1|+|B2|+1+|B3|+1−1 = |B1|+|B2|+|B3|+1.

Continuing this process, finally we arrive at:

|A1 + A2 + · · · + Ah| ≥ |B1| + |B2| + · · · + |Bh| + 1 = |G| + 1,

a contradiction. �
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Proof of the Main Theorem: Let S = (a1, a2, . . . , aℓ) where ℓ = |G| + D(G) − 1
be a sequence in G. By our hypothesis, we know that some element, say, aℓ ∈ Z(G)
is repeated maximum number of, say h, times in S. We can assume that h ≤ |G|−1;
otherwise, we are done. As aℓ ∈ Z(G), we have aℓ + x = x + aℓ for every x ∈ G.
Therefore, we can translate, if necessary, the given sequence by aℓ and can assume
that 0, the zero element is repeated h times. Thus, we have,

S =




a1, a2, . . . , aℓ−h, 0, 0, . . . , 0

︸ ︷︷ ︸

h times

) and S1 = (a1, a2, . . . , aℓ−h




 .

Clearly, ℓ − h = |G| − 1 + D(G) − h ≥ D(G).
We distinguish two cases here.

Case (i). (ℓ − h ≤ |G|)
Since ℓ − h ≥ D(G), by the definition of D(G), there exist distinct indices

i1, i2, . . . , ik from 1, 2, . . . , ℓ − h such that ai1 + ai2 + · · · + aik
= 0. Choose k to

be the maximal possible integer t such that this happens in St. This can be done
by applying all possible permutations on the indices {1, 2, . . . , ℓ− h}. Hence by the
maximality of k, it is clear that |G| − 1 + D(G) − h − k ≤ D(G) − 1, in turn this
implies k ≥ |G| − h and hence |G| − h ≤ k ≤ |G|. Therefore, we can get

0 + 0 + · · · + 0
︸ ︷︷ ︸

|G|−k times

+ ai1 + ai2 + · · · + aik
= 0 in G,

as desired.

Case (ii) (ℓ − h ≥ |G| + 1)
By Lemma 1, one can find t disjoint zero-sum subsequences T1, . . . , Tt of S1 such

that 2 ≤ |Ti| ≤ h, and that |S1(T1 . . . Tt)
−1| ≤ |G| − 1. Let W be the maximal

zero-sum subsequence of S1(T1 . . . Tt)
−1 (if it exists). If |W | ≥ |G| − h, then we

are done, by the argument as in Case (i). Otherwise, |W | ≤ |G| − h − 1. By the
maximality of W , we see that |S1(T1 . . . Tt)

−1W−1| ≤ D(G) − 1. Therefore,

|W | + |T1| + · · · + |Tt| ≥ ℓ − h − (D(G) − 1) ≥ |G| − h.

Note that since 2 ≤ |Ti| ≤ h, we infer that, |G| − h ≤ |W | + |T1| + · · · + |Tk| ≤ |G|
for some k ∈ {1, 2, . . . , t}. But WT1 . . . Tk is zero-sum and we are done, as we have
h number of 0’s outside S1. �
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