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Operational theories and Ontological models

An operational theory is specified by a triple, (P,M, p), where P
denotes the preparation procedures P ∈ P in the lab, M denotes
the measurement procedures (M,KM) ∈M, and
p : (P,M)→ [0, 1] is the probability p(k |P,M) that measurement
outcome k ∈ KM is observed when measurement procedure
(M,KM) is implemented following the preparation procedure P.



Operational theories and Ontological models

An ontological model (Λ,Ξ, µ) of an operational theory (P,M, p)
posits a space of ontic states λ ∈ Λ, probability densities
µ : Λ→ [0,∞) defined over which constitute the preparation
procedures, and response functions ξ : (Λ,M)→ [0, 1] denote the
probability ξ(k |M, λ) that measurement outcome k ∈ KM is
observed when measurement procedure (M,KM) is implemented
and the ontic state of the system is λ.



Operational theories and Ontological models

An ontological model of an operational theory must be empirically
adequate, that is:

p(k|P,M) =

∫
dλµP(λ)ξ(k |M, λ), (1)

for all P ∈ P, (M,KM) ∈M. This is how an operational theory
and its ontological model fit together.



Operational theories and Ontological models

I So far we haven’t imposed any restriction on either the
operational theory or its ontological model. We are interested
in the question of whether an operational theory still admits
an ontological model if an additional feature is required of
such a model: noncontextuality.

I Also, the operational theory will be assumed to be quantum
theory for the purpose of this talk.



Noncontextuality1

A methodological principle: If two experimental procedures are
operationally indistinguishable then they must also be ontologically
indistinguishable—the ontological identity of operational
indiscernables.

1R. W. Spekkens, Phys. Rev. A 71, 052108 (2005)



Noncontextuality

The experimental procedures we are interested in are preparations
and measurements. An ontological model of an operational theory
is noncontextual if it satisfies two properties: preparation
noncontextuality and measurement noncontextuality.



Noncontextuality

Preparation noncontextuality (PNC) is expressed as the following
inference from the operational theory to its ontological model:

p(k|P,M) = p(k |P ′,M),∀(M,KM) ∈M or P ' P ′

⇒ µP(λ) = µP′(λ), ∀λ ∈ Λ. (2)

That is, two preparations P and P ′ which are operationally
indistinguishable are represented by identical distributions in the
ontological model. Note that P ' P ′ denotes the operational
equivalence of preparation procedures P and P ′.



Noncontextuality

Measurement noncontextuality (MNC) is expressed as the
following inference:

p(k |P,M) = p(k|P,M ′), ∀P ∈ P or M ' M ′

⇒ ξ(k |M, λ) = ξ(k|M ′, λ),∀λ ∈ Λ. (3)

That is, measurements M and M ′ which do not differ in their
statistics relative to all preparations P ∈ P are represented by
identical response functions in the ontological model. Note that
M ' M ′ denotes the operational equivalence of measurement
procedures M and M ′.



Outcome determinism (OD)

Outcome determinism (OD) is the assumption that the ontological
response functions for every measurement procedure
(M,KM) ∈M in the operational theory are deterministic:
ξ(k|M, λ) ∈ {0, 1} for all k ∈ KM , λ ∈ Λ.



When the operational theory is quantum mechanics...

1. PNC ⇒ ODSM, where ODSM is outcome determinism for all
sharp (projective) measurements.

2. MNC and ODSM together constitute the assumption of
KS-noncontextuality.

3. However, ODUM, or outcome determinism for all unsharp
(nonprojective) measurements is an additional assumption
that does not follow from noncontextuality.

4. In applying MNC to unsharp measurements, therefore, we do
not want to assume ODUM. There exist proofs of
contextuality assuming ODUM2 but as argued by Spekkens3,
assuming ODUM with MNC allows a trivial contradiction
using only the fair coin flip POVM, { I2 ,

I
2}.

5. We want to test the possibility of a noncontextual model of
quantum mechanics without assuming ODUM.

2e.g., A. Cabello, PRL 90, 190401 (2003); P. Busch, PRL 91, 120403 (2003)
3R.W. Spekkens, Found. Phys. 44, 1125 (2014); see also A. Grudka and

P. Kurzynski, PRL 100, 160401 (2008)



Fine’s theorem4

I As originally stated, Fine’s theorem referred to the Bell-CHSH
scenario and showed (among other things) that given
experimental correlations in this scenario, a locally
deterministic model exists if and only if a locally causal model
exists. This is a compelling argument for why outcome
determinism is not an assumption required to prove Bell’s
theorem.

I Naively, one might expect this to be true of the KS theorem
as well, especially when it comes to what are called
“state-dependent” proofs that rely on violating KS
inequalities. However, Fine’s theorem turns out to be of
limited utility in noncontextual models, especially when the
full class of outcome-indeterministic models is allowed.

4A. Fine, PRL 48, 291 (1982)



Theorem
Given a set of measurements {M1, . . . ,MN} with jointly
measurable subsets S ⊂ {1, . . . ,N}, where each measurement
Ms , s ∈ S, takes values labelled by ks ∈ KMs , the following
propositions are equivalent:

1. For a given preparation P ∈ P of the system there exists a
joint probability distribution p(k1, . . . , kN |P) that recovers the
marginal statistics for jointly measurable subsets predicted by
the operational theory (such as quantum theory) under
consideration, i.e., ∀S ⊂ {1, . . . ,N},
p(kS |MS ;P) =

∑
ki :i /∈S p(k1, . . . , kN |P), where kS ∈ KMS

.

2. There exists a measurement-noncontextual and
outcome-deterministic, i.e. KS-noncontextual, model for these
measurements.

3. There exists a measurement-noncontextual and factorizable
model for these measurements.



Does Fine’s theorem rescue ODUM? No.

I It is often left implicit, though sometimes explicity suggested5,
that “ruling out all possible noncontextual deterministic
hidden variable models implies ruling out all possible
noncontextual stochastic models as well.”

I This is not strictly true: only factorizable hidden variable
models are excluded by any argument of the KS-type.
Factorizable models are those which require factorizability of
joint measurement response functions, e.g.,
ξ(X1,X2|M12, λ) = ξ(X1|M1, λ)ξ(X2|M2, λ).

I There exist nonfactorizable hidden variable models that aren’t
ruled out by KS-type arguments. To rule out these, we need
to go beyond KS inequalities.

I LSW inequality and its variants are noncontextuality
inequalities that address precisely this question.

5C. Simon, C. Brukner, A. Zeilinger, PRL 86, 4427 (2001)



Specker’s scenario

M
1

M
2

M
3

Three binary-outcome measurements, denoted M1, M2, and M3,
each with outcome space {0, 1}, for which every pair is jointly
measurable.



Specker’s scenario

For every pair {Mi ,Mj} where (i , j) ∈ {(1, 2), (2, 3), (1, 3)}, there
is a four-outcome measurement Mij , such that the operational
statistics of measurements Mi and Mj are recovered as marginals
of the operational statistics of Mij . We denote the outcome of Mij

by (Xi ,Xj) and let M
(j)
i (M

(i)
j ) denote the coarse-graining over Xj

(Xi ) of Mij :

p(Xi |M
(j)
i ,P) ≡

∑
Xj

p(Xi ,Xj |Mij ,P), (4)

p(Xj |M
(i)
j ,P) ≡

∑
Xi

p(Xi ,Xj |Mij ,P). (5)



Specker polytope

For any preparation, the data in this scenario consists of 12
probabilities, four from each pairwise distribution p(Xi ,Xj |Mij ,P).
We can express the assumption of pairwise joint measurability of
M1, M2 and M3 as the following operational equivalences

M
(2)
1 ' M

(3)
1 ' M1, (6)

M
(1)
2 ' M

(3)
2 ' M2, (7)

M
(1)
3 ' M

(2)
3 ' M3. (8)

Along with positivity and normalization, this condition (often
called no disturbance) defines a polytope in R6 with 12 vertices, 8
deterministic and 4 indeterministic.



The deterministic vertices are obvious: they are the 8 extremal
KS-noncontextual assignments that can be made to outcomes of
M1,M2,M3. The convex hull of these vertices defines the
KS-noncontextuality polytope for this scenario; its halfspace
representation is given by the following set of four KS inequalities:

R3 ≡ p(X1 6= X2|M12,P)+p(X2 6= X3|M23,P)+p(X1 6= X3|M13,P) ≤ 2,

R0 ≡ p(X1 6= X2|M12,P)−p(X2 6= X3|M23,P)−p(X1 6= X3|M13,P) ≤ 0,

R1 ≡ p(X2 6= X3|M23,P)−p(X1 6= X2|M12,P)−p(X1 6= X3|M13,P) ≤ 0,

R2 ≡ p(X1 6= X3|M13,P)−p(X1 6= X2|M12,P)−p(X2 6= X3|M23,P) ≤ 0.



The indeterministic vertices are the following:

∀(ij) : p(Xi = 0,Xj = 1|Mij ,P) = p(Xi = 1,Xj = 0|Mij ,P) =
1

2
,

(9)
and the other three for (kl) ∈ {(12), (23), (13)}:

p(Xk = 0,Xl = 1|Mkl ,P) = p(Xk = 1,Xl = 0|Mkl ,P) =
1

2
,

∀(ij) 6= (kl) :

p(Xi = 0,Xj = 0|Mij ,P) = p(Xi = 1,Xj = 1|Mij ,P) =
1

2
,

(10)

Each indeterministic vertex violates exactly one corresponding KS
inequality maximally.



LSW and its three variants: the measurements

I The LSW inequality and its variants bound correlations
outside the KS-noncontextuality polytope but still within the
larger Specker polytope by taking into account the effect of
noise in qubit measurements.

I We take {M1,M2,M3} to be three qubit measurements which
are pairwise jointly measurable: Mi is associated with the

qubit POVM {E (i)
0 ,E

(i)
1 }, where E

(i)
b corresponds to the

outcome Xi = b.

In particular, we assume

E
(i)
0 ≡

1

2
I +

1

2
η0~σ · n̂i , E

(i)
1 ≡

1

2
I − 1

2
η0~σ · n̂i ,

where ~σ ≡ (σx , σy , σz) is the vector of qubit Pauli matrices, and I

is the identity matrix. Note that E
(i)
b = η0Π

(i)
b + (1− η0) I

2 , where

Π
(i)
b = 1

2 I + (−1)b 1
2~σ · n̂i .



Predictability

We define the predictability of measurement Mi to be:

ηMi
≡ max

P∈P
{2 max{p(Xi = 0|Mi ,P), p(Xi = 1|Mi ,P)} − 1} ,

We have ηMi
= 1 for perfect predictability - there exists some

preparation which makes Mi yield a deterministic outcome - and
ηMi

= 0 for perfect unpredictability - there exists no preparation
that can make the outcome of Mi anything other than uniformly
random. The quantum measurements we have chosen yield
ηMi

= η0 for all i ∈ {1, 2, 3}.



LSW and its three variants: the inequalities

R3 ≤ 3− η0,
R0 ≤ 1− η0, (11)

R1 ≤ 1− η0, (12)

R2 ≤ 1− η0. (13)

Note than for η0 = 1, these reduce to the KS inequalities.
However, pairwise joint measurability of qubit POVMs requires
η0 < 1: this is why the KS inequalities do not suffice to account
for noncontextuality in this scenario. In quantum theory, there do
not exist sharp measurements which are pairwise jointly
measurable and still allow a violation of KS inequalities.



Equivalence under relabelling

I The three inequalities on R0, R1, and R2 are equivalent to the
LSW inequality under the following relabellings of
measurement outcomes: X3 → X ′

3 ≡ 1− X3 (takes R3 to R0),
X2 → X ′

2 ≡ 1− X2 (takes R3 to R2), X1 → X ′
1 ≡ 1− X1

(takes R3 to R1).

I For example: X3 → X ′
3 ≡ 1− X3 means

p(X2 6= X ′
3|M23,P) = 1− p(X2 6= X3|M23,P),

p(X1 6= X ′
3|M13,P) = 1− p(X1 6= X3|M13,P), and therefore:

R ′
3 = p(X1 6= X2|M12,P) + p(X2 6= X ′

3|M23,P)

+ p(X1 6= X ′
3|M13,P) ≤ 3− η0

is equivalent to R0 ≤ 1− η0.



The anticorrelation vs. predictability tradeoff

I The LSW inequality quantifies the tradeoff between the
achievable anticorrelation and the achievable predictability for
a set of measurements. Noncontextuality implies that one
cannot achieve both to an arbitrary degree: R3 + η0 ≤ 3. This
inequality is nontrivial for all η0 > 0.

I Observing perfect anticorrelation (R3 = 3) should not be
surprising unless one has also verified nonzero predictability
(η0 > 0) in the measurement outcomes.



Aside: nonfactorizability in response functions

The single measurement response functions are given by

ξ(Xi |Mi ;λ) = ηδXi ,Xi (λ) + (1− η)

(
1

2
δXi ,0 +

1

2
δXi ,1

)
, (14)

i ∈ {1, 2, 3}, in keeping with the assumption of ODSM but not
ODUM. The pairwise response function maximizing anticorrelation:

ξ(Xi ,Xj |Mij ;λ) = ηδXi ,Xi (λ)δXj ,Xj (λ)+(1−η)

(
1

2
δXi ,0δXj ,1 +

1

2
δXi ,1δXj ,0

)
.

(15)
The pairwise response function minimizing anticorrelation:

ξ(Xi ,Xj |Mij ;λ) = ηδXi ,Xi (λ)δXj ,Xj (λ)+(1−η)

(
1

2
δXi ,0δXj ,0 +

1

2
δXi ,1δXj ,1

)
.

(16)



Quantum violation

On account of the equivalence to LSW inequality under relabelling,
all four noncontextuality inequalities admit quantum violation for
an appropriate choice of states and measurements 6. Unlike earlier
attempts assuming ODUM, this violation is nontrivial precisely
because it works without an assumption of ODUM.

6R. Kunjwal and S. Ghosh, Phys. Rev. A 89, 042118 (2014)



Takeaway

I Outcome determinism is an assumption of the KS theorem. It
cannot be done away with by appealing to Fine’s theorem: all
that Fine’s theorem excludes are factorizable noncontextual
models, which form a restricted class in the space of
outcome-indeterministic models.

I The no disturbance correlations in Specker’s scenario form a
polytope in R6 with 12 vertices, 8 deterministic and 4
indeterministic. Each indeterminstic vertex violates the
corresponding KS inequality and noncontextuality inequality
(if nontrivial, i.e., η0 > 0) maximally.

I The big open question is: how does one extend this analysis
to the case where the operational theory is not assumed to be
quantum theory?
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