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Abstract. Let p be a prime number such that p ≡ 1 (mod r) for some integer

r > 1. Let g > 1 be an integer such that g has order r in
(
Z/pZ

)∗
. Let

1

p
=

∞∑
k=1

xk

gk

be the g-adic expansion. Our result implies that the “average” digit in the
g-adic expansion of 1/p is (g − 1)/2 with error term involving the general-
ized Bernoulli numbers B1,χ (where χ is a charater modulo p of order r with
χ(−1) = −1). Also, we study, using Bernoulli polynomials and Dirichlet L-
functions, the set equidistribution modulo 1 of the elements of the subgroup

Hn of
(
Z/nZ

)∗
as n →∞ whenever |Hn|/

√
n →∞.

1. Introduction

Let p be a prime number and g a natural number satisfying 1 < g < p. Sup-
pose that g is a primitive root (mod p). In 1994, K. Girstmair [3] [4], wrote two
papers connecting the digits of the g-adic expansion of 1/p with the class number
of Q(

√
−p) if p ≡ 3 (mod 4) and p ≥ 7. More precisely, let

1
p

=
∞∑
k=1

xk
gk
,

with 0 ≤ xk ≤ g − 1, be the g-adic expansion of 1/p. Then, Girstmair proved that

(x2 + x4 + · · ·+ xp−1)− (x1 + x3 + · · ·+ xp−2) = (g + 1)h

where h is the class number of the imaginary quadratic field Q(
√
−p). In this paper,

we will obtain various generalizations of this formula. In particular, we will study
what kind of formulas can be derived if g is not necessarily a primitive root (mod
p) but has order r (say) mod p. Thus, p ≡ 1 (mod r). In this context, it is easily
seen that 1/p has a periodic g-adic expansion with period r.

Here is an example of the type of results we derive. Let p ≡ 11 (mod 12) be a
prime number and suppose that 3 has order (p−1)/2 in (Z/pZ)∗. Then we will see
that the class number h(Q(

√
−p)) can be given by the following formula

h(Q(
√
−p)) =

p− 1
2

−
(p−1)/2∑
i=1

xi
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where xk is defined to be the digits
1
p

=
∞∑
k=1

xk
3k

. One can re-write this as

h(Q(
√
−p)) =

(p−1)/2∑
i=1

(1− xi).

In particular, the sum on the right is strictly positive indicating that there are
more 0’s than 2’s in the ternary expansion of 1/p. The difference is measured by
the class number. From this formula, we also see that the complexity of computing
h(Q(

√
−p)) is equivalent to the complexity of computing the digits upto (p− 1)/2

terms of 1/p in base 3. In this article, we will see this fact in some generality. Our
first theorem is:

Theorem 1. Let p be a prime and r|(p− 1). Suppose that a character χ of order
r is odd and that g has order (p− 1)/r (mod p). Let

1
p

=
∞∑
k=1

xk
gk

be the g-adic expansion of 1/p. Then,

(p−1)/r∑
i=1

xi =
g − 1

2

(
p− 1
r

)
+
g − 1
r

∑
χr=1, χ odd

B1,χ

where B1,χ is the generalized Bernoulli number.

The sum on the left hand side of the equation in Theorem 1 can be viewed as
the trace of B1,χ for a fixed character χ of order r. Let us also note that if one
character χ of order r is odd, then all characters of order r are odd since they are
of the form χs with (s, p− 1) = 1 and s is necessarily odd.

Corollary 1. If g = 3 has order (p− 1)/r mod p, then

−
∑

χr=1,χ odd

B1,χ =
r

2

(p−1)/r∑
i=1

(1− xi).

Corollary 2. Let p ≡ 3 (mod 4) be a prime number and g be an integer such that
(g, p) = 1 and whose order in (Z/pZ)∗ is (p− 1)/2. Then we have(

g − 1
2

)(
p− 1

2
− h

)
=

(p−1)/2∑
i=1

xi

where xi’s are the digits in the g-adic expansion of 1/p.

Corollary 2 also appears as Satz 11 in [5]. These results suggest the natural ques-
tion of how reduced residue classes of subgroups of the group of coprime residue
classes (mod n) are distributed. Using the theory of generalized Bernoulli polyno-
mials, we can show they are “equidistributed” in the interval [1, n], provided that
the size of the subgroup is sufficiently large. To be precise, we will say, following [7]
that a sequence of finite multisets An with |An| → ∞ is set equidstributed mod 1
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with respect to a probability measure µ if for every continuous function f on [0, 1],
we have

lim
n→∞

1
|An|

∑
t∈An

f(t) =
∫ 1

0

f(x)dµ. (1)

In order to verify this condition, it suffices to check that these limits exist on a dense
family of functions f in C[0, 1]. In our context, we will use Bernoulli polynomials
to establish the equidistribution result.

Theorem 2. Let Hn be a subgroup of the coprime residue classes mod n. Take
representatives h ∈ H with 1 ≤ h < n and consider the set {h/n : h ∈ Hn}
contained in [0, 1]. If |Hn|/n1/2 tends to infinity, as n tends to infinity, then the
Hn’s are set equidistributed in [0, 1] with respect to the Lebesgue measure.

The methods used to prove this theorem are classical. The results can be sub-
stantially improved if we invoke recent results of Bourgain [2]. We have:

Theorem 3. The result in Theorem 2 holds provided that |Hn| > nε for some
ε > 0.

Corollary 3. Let Hn be a subgroup of the coprime residue classes mod n and Ĥn

be the dual of (Z/nZ)∗/Hn. If∑
χ∈Ĥn

L(1−m,χ) = O
(
nm−1(log n)c|Ĥn|

)
holds true for some constant c > 0, then as n → ∞, all subgroups Hn such that
|Hn|/(log n)c →∞ are set equidistributed modulo 1.

In the final section of our paper, we discuss the general problem of the distribu-
tion of digits of 1/p. This entails the derivation of explicit formulas for the moment
sums of the digits and leads to several interesting questions.

2. Preliminary lemmas

We begin with the following lemma, essentially contained in [3].

Lemma 1. Let g > 1 be any integer such that (g, p) = 1. For any non-negative
integer k, we define gk to be the least positive integer t such that t ≡ gk (mod p).

If
1
p

=
∞∑
k=1

xk
gk

, where 0 ≤ xk ≤ g − 1, and yk =
ggk−1 − gk

p
for all integers k ≥ 1,

then

yk = xk for all k.
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Proof. Consider
∞∑
k=1

yk
gk

=
1
p

[ ∞∑
k=1

ggk−1

gk
−

∞∑
k=1

gk
gk

]

=
1
p

[ ∞∑
k=1

gk−1

gk−1
−

∞∑
k=1

gk
gk

]

=
g0
p

=
1
p

=
∞∑
k=1

xk
gk
.

One may notice that yk ≥ 0 for every k. Thus the Lemma follows from the unique-
ness of the g-ary representation. 2

For all primes 11 ≤ p ≡ 3 (mod 4), we have by Dirichlet’s class number formula
(see for example, [3]), that the class number of Q(

√
−p) is given by

h := h(Q(
√
−p)) = −

p−1∑
k=1

(
k

p

)
k

p
. (2)

We shall use this informations later in the proof.

3. Proof of Theorem 1

Let r > 2 be any integer. Let p ≡ 1 (mod r) be any prime. Suppose g ≥ 2
be any integer such that (g, p) = 1 and order of g in (Z/pZ)∗ is (p − 1)/r. Let χ
be a Dirichlet character modulo p of order r such that χ(−1) = −1. Then, the
generalized Bernoulli number, B1,χ is defined as

B1,χ =
1
p

p−1∑
k=1

χ(k)k. (3)

Since B1,χ is a non-zero multiple of L(1, χ) (see p. 38 of [8]), we see that it is
non-zero if χ is odd. If χ(−1) = 1 and χ is non-trivial, then the sum in (3) is zero,
as is easily seen by pairing k and p− k in the sum.

If χ is an even Dirichlet character mod p, of order r, then, on one hand, the sum

1
r

p−1∑
k=1

(χ(k) + χ2(k) + · · ·+ χr(k))
k

p
=
p− 1
2r

since all the characters in the sum are even and the resulting sum over k is zero for all
non-trivial characters and the contribution from the trivial character is (p− 1)/2r.
On the other hand, the sum is ∑

k≡ur (mod p)

k

p
=

(p−1)/r∑
k=1

gk
p

since the group generated by g has order (p− 1)/r and consists of the r-th powers
(mod p). Thus, by an easy calculation,

(g − 1)
(
p− 1
2r

)
=

(p−1)/r∑
k=1

ggk−1 − gk
p
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which by Lemma 1, gives that the sum of the first (p−1)/r digits of 1/p in its g-adic
expansion is (g− 1)(p− 1)/2r. Hence, in this situation, there is nothing interesting
happening. One can interpret this result as saying that the “average” digit in the
g-adic expansion of 1/p is (g−1)/2. If χ is an odd character, this average result has
to be modified by an “error” term involving generalized Bernoulli numbers, which
in the quadratic character case, reduces to a class number.

Now we prove Theorem 1.

Proof of Theorem 1. Let χ be a Dirichlet character modulo p of order r with
χ(−1) = −1. Consider

S =
1
r

p−1∑
k=1

(χ(k) + χ2(k) + · · ·+ χr(k))
k

p

=
∑

k≡ur (mod p)

k

p

=
(p−1)/r∑
k=1

gk
p

(4)

as
1
r

r∑
i=1

χi(k) =
{

1 if k = ur for some u ∈ (Z/pZ)∗

0 otherwise

and gk ≡ gk (mod p) for every k ≥ 0. We compute 2S as follows.

2S =
1
r

p−1∑
k=1

(χ(k) + · · ·+ χr(k))
k

p
+

1
r

p−1∑
k=1

(χ(−k) + · · ·+ χr(−k))p− k

p

=
1
r

p−1∑
k=1

(
r∑
i=1

[
χi(k)

k

p
+ χi(−k)p− k

p

])

=
1
r

p−1∑
k=1

(∑
i odd

+
∑
i even

)
.

When i is odd, χi(−k) = −χi(k) as χ(−1) = −1. Therefore,

χi(k)
k

p
+ χi(−k)p− k

p
=

 2χi(k)
k

p
− χi(k) if i is odd

χi(k) if i is even.

Therefore,

2S =
1
r

p−1∑
k=1

(∑
i odd

(
2χi(k)

k

p
− χi(k)

)
+
∑
i even

χi(k)

)
.

=
2
r

∑
i odd

1
p

p−1∑
k=1

χi(k)k +
p−1∑
k=1

1
r

r∑
i=1

χi(−k)

=
2
r

∑
i odd

B1,χi +
p− 1
r

,
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by (3) and the contribution from the trivial character. Now, by (4), we have

(g − 1)S = gS − S =
(p−1)/r∑
k=1

ggk
p
−

(p−1)/r∑
k=1

gk
p

=
(p−1)/r+1∑

k=2

ggk−1 − gk
p

− g1
p

+
gg(p−1)/r

p

=
(p−1)/r∑
k=1

ggk−1 − gk
p

=
(p−1)/r∑
k=1

xk, (5)

by Lemma 1. On the other hand, by 2S, we can compute (g − 1)S as

(g − 1)S =
g − 1
r

∑
i odd

B1,χi +
g − 1

2

(
p− 1

2

)
. (6)

From (5) and (6), Theorem 1 follows. 2

Proof of Corollary 1. By putting g = 3 in Theorem 1, we get the Corollary. 2

Proof of Corollary 2. By putting r = 2 in Theorem 1, we see that g is an element
of order (p− 1)/2 and hence χ is a quadratic character mod p. Therefore,

χ(a) =
(
a

p

)
,

the Legendre symbol. Since χ is odd, we see that(
−1
p

)
= −1 = (−1)(p−1)/2 =⇒ p ≡ 3 (mod 4).

Therefore, by Theorem 1, we get,
(p−1)/2∑
i=1

xi =
(
g − 1

2

)(
p− 1

2
+B1,χ

)
where

B1,χ =
1
p

p−1∑
k=1

χ(k)k =
p−1∑
k=1

(
k

p

)
k

p
= −h(

√
−p),

by (1). Therefore, we arrive at
(p−1)/2∑
i=1

xi =
(
g − 1

2

)(
p− 1

2
− h

)
.

This complete the proof of Corollary 2. 2

Now let p ≡ 11 (mod 12) be a prime. Then, 3 is a quadratic residue modulo p.
For, (

3
p

)
≡ (−1)(p−1)/2

(p
3

)
= (−1)(−1) = +1,
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as p ≡ 3 (mod 4) and p ≡ 2 (mod 3). If the order of 3 is (p− 1)/2, then Theorem
1 implies that

p− 1
2

− h =
(p−1)/2∑
i=1

xi

where xi’s are ternary digits in 1/p. Thus, we get the example stated in the intro-
duction.

4. Equidistribution of residue classes of subgroups

There are two questions that emerge from the above investigation. The first
concerns the distribution of the reduced residue classes (mod p) of the elements
of any subroup of the coprime residue classes. The second is whether interesting
formulas can be derived for the sums of the squares or higher powers of the digits
xi studied in Theorem 1. We will address both these questions below.

The first question can be studied in a general context. We can consider the
coprime residue classes mod n, and look at the distribution of the reduced residue
classes of any subgroup. We begin with an arbitrary subgroup Hn of (Z/nZ)∗ and
suppose that we have 1 = g1 < g2 < · · · < g|Hn| < n with the gi’s being the coset
representatives of Hn. A natural question is: how are the numbers gk, 1 ≤ k ≤ |Hn|
distributed?

For any such question it suffices to determine the behaviour of sums of the form
|Hn|∑
k=1

fm(gk)

for any suitable family of polynomials fm with degree m, m = 1, 2, . . . To this end,
it is convenient to take the Bernoulli polynomials and consider the sum

|Hn|∑
k=1

Bm

(gk
n

)
where

Bm(X) =
m∑
k=0

(
m

k

)
BkX

m−k,

where Bk are the Bernoulli numbers. Thus,

B1(X) = x− 1
2
, B2(X) = X2 −X +

1
6
,

etc. Using Bernoulli polynomials, we define for any Dirichlet character χ, the
generalized Bernoulli numbers, Bm,χ, as follows.

Bm,χ = nm−1
n∑
a=1

χ(a)Bm
(a
n

)
.

Proof of Theorem 2. Let n > e16 be a integer. For any subgroup Hn of co-prime
residue classes modulo n, we denote Ĥn the group of Dirichlet characters of (Z/nZ)∗

trivial on Hn. Therefore, we have a canonical isomorphism

Ĥn
∼= (Z/nZ)∗/Hn
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and so,

|Ĥn| =
φ(n)
|Hn|

.

Also,
1

Ĥn

∑
χ∈Ĥn

χ(a) =
{

1 if a ∈ Hn

0 otherwise.

Therefore, for each m ≥ 1,
|Hn|∑
k=1

Bm

(gk
n

)
=

1

Ĥn

n∑
k=1

Bm

(
k

n

) ∑
χ∈Ĥn

χ(k).

=
1

Ĥn

∑
χ∈Ĥn

n∑
k=1

Bmχ(k)

=
1

nm−1Ĥn

∑
χ∈Ĥn

Bm,χ.

Since
∫ 1

0

Bm(x)dx = 0 for every m ≥ 1 (for instance, see [6], page 19), by (1), it is

enough to show that for each m ≥ 1

1
|Hn|

|Hn|∑
k=1

Bm

(gk
n

)
→ 0 as n→∞.

Thus, we need to estimate the following

1
|Hn|

|Hn|∑
k=1

Bm

(gk
n

)
=

1

|Ĥn||Hn|nm−1

∑
χ∈Ĥn

Bm,χ

=
1

φ(n)nm−1

∑
χ∈Ĥn

Bm,χ.

For any character χ of conductor f |n, we know that

L(1−m,χ) = −Bm,χ
m

.

Note that if χ induced from a primitive character χ∗ with conductor f which divides
n, then

χ(a) =
{
χ∗(a) if (a, f) = 1
0 otherwise

In this case, we have,

L(1−m,χ) = L(1−m,χ∗)
∏

p|(n/f),(p,f)=1

(
1− χ(p)pm−1

)
.

Also, using the functional equation of L(1−m,χ∗) , we have

|L(1−m,χ∗)| ≤ c1m!
(2π)m

fm−
1
2

(for instance, see p. 122 of [6]). Using this, we estimate |L(1−m,χ)| as follows.
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Case (i) m ≥ 3. In this case,∣∣∣∣∣∣
∏

p|(n/f),(p,f)=1

(1− χ(p)pm−1)

∣∣∣∣∣∣ =
∏

p|(n/f),(p,f)=1

∣∣∣pm−1 − χ(p)
∣∣∣

=
∏

p|(n/f),(p,f)=1

pm−1

∣∣∣∣∣1− χ(p)
pm−1

∣∣∣∣∣
≤

∏
p|(n/f),(p,f)=1

pm−1
∏
p

(
1 +

1
pm−1

)
≤ c2(n/f)m−1.

where c2 is an absolute constant. Therefore,

|L(1−m,χ)| ≤ c3m!
(2π)m

fm−
1
2 (n/f)m−1 =

c3m!
(2π)m

√
fnm−1

≤ c(m)nm−
1
2 ,

where c(m) is an absolute constant which depends only on m.

Case (ii) m = 2. In this case,∣∣∣∣∣∣
∏

p|(n/f),(p,f)=1

(1− χ(p)p)

∣∣∣∣∣∣ ≤
∏

p|(n/f)

p
∏

p|(n/f)

(
1 +

1
p

)

≤ n

f

σ(n/f)
n/f

= σ(n/f)

where σ(n) =
∑
d|n

d. Therefore,

|L(−1, χ)| ≤ 2c1
(2π)2

f3/2σ(n/f)

=
2c1

(2π)2
n3/2 σ(n/f)

(n/f)3/2

≤ 2c1
(2π)2

n3/2 (2.59)(n/f) log log(n/f)
(n/f)3/2

≤ C(2)n3/2 for all n ≥ ee,

where C(2) is an absolute constant and in the above we have used the estimate

σ(n) ≤ 2.59n log log n for all n ≥ 7,

a result of A. Ivic [1].

Case (iii) m = 1. In this case, we have,∣∣∣∣∣∣
∏

p|(n/f),(p,f)=1

(1− χ(p))

∣∣∣∣∣∣ ≤
∏

p|(n/f),(p,f)=1

2 ≤ 2ω(n/f),
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where ω(n) denotes the number of distinct prime factors of n. Therefore,

|L(0, χ)| ≤ c1
2π

√
f2ω(n/f) =

c1
2π
√
n

2ω(n/f)√
n/f

.

Note that since ω(n) ≤ 2 log n/ log log n for all n ≥ 13, we have

2ω(n/f) ≤ 22 log(n/f)/ log log(n/f) = (n/f)log 4/ log log(n/f)
.

Therefore,

2ω(n/f) ≤
√
n/f for all n/f > e16.

Hence, we get,

|L(0, χ)| ≤ C(1)
√
n

for all n > e16 and C(1) is an absolute constant.

Thus, in all the cases, if χ is a character modulo n, then, we have

|L(1−m,χ)| ≤ C(m)nm−
1
2

for all n > e16 where C(m) is an absolute constant depends only on m.

Now, ∣∣∣∣∣∣ 1
|Hn|

|Hn|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ ≤ 1
φ(n)nm−1

∑
χ∈Ĥn

|Bm,χ|

≤ 1
φ(n)nm−1

∑
χ∈Ĥn

|L(1−m,χ)|

≤ |Ĥn|
φ(n)nm−1

C(m)nm−
1
2 for all n > e16

≤ C(m)
√
n

|Hn|
for all n > e16.

Thus the theorem follows. 2

Proof of Theorem 3. Let ε > 0 be given. Let H be a subgroup of coprime residue
classes modulo n such that |H| > nε. Then the result of Bourgain [2] states that
there is a δ(ε) > 0 such that for |H| > nε, we have

1
|H|

max
(a,n)=1

∣∣∣∣∣∑
x∈H

e2πiax/n

∣∣∣∣∣ < 1
nδ
.

Therefore, by Weyl’s equidistribution criterion, we get the result. 2
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Proof of Corollary 3. From the proof of Theorem 2, we see that∣∣∣∣∣∣ 1
|Hn|

|Hn|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ =
1

φ(n)nm−1

∣∣∣∣∣∣∣
∑
χ∈Ĥn

Bm,χ

∣∣∣∣∣∣∣
=

1
φ(n)nm−1

∣∣∣∣∣∣∣
∑
χ∈Ĥn

L(1−m,χ)

∣∣∣∣∣∣∣
≤ 1

φ(n)nm−1
C1n

m−1(log n)c|Ĥn|

by the assumption

≤ C1
(log n)c

|Hn|
→ 0

when n→∞ as |Hn|/(log n)c →∞.

5. Concluding Remarks

Now we deal with the distribution of the digits xi where 1/p = 0.x1x2 . . . xn · · · .
This is more difficult, but can be done inductively. We already saw

(p−1)/r∑
i=1

xi.

Now we will consider
(p−1)/r∑
i=1

x2
i . By our formula, we see that

(p−1)/r∑
i=1

x2
i =

(p−1)/r∑
i=1

(
ggi−1 − gi

p

)2

=
(p−1)/r∑
i=1

g2g2
i−1

p2
+

(p−1)/r∑
i=1

g2
i

p2
− 2

(p−1)/r∑
i=1

ggigi−1

p2

= (g2 + 1)
(p−1)/r∑
i=1

g2
i

p2
− 2

(p−1)/r∑
i=1

ggigi−1

p2
, (7)

g0 = g(p−1)/r ≡ 1 (mod p). To calculate the other sum, we first observe that

ggi−1 ≡ gi (mod p)

so that {
ggi−1

p

}
=
gi
p
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where {x} denotes the fractional part of x. Therefore, the sum

2
(p−1)/r∑
i=1

ggigi−1

p2
= 2

(p−1)/r∑
i=1

ggi−1

p

{
ggi−1

p

}

= 2
(p−1)/r∑
i=1

g2g2
i−1

p2
− 2

(p−1)/r∑
i=1

ggi−1

p

[
ggi−1

p

]
Therefore, (7) becomes

(p−1)/r∑
i=1

x2
i = (1− g2)

(p−1)/r∑
i=1

g2
i

p2
+ 2

(p−1)/r∑
i=1

ggi−1

p

[
ggi−1

p

]
. (8)

Consider

(1− g2)
(p−1)/r∑
i=1

g2
i

p2
=

1− g2

r

p−1∑
k=1

(χ(k) + χ2(k) + · · ·+ χr(k))
k2

p2

=
1− g2

r

r∑
i=1

p−1∑
k=1

χi(k)
k2

p2
, (9)

where χ is a character of order r. Since B2(X) = X2 − X + 1/6, we see that for
any non-trivial Dirichlet character ψ modulo p,

B2,ψ = p

p−1∑
k=1

ψ(k)
k2

p2
− p

p−1∑
k=1

ψ(k)
k

p
+
p

6

p−1∑
k=1

ψ(k) = p

p−1∑
k=1

ψ(k)
k2

p2
− p

p−1∑
k=1

ψ(k)
k

p
.

Therefore,
p−1∑
k=1

ψ(k)
k2

p2
=

1
p

(B2,ψ +B1,ψ) (10)

By (9) and (10), we get,

(1− g2)
(p−1)/r∑
i=1

g2
i

p2
=

1− g2

pr

r∑
i=1

(
B2,χi +B1,χi

)
. (11)

Hence, by (8) and (11), we get,

(p−1)/r∑
i=1

x2
i =

1− g2

pr

r∑
i=1

(
B2,χi +B1,χi

)
+ 2

(p−1)/r∑
i=1

ggi−1

p

[
ggi−1

p

]

=
1− g2

pr

r∑
i=1

(
B2,χi +B1,χi

)
+

2g
r

r∑
i=1

p−1∑
k=1

χi(k)
k

p

[
gk

p

]
.

It is thus clear that sums of the form
p−1∑
k=1

χ(k)
k

p

[
gk

p

]
enter into the evaluation. Such sums appear in the congruences of Voronoi, extend-
ing the celebrated Kummer congruences. For sums of higher powers of the xi’s,
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similar sums of the form
p−1∑
k=1

χ(k)
(
k

p

)i [
gk

p

]j
appear.
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