Size of L(1,χ)

Collecting references: [Louboutin, 1993 †Louboutin, S. 1993
Majorations explicites de |L(1,χ)|
C. R. Acad. Sci. Paris, 316, 11--14.
],
1. Upper bounds for |L(1,χ)|
[Louboutin, 1996 †Louboutin, S. 1996
Majorations explicites de |L(1,χ)| (suite)
C. R. Acad. Sci. Paris, 323, 443--446.
], [Granville & Soundararajan, 2003 †Granville, A., & Soundararajan, K. 2003
The distribution of values of L(1,χ)
Geom. Func. Anal., 13(5), 992--1028. http://www.math.uga.edu/ andrew/Postscript/L1chi.ps.
], [Granville & Soundararajan, 2004 †Granville, A., & Soundararajan, K. 2004
Errata to: The distribution of values of L(1,χ), in GAFA 13:5 (2003)
Geom. Func. Anal., 14(1), 245--246.
]. [Ramaré, 2001 †Ramaré, O. 2001
Approximate Formulae for L(1,χ)
Acta Arith., 100, 245--266.
], [Ramaré, 2004 †Ramaré, O. 2004
Approximate Formulae for L(1,χ), II
Acta Arith., 112, 141--149.
], [Louboutin, 1998 †Louboutin, S. 1998
Majorations explicites du résidu au point 1 des fonctions z\^eta
J. Math. Soc. Japan, 50, 57--69.
],
2. Lower bounds for |L(1,χ)|
[Louboutin, 2013 †Louboutin, S. 2013
An explicit lower bound on moduli of Dichlet {L}-functions at s=1
preprint.
] announces the following lower bound.
Theorem (2013)
For any non-quadratic primitive Dirichlet character χ of conductor f, we have |L(1,χ)|1/(10log(f/π)).

Last updated on September 11th, 2014, by Olivier Ramaré