
Karthik H S 

Light & Matter Physics Group 

Raman Research Institute 

Joint Measurability, Steering & 

Entropic Uncertainty  



What’s in Store? 

 Quantum Information Science: 

     An Ode to Einstein-Podolosky-Rosen Argument, Bell’s 

     Inequality, (Entropic) Uncertainty Relation(s) 

 Quantum steering 

 Notion of Joint Measurability 

 Interconnections (i.e. Our work!!) 
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How theorists 

think about 

experiments!! 

How experimenters 

think about 

experiments!! 



Einstein, Podolsky, Rosen (EPR) 

Paradox 
Boris Podolsky Nathan Rosen Albert Einstein  

Argument: 

For the success of  a physical theory, we must ask: 

1)Is the theory correct? 

2)Is the theory complete? 

It is the second question that EPR tries to consider as applied to 

Quantum Mechanics. 
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Suppose  

because A and B don’t commute: i.e., both A 

and B do not  represent realities for the system 

in state |a>. 

This leaves us with two possibilities: 

1)Quantum Theory is incomplete 

2)Quantum Theory is fine: No simultaneous realities for two non-
commuting operators. 

 

  

EPR Contd…. 
abaBaaaA   and 
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Let’s use Bohm’s version of the paradox : 

A pair of spin ½ particles ,A and B , with spin 

vectors σA and σB   are formed by decay in a spin 

singlet state, so that their spins are perfectly anti 

correlated. 

 

1)Measure σz  at A’s end. 

2)Next measure σx  at A’s end. 

These measurements yield us the results at B’s end 

though nothing was done at B. 

 

 

 

EPR Contd…. 
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We have predicted the values of measurements at B’s end 

though [σBz ,σBx ]≠0 

 

There are realities hidden at B’s end which is NOT accounted 

by the wave function/state. 

 

Thus Quantum Mechanics is an incomplete description of 

reality that must be extended in some way to describe all 

these objective properties.  

EPR Conclusion 
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Hidden Variable Theory 

+ 
A B A B 

Can the Spooky, Action-at-a-distance Predictions  

(Entanglement) of Quantum Mechanics… 

+ 
A B A B 

…Be Replaced by Some Sort of Local, Statistical, Classical 

(Hidden Variable) Theory? 
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NO!—Bell’s Inequality 

John Bell 

The physical predictions of quantum theory disagree with those of 

any local (classical) hidden-variable theory!  
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 In 1964, J S Bell brought out a clear mathematical 

description of what is known as local realism and put forth a 

test to check whether quantum theory adheres to it. 

 CHSH version of Bell’s Inequality: 

 

 

   Where C(A(a),B(b)) is the correlation among observables A,B 

measured on two spatially separated systems, which take values 

a, b respectively. 
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Bell's Inequality 

Bell’s Inequality(BI):  

|C(A(a),B(b))-C(A(a),B(b’))|+|C(A(a’),B(b))+C(A(a’),B(b’))|≤ 2  



Quantum Entanglement 

“Quantum entanglement is the characteristic trait of quantum mechanics, the one 

that enforces its entire departure from classical lines of thought.”   

 

— Erwin Schrödinger 
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Take Away from EPR 

• Apparently provides the “values” of the non-

commuting observables of both the particles  

• Breaks uncertainty principle? 

 

• Ref: “Is quantum mechanical description of reality 

complete?”  (EPR, Physical review 47 , 777 

(1935)).  
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Former paradoxes of quantum foundations are 

now resources of quantum information science! 
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Entropic Uncertainty Relation(EUR) 

 From an information-theoretic perspective, it is natural to capture this 

“ignorance” in terms of Shannon entropies rather than variances. 

 Entropic Uncertainty Relations (EUR) have broadened and 

strengthened the original notion of Heisenberg’s UP. 

 

 

 

     where C(X,Z) = maxx,z |<x|z>|. 

 The lower bound limiting the sum of entropies  is independent of the 

state  ρ. 

H. Maassen & J. B. M. Uffink, Phys. Rev. Lett. 60, 1103(1988). 

MAASSEN & UFFINK EUR:  

Hρ(X)  + Hρ(Z) ≥ -2log2 C(X,Z) 
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EUR contd… 
 The term C(X,Z) can assume a maximum value  1/√d resulting 

in the maximum entropic bound of log2 d, where d denotes the 

dimension of the system. 

 

EXAMPLE: consider a qubit prepared in a completely random mixture 

given by ρ=I/2 (I denotes 2 × 2 identity matrix). Measurements of the 

observables X = σx and Z = σz in this state leads to Shannon entropies 

of measurement Hρ(X) = Hρ(X) = 1; C(X,Z) = 1/√2 and the 

uncertainty bound is −2 log2C(X,Z) = 1; the Massen-Uffink relation 

is satisfied. 
 

15 2/24/2015 Young Quantum 2015, HRI, Allahabad 



Enter Entanglement! 

 After a long debate and a series of laboratory 

experiments, we understand today that, rather than 

constituting refutations of uncertainty relations, these 

apparent violations are a signature of entanglement. 

 

 This is the point of departure for the new entropic 

uncertainty relation of Berta et al., (M. Berta, M. Christandl, R. 

Colbeck, J. M. Renes, and R. Renner, Nature Physics 6, 659(2010) ) 

which had been conjectured previously (J. M. Renes, J. C. 

Boileau,  Phys. Rev. Lett. 103, 020402 (2009) ). 
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But……. 

What is ENTANGLEMENT? Spooky!!!! 

 “...a correlation that is 
stronger than any 
classical correlation”----
-----John S Bell 

 “…a trick that quantum 
magicians use to produce 
phenomena that cannot 
be imitated by classical 
magicians.”---------
Asher Peres 
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A Quantum Game 

(1) Bob sends a particle to Alice, which may, in general, be entangled with 

his quantum memory.  

(2)  Alice measures either R or S and notes her outcome.   

(3) Alice announces her measurement choice to Bob. 

(M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, Nature Physics 6, 659(2010) )  
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S(A|B) can be negative if the state ρAB is entangled 
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A Quantum Game Cont…. 

 Bob, when he prepares an entangled state ρAB and sends one 

part of it to Alice, can indeed beat the uncertainty bound and 

can predict Alice’s outcomes with certainty-----------but this 

was done with Projective Valued (PV) measurements-----

i.e Incompatible set of Measurements!! 
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Berta et. al EUR 

 When Alice’s system is in a maximally entangled state 

with Bob’s quantum memory, S(A|B) = −log2 d and as 

−2log2C(X,Z) ≤ log2 d one can achieve a trivial lower 

bound of zero. Thus, with the help of a quantum 

memory maximally entangled with Alice’s state, Bob can 

beat the uncertainty bound and can predict the outcomes 

of incompatible observables X, Z precisely. 

   (Caveat here is----Bob should perform 

   Incompatible measurements on his part of the 

   state to predict Alice’s  outcomes) 
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Quantum Steering 
 Steering is yet another facet of the mystical world of Quantum 

Mechanics 

 Consider non-separable states of a bi-partite system: 

     |ψ> =   𝑐𝑛|
𝑛=∞
𝑛=1 𝜓n>|un>  =   𝑑𝑛|

𝑛=∞
𝑛=1 φn>|vn>  

 

 Bob can steer Alice’s state into either |𝜓n>s or |φn>s depending  

    upon his choice of measurement 

 

 “It is rather discomforting that the theory should allow a system to be 
steered ...... into one or the other type of state at the experimenter’s mercy 
in spite of having no access to it.” ----------Erwin Schrodinger. 

    Proc. Cam. Phil. Soc. 32, 446-452(1936) 
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Steering as an Information theoretic 

task 

 Task:   Alice , Bob and Charlie are 3 experimenters.  Suppose      

Charlie (always the third party!) wants to know whether 

Alice & Bob are entangled (E Cavalcanti et. al,  PRA 80, 

032112 (2009)) 

 
Trusted partners 

Untrusted partners 

Pic Credit: N. Brunner Nature Physics 6, 842–843 (2010) 2/24/2015 Young Quantum 2015, HRI, Allahabad 
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A Steering Game!! 

Believe ME!!  

I’m NOT a 

cheat! 

I will believe you  

only when you can  

steer my state!! 

Alice 
Bob 

 Bob, who holds a source of photons tries to convince a skeptical 

Alice that they share an entangled state 

 To convince Alice, he claims that after having sent the photon, he 

can steer it’s state from a distance 

 If the photons are actually entangled, Bob can remotely prepare 

(steer) different states for Alice’s photon---of course dependent 

on his (random) measurement outcomes 

 But how can Alice make sure that he is not cheating? He can send 

an uncorrelated photon and pretend to have made a 

measurement! 
2/24/2015 
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Entropic Steering Inequality 

 Alice asks Bob to perform different measurements in each 

experimental run and evaluates steering inequality ----

which is always obeyed when Bob is not trustworthy i.e. he 

cannot steer Alice’s state by his measurements  ------N. 

Brunner , Nature Physics 6, 842–843 (2010) 

 Steering inequality: 

   Consider pairs of binary measurements:  X, X’ ,Z, Z’ ∊{1,-1} 

     

    

 where C(X,Z) = maxx,z |<x|z>| 

H(X|X’) + H(Z|Z’) ≥ -2 Log2C(X,Z) 
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Our Work 
We investigate the entropic uncertainty relation(Berta Et. Al. Nature 

Physics 6, 659 (2010)) for a pair of discrete observables (of Alice’s 

system) when an entangled quantum memory of Bob is restricted 

to record outcomes of jointly measurable POVMs only. 

Within the joint measurability regime, the sum of entropies 

associated with Alice’s measurement outcomes – conditioned by the 

results registered at Bob’s end – are constrained to obey an entropic 

steering inequality. In this case, Bob’s non-steerability reflects itself 

as his inability in predicting the outcomes of Alice’s pair of non-

commuting observables with better precision, even when they share 

an entangled state. 

H S Karthik, A R Usha Devi, A K Rajagopal, Joint Measurability, 

Steering and Entropic Uncertainty, Phys. Rev. A 91, 012115 (2015)  
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But, What is Joint Measurability? 

 Measurements of observables which do not commute 

are declared to be incompatible in the quantum 

scenario.  

 

 

 

 But Quantum Mechanics places restriction on how sharply two 

non-commuting observables can be measured jointly. 

 

Are Joint un-sharp measurements possible? 

 

Compatibility of 

measurements 

commutativity 

 

Existence of Joint 

Probability 

Distribution(JPD) 
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Joint Measurements of Positive Operator 

Valued (POV) Observables 

 The orthodox notion of sharp Projective Valued(PV) 

measurements of self adjoint observables gets broadened to 

include un-sharp measurements of POV observables 

 

 Do classical features emerge when one merely confines to 

measurements compatible un-sharp observables? 

 

 Is it possible to classify physical theories based on the 

fuzziness required for Joint measurability?  
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Example of un-sharp POV observables 

 It is well known that both σx and σz don’t commute and hence 
cannot be measured jointly 

 But the un-sharp observables Sx and Sz defined by the POVM’s 

    Sx(±) = (½)(I+(1/√2)σx) and  

    Sz(±) = (½)(I+(1/√2)σz) are shown to be jointly 

    measurable. 

 

 

  Here, Sx(±) = ∑jG(±,j) and  Sz (±) = ∑iG(i,±). One can jointly 
determine the probabilities of the POVM’s Sx and Sz by measuring 
G  

Consider 
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 More formally,  a POVM set {Ɛk} is said to be jointly measurable iff there exists a 

grand POVM G  from which the probabilities of the POVM set {Ɛk} can be 

calculated.  

 i.e., a pair of POVM measurements {E1(x1)} and {E2(x2)} are jointly 

measurable iff there exists {G(λ),0 ≤ G(λ) ≤ I, ∑λ G(λ) = I} from 

which {E1(x1)} and {E2(x2)} can be constructed as follows: 

    1) Measure G on a state ρ 

    2) From this, P(λ) = Tr[ρG(λ)] is calculated. 

 

 If the elements {E1(x1)} and {E2(x2)} can be constructed as marginals 

of {G(λ), λ = x1 , x2 ,….} such that E1 (x1) = ∑x2 G(x1, x2) and E2 (x2) 

= ∑x1 G(x1, x2) , then they are said to be jointly measurable. 
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 In general, if the effects can be constructed in terms of G(λ) as 

Ei(xi) = ∑λ p(xi|i,λ)G(λ)  ∀i, where 

    0 ≤ p(xi|i,λ) ≤ 1, ∑λ p(xi|i,λ) = 1,  

    then{Ei} are jointly  measurable. 

 

 For all the jointly measurable POVM’s {Ei}, the probability p(xi|i) 

of the outcome xi in the measurement of {Ei} can be post 

processed based on the results of the measurement of the grand 

POVM G  

 

 

p(xi|i) = Tr[ρEi(xi)] = ∑λ p(xi|i,λ)p(λ)  
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Neat Examples 

 Example: 1) Trine spin Axes 

 Consider noisy spin observables  which form triplets of POVM’s: k Є {1,2,3} 

     Ek(±) = (½)(I+(η/2)σ.nk) , 0 ≤ η ≤ I. 

     Here σ is the Pauli spin operators.  nk  is the direction along which the spin is 

     measured. 

                                         

 

 

 

 2) Orthogonal spin Axes 

 

n̂1 = (0,0,1), 

n̂2 = (
√3

2
,0,-

1

2
), 

n̂3 = (-
√3

2
,0,-

1

2
). 

The triple of measurements defined by the noisy spin 

observables  along three equally spaced axes in a plane is 

jointly measurable if η ≤ 2/3. 

n̂1 = (0,0,1), 

n̂2 = (1,0,0), 

n̂3 = (0,1,0). 

The triple of measurements defined by the noisy spin 

observables  along three orthogonal spin axes  is jointly 

measurable if η ≤ 1/√3. 
2/24/2015 
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Existence of a global observable for three observables 

 A, B & C implies that there exists joint observables for 

 each of the possible pairs {A,B}, {A,C}, {B,C}but the  

converse need not be true for un-sharp observables. 

 

 
See: P. Busch, Phys. Rev. D 33, 2253 (1986) 

T Heinosari, D Reitzner and P Stano, Found. Phys. 38, 1133 (2008) 
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Steering   implies  both  entanglement  and  

incompatible measurements  at  Bob’s end 
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Uncertainty & Joint Measurability 

 What kind of limitations are imposed by restricting to joint 

measurability of un-sharp observables? 

 We explore the implications of joint measurability on 

entropic uncertainty relation in the presence of a quantum 

memory (M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and 

R. Renner, Nature Physics 6, 659(2010) )  
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Uncertainty & Joint Measurability 
 When Bob has only classical information about Alice’s state, the 

uncertainties in the outcomes of the observables X, Z obey the 

EUR (H. Maassen & J. B. M. Uffink, Phys. Rev. Lett. 60, 

1103(1988), M. Krishna & K. R. Parthasarathy, Sankhya, 64, 842, 

(2002))  

 

 

Hρ(X)  + Hρ(Z) ≥ -2log2 C(X,Z) 

Projective Measurements 

X-----> |x><x| 

Z----->  |z><z| 

C(X,Z) = maxx,z |<x|z>|. 

 

POVM measurement 

X≡ {EX(x)} 

Z≡ {EZ(z)} 

C(X,Z) = maxx,z || EX(x) EZ(z) || 
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Beating the uncertainty bound 
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Beating the uncertainty bound 
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Conclusions 
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 Entropic Uncertainty Relations(EUR) constrain the sum of entropies 
associated with the probabilities of outcomes of a pair of Non-
Commuting(NC) observables. 

 An extended EUR of Berta et. Al brought out that it’s possible to beat 
the lower bound on uncertainties, when the system is entangled with a 
quantum memory. 

 We investigate the situation where Bob’s quantum memory is restricted 
to record outcomes of Jointly Measurable POVM’s. 

 In such a scenario, it’s realized that the l.h.s of EUR is constrained to 
obey an Entropic Steering Relation. 

 Finally, we see that a quantum memory cannot assist in beating the 
entropic uncertainty bound -----when it is confined to register 
results of compatible POVM’s only. 
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Thank You for your attention!! 


