

(日)

Frozen Quantum Correlations

Amit Kumar Pal

Harish-Chandra Research Institute, Allahabad, INDIA

Young Quantum - 2015

February 24, 2015

Outline

• Introduction

- Quantum discord & "discord-type" measures
- Dynamics under local noisy channels

• What is freezing?

- Initial state, freezing conditions, phase diagram
- Complementarity, state space, etc.

Effective freezing

- Quantitative approach: Freezing index
- Quantum phase transition using freezing index

▲□▶▲□▶▲□▶▲□▶ ■ の

Conclusion

• Quantum correlations beyond entanglement

- Quantum correlations beyond entanglement
- Several measures available..
 - 1. Quantum discord
 - 2. Quantum work deficit
 - 3. Several geometric measures

•••

Review by Modi et. al., RMP (2012)

▲□▶▲□▶▲□▶▲□▶ ■ の

- Quantum correlations beyond entanglement
- Several measures available..
 - 1. Quantum discord
 - 2. Quantum work deficit
 - 3. Several geometric measures
 - •••
- Use as resource?

Review by Modi et. al., RMP (2012)

(ロ)、(型)、(E)、(E)、(E)、(D)

- Quantum correlations beyond entanglement
- Several measures available..
 - 1. Quantum discord
 - 2. Quantum work deficit
 - 3. Several geometric measures
 - ••••
- Use as resource?- Debatable

Review by Modi et. al., RMP (2012)

・ロット (雪) (日) (日) (日)

- Quantum correlations beyond entanglement
- Several measures available..
 - 1. Quantum discord
 - 2. Quantum work deficit
 - 3. Several geometric measures
- Use as resource?- Debatable

Review by Modi et. al., RMP (2012)

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> の

• Even if it is, it faces a problem! **Decoherence** Decay of quantum correlations in noisy environments

Measure: Quantum discord

Classical mutual information: Two equivalent definitions

- I(A:B) = H(A) + H(B) H(A,B)
- J(A:B) = H(B) H(B|A)

$$H(A) = -\sum_{a} p_{a} \log_{2} p_{a} \leftarrow \text{Shannon entropy}$$
$$H(B|A) = H(A, B) - H(A) = -\sum_{a,b} p_{a,b} p_{b|a} \leftarrow \text{Conditional entropy}$$
$$p_{b|a} = \frac{p_{a,b}}{p_{a}}$$

Quantum mutual information: Two inequivalent definitions

- $\mathcal{I}(A:B) = S(\rho_A) + S(\rho_B) S(\rho_{AB})$
- $\mathcal{J}(A:B) = S(\rho_B) \frac{S(\rho_B|\rho_A)}{S(\rho_B|\rho_A)}$

 $S(\rho) = -\text{Tr} \left[\rho \log_2 \rho\right] \leftarrow \text{von Neumann entropy}$ $S(\rho_B | \rho_A) = \sum_k p_k S\left(\rho_{AB}^k\right) \leftarrow \text{Quantum conditional entropy}$

$$Q_A(
ho_{AB}) = \min_{\{\Pi_k^A\}} \left\{ S(
ho_A) - S(
ho_{AB}) + \sum_k p_k S\left(
ho_{AB}^k
ight)
ight\}$$

Minimization over a complete set of projective measurements $\{\Pi_k^A\}$

Ollivier & Zurek, PRL (2001); Henderson & Vedral, J. Phys. A (2001)

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> の

<□>

• Model: Interaction of each qubit with independent local environment → Local noisy channels

- Model: Interaction of each qubit with independent local environment ← Local noisy channels
- Evolution of the state ρ_{AB} : Kraus operator representation

$$ho_{AB}(\gamma) = \sum_{\mu,
u=0}^{1} E_{\mu,
u}
ho_{AB}(0) E_{\mu,
u}^{\dagger}; \quad E_{\mu,
u} = E_{\mu} \otimes E_{
u}$$

▲□▶▲□▶★□▶★□▶ □ の

 $\gamma \rightarrow$ Decoherence parameter $0 \leq \gamma \leq 1$

- Model: Interaction of each qubit with independent local environment ← Local noisy channels
- Evolution of the state ρ_{AB} : Kraus operator representation

$$\rho_{AB}(\gamma) = \sum_{\mu,\nu=0}^{1} E_{\mu,\nu} \rho_{AB}(0) E_{\mu,\nu}^{\dagger}; \quad E_{\mu,\nu} = E_{\mu} \otimes E_{\nu}$$

 $\gamma \rightarrow$ Decoherence parameter $0 \leq \gamma \leq 1$

• 3 types of channels:

$$E_0 = \sqrt{\frac{1-\gamma}{2}} I_2; \quad E_1 = \sqrt{\frac{\gamma}{2}} \sigma_{\alpha}$$

- \checkmark bit-flip ($\alpha = x$)
- ✓ bit-phase-flip ($\alpha = y$)
- ✓ phase-flip ($\alpha = z$)

(ロ)、(部)、(E)、(E)、(E)、(9)

• Initial Bell-diagonal state: $\rho_{AB} = \frac{1}{4} \left[I \otimes I + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$ \checkmark Diagonal correlators: $|c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1$

• Initial Bell-diagonal state: $\rho_{AB} = \frac{1}{4} \left[I \otimes I + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$ \checkmark Diagonal correlators: $|c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1$

• Initial Bell-diagonal state: $\rho_{AB} = \frac{1}{4} \left[I \otimes I + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$ \checkmark Diagonal correlators: $|c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1$

• Initial Bell-diagonal state: $\rho_{AB} = \frac{1}{4} \left[I \otimes I + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$ \checkmark Diagonal correlators: $|c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1$

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> の

• Initial Bell-diagonal state: $\rho_{AB} = \frac{1}{4} \left[I \otimes I + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$ \checkmark Diagonal correlators: $|c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1$

<ロ> < 同> < 同> < 回> < 回> < 回> の

• Initial Bell-diagonal state: $\rho_{AB} = \frac{1}{4} \left[I \otimes I + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$ \checkmark Diagonal correlators: $|c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1$

Adiabatic freezing: Listen to Debraj's talk!

Freezing so far..

Freezing so far..

- Initial **Bell-diagonal states** under **bit-flip**, **phase-flip**, **and bit-phase-flip** evolutions
 - \checkmark Quantum discord, quantum work deficit, and several geometric measures
 - ✓ Same initial condition
 - ✓ Experimental realization

Mazzola et. al., PRL (2010) Xu et. al., Nature Commun. (2010) Aaronson et. al., PRA (2013) Cianciaruso et. al., arXiv: 1411.2978 (2014)

(ロ)、(型)、(E)、(E)、(E)、(D)

Freezing so far..

- Initial **Bell-diagonal states** under **bit-flip**, **phase-flip**, **and bit-phase-flip** evolutions
 - \checkmark Quantum discord, quantum work deficit, and several geometric measures
 - ✓ Same initial condition
 - ✓ Experimental realization

Mazzola et. al., PRL (2010) Xu et. al., Nature Commun. (2010) Aaronson et. al., PRA (2013) Cianciaruso et. al., arXiv: 1411.2978 (2014)

<ロ> < 同> < 同> < 回> < 回> < 回> の

• However, questions remain...

- 1. More general freezing states..?
- 2. Conditions for freezing?
- 3. Measure-dependent phenomena..?

◆□▶ ◆@▶ ◆ ≧▶ ◆ ≧▶ · ≧ · の²

Consider bit-flip evolution

Consider bit-flip evolution

• General two-qubit state (up to local unitary transformations)

$$\rho_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \sum_{\alpha = x, y, z} c_{\alpha}^A \sigma_A^{\alpha} \otimes I_B + \sum_{\beta = x, y, z} c_{\beta}^B I_A \otimes \sigma_{\beta}^B \right]$$

$$\checkmark |c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1; \quad \checkmark |c_{\alpha}^A| = |\langle \sigma_A^{\alpha} \otimes I_B \rangle| \le 1; \quad \checkmark |c_{\beta}^B| = |\langle I_A \otimes \sigma_B^{\beta} \rangle| \le 1$$

< ロ > < 団 > < 団 > < 豆 > < 豆 > < 豆 > <

Consider bit-flip evolution

• General two-qubit state (up to local unitary transformations)

$$\rho_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \sum_{\alpha = x, y, z} c_{\alpha}^A \sigma_A^{\alpha} \otimes I_B + \sum_{\beta = x, y, z} c_{\beta}^B I_A \otimes \sigma_{\beta}^B \right]$$

$$\checkmark |c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1; \quad \checkmark |c_{\alpha}^A| = |\langle \sigma_A^{\alpha} \otimes I_B \rangle| \le 1; \quad \checkmark |c_{\beta}^B| = |\langle I_A \otimes \sigma_B^{\beta} \rangle| \le 1$$

Proposal. Canonical initial state

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_x^A \sigma_A^x \otimes I_B + c_x^B I_A \otimes \sigma_B^x \right) \right]$$

Consider bit-flip evolution

• General two-qubit state (up to local unitary transformations)

$$\rho_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \sum_{\alpha = x, y, z} c_{\alpha}^A \sigma_A^{\alpha} \otimes I_B + \sum_{\beta = x, y, z} c_{\beta}^B I_A \otimes \sigma_{\beta}^B \right]$$

$$\checkmark |c_{\alpha\alpha}| = |\langle \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \rangle| \le 1; \quad \checkmark |c_{\alpha}^A| = |\langle \sigma_A^{\alpha} \otimes I_B \rangle| \le 1; \quad \checkmark |c_{\beta}^B| = |\langle I_A \otimes \sigma_B^{\beta} \rangle| \le 1$$

Proposal. Canonical initial state

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_x^A \sigma_A^x \otimes I_B + c_x^B I_A \otimes \sigma_B^x \right) \right]$$

• Under bit-flip evolution, c_{xx} , c_x^A , c_x^B are γ -independent

.., but how to compute discord?

.., but how to compute discord?

▲□▶▲□▶▲□▶▲□▶ ■ の

• Freezing of quantum discord with $\tilde{\rho}_{AB}$ as initial state

- \checkmark Calculate discord of $\tilde{\rho}_{AB}(\gamma)$ as function of γ
- \checkmark Show that discord is γ -independent for a finite interval

.., but how to compute discord?

Freezing of quantum discord with ρ̃_{AB} as initial state

- \checkmark Calculate discord of $\tilde{\rho}_{AB}(\gamma)$ as function of γ
- \checkmark Show that discord is γ -independent for a finite interval
- Minimization over {Π^k_k} for general two-qubit state: Minimization over two real paramters, θ (0 ≤ θ ≤ π), and φ (0 ≤ φ < 2π)

$$\Pi_k^A = U|k\rangle \langle k|U^{\dagger}; \quad U = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2}e^{i\phi} \\ -\sin\frac{\theta}{2}e^{-i\phi} & \cos\frac{\theta}{2} \end{pmatrix}; \quad |k\rangle = |0\rangle, |1\rangle$$

• Analytical calculation of discord: Bell-diagonal states only

Luo, PRA (2008)

 Discord of more general two-qubit mixed state: Despite several attempts, only numerical results so far..

> M. Ali et. al., PRA (2010); Lu et. al., PRA (2011); Girolami & Adesso, PRA (2011); Chen et. al., PRA (2011)

> > <ロト < 同ト < 目ト < 目ト < 目 > 」 目 の

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\tilde{\rho}_{AB}$ is special!

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_x^A \sigma_A^x \otimes I_B + c_x^B I_A \otimes \sigma_B^x \right) \right]$$

• $\tilde{\rho}_{AB}$ is special!

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_x^A \sigma_A^x \otimes I_B + c_x^B I_A \otimes \sigma_B^x \right) \right]$$

Discord calculated analytically! "Special" canonical initial state

ρ˜_{AB} is special!

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_x^A \sigma_A^x \otimes I_B + c_x^B I_A \otimes \sigma_B^x \right) \right]$$

Discord calculated numerically!

イロト 不得 トイヨト イヨト

э

• $\tilde{\rho}_{AB}$ is special!

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_x^A \sigma_A^x \otimes I_B + c_x^B I_A \otimes \sigma_B^x \right) \right]$$

Discord calculated numerically!

(日)

• Discord can be calculated analytically for special canonical initial state!

• $\tilde{\rho}_{AB}$ is special!

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_x^A \sigma_A^x \otimes I_B + c_x^B I_A \otimes \sigma_B^x \right) \right]$$

Discord calculated numerically!

・ロット (雪) (日) (日) (日)

• Discord can be calculated analytically for special canonical initial state!

Assumption: For 100% of $\tilde{\rho}_{AB}$, $\{\Pi_k^A\} \rightarrow \{\sigma_A^x, \sigma_A^y, \sigma_A^z\}$

• $\tilde{\rho}_{AB}$ is special!

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_x^A \sigma_A^x \otimes I_B + c_x^B I_A \otimes \sigma_B^x \right) \right]$$

Discord calculated numerically!

<ロ> < 同> < 同> < 回> < 回> < 回> の

• Discord can be calculated analytically for special canonical initial state!

Assumption: For 100% of $\tilde{\rho}_{AB}$, $\{\Pi_k^A\} \rightarrow \{\sigma_A^x, \sigma_A^y, \sigma_A^z\}$ Consequence: $\varepsilon_{abs} = Q_a - Q \le 2.9088 \times 10^{-3}$

• Set of **necessary & sufficient** conditions:

1.
$$(c_{yy}/c_{zz}) = -(c_x^A/c_x^B) = -c_{xx}, |c_{xx}| < 1$$

2.
$$(c_{zz})^2 + (c_x^B)^2 \le 1$$

3.
$$F(\sqrt{(c_{zz})^2 + (c_x^B)^2}) \le F(c_{xx}) + F(c_x^B) - F(c_x^A)$$

• Set of necessary & sufficient conditions: 1. $(c_{yy}/c_{zz}) = -(c_x^A/c_x^B) = -c_{xx}, |c_{xx}| < 1$ 2. $(c_{zz})^2 + (c_x^B)^2 \le 1$ 3. $F(\sqrt{(c_{zz})^2 + (c_x^B)^2}) \le F(c_{xx}) + F(c_x^B) - F(c_x^A)$ F(y) = 2(H((1+y)/2) - 1); $H(\alpha) = -\alpha \log_2 \alpha - (1-\alpha) \log_2(1-\alpha)$

- Valid for all canonical initial states
- γ_f from equality in third condition

Freezing phase diagram $|c_{xx}| = 0.6$ Different shades: Different values of γ_f

<ロ> < 同> < 同> < 回> < 回> < 回> の

• Set of necessary & sufficient conditions: 1. $(c_{yy}/c_{zz}) = -(c_x^A/c_x^B) = -c_{xx}, |c_{xx}| < 1$ 2. $(c_{zz})^2 + (c_x^B)^2 \le 1$ 3. $F(\sqrt{(c_{zz})^2 + (c_x^B)^2}) \le F(c_{xx}) + F(c_x^B) - F(c_x^A)$ F(y) = 2(H((1+y)/2) - 1); $H(\alpha) = -\alpha \log_2 \alpha - (1-\alpha) \log_2(1-\alpha)$

- Valid for all canonical initial states
- γ_f from equality in third condition

Freezing phase diagram $|c_{xx}| = 0.6$ Different shades: Different values of γ_f

<ロ> < 同> < 同> < 回> < 回> < 回> の

<□ > < @ > < E > < E > E の

• Complementarity: Trade-off between frozen quantum discord and freezing terminal

$$Q_f + \gamma_f \leq 1$$

- \checkmark Can be proved for Bell-diagonal state
- \checkmark Numerically verified for $\tilde{\rho}_{AB}$

ヘロア 人間 アメヨアメヨア

ж

• Complementarity: Trade-off between frozen quantum discord and freezing terminal

$$Q_f + \gamma_f \leq 1$$

- \checkmark Can be proved for Bell-diagonal state
- \checkmark Numerically verified for $\tilde{\rho}_{AB}$

・ロット (雪) (日) (日) (日)

• Inhomogeneity is crucial! $c_x^A = c_x^B \rightarrow |c_{xx}| = 1 \leftarrow$ Freezing conditions violated

• Complementarity: Trade-off between frozen quantum discord and freezing terminal

$$Q_f + \gamma_f \leq 1$$

- \checkmark Can be proved for Bell-diagonal state
- \checkmark Numerically verified for $\tilde{\rho}_{AB}$

<□▶ <□▷ < □▷ < □▷ < □▷ < □ > □ の

- Inhomogeneity is crucial! $c_x^A = c_x^B \rightarrow |c_{xx}| = 1 \leftarrow$ Freezing conditions violated
- Freezing states form a non-convex set

A word on the state space

A word on the state space

• Separable states can freeze

・ロト ・聞ト ・ヨト ・ヨト

- E

A word on the state space

• Separable states can freeze

State space: Current picture

YES! Example: Freezing of quantum work deficit of $\tilde{\rho}_{AB}$ under bit-flip evolution

YES!

Example: Freezing of **quantum work deficit** of $\tilde{\rho}_{AB}$ under bit-flip evolution

- Set of Necessary & sufficient conditions:
 - 1. $(c_{yy}/c_{zz}) = -(c_x^A/c_x^B) = -c_{xx}, |c_{xx}| < 1$ 2. $(c_{zz})^2 + (c_x^B)^2 \le 1$

< ロ > < 団 > < 団 > < 豆 > < 豆 > < 豆 > <

YES!

Example: Freezing of **quantum work deficit** of $\tilde{\rho}_{AB}$ under bit-flip evolution

• Set of Necessary & sufficient conditions:

1.
$$(c_{yy}/c_{zz}) = -(c_x^A/c_x^B) = -c_{xx}, |c_{xx}| < 1$$

2. $(c_{zz})^2 + (c_x^B)^2 \le 1$
3. $F(\sqrt{(c_{zz})^2 + (c_x^B)^2}) \le F(c_{xx}) + F(c_x^B)$
 \hookrightarrow Differs from discord!

YES!

Example: Freezing of **quantum work deficit** of $\tilde{\rho}_{AB}$ under bit-flip evolution

• Set of Necessary & sufficient conditions:

1.
$$(c_{yy}/c_{zz}) = -(c_x^A/c_x^B) = -c_{xx}, |c_{xx}| < 1$$

2. $(c_{zz})^2 + (c_x^B)^2 \le 1$
3. $F(\sqrt{(c_{zz})^2 + (c_x^B)^2}) \le F(c_{xx}) + F(c_x^B)$
 \hookrightarrow Differs from discord!

- Valid for all canonical initial states
- γ_f from the equality in third condition

Freezing phase diagram $|c_{xx}| = 0.6$ Different shades: Different values of γ_f

YES!

Example: Freezing of **quantum work deficit** of $\tilde{\rho}_{AB}$ under bit-flip evolution

• Set of Necessary & sufficient conditions:

1.
$$(c_{yy}/c_{zz}) = -(c_x^A/c_x^B) = -c_{xx}, |c_{xx}| < 1$$

2. $(c_{zz})^2 + (c_x^B)^2 \le 1$
3. $F(\sqrt{(c_{zz})^2 + (c_x^B)^2}) \le F(c_{xx}) + F(c_x^B)$
 \hookrightarrow Differs from discord!

- Valid for all canonical initial states
- γ_f from the equality in third condition

Freezing phase diagram $|c_{xx}| = 0.6$ Different shades: Different values of γ_f

<ロ> < 同> < 同> < 回> < 回> < 回> の

- \checkmark Non-convexity of the set of states $\tilde{\rho}_{AB}$ with freezing quantum work deficit
- ✓ Complementarity
- ✓ Inhomogeneity as a crucial freezing condition
- ✓ Freezing of quantum work deficit in separable states

▲□▶▲□▶▲□▶▲□▶ □ の

• "almost" frozen states: Very slow decay of correlation

▲□▶▲□▶▲□▶▲□▶ ■ の

- "almost" frozen states: Very slow decay of correlation
- Prescription: Deviate "only a little" from freezing conditions

- "almost" frozen states: Very slow decay of correlation
- Prescription: Deviate "only a little" from freezing conditions
- **Example:** $\tilde{\rho}_{AB}$ with c_z^A , c_z^B under **phase-flip** evolution

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_z^A \sigma_A^z \otimes I_B + c_z^B I_A \otimes \sigma_B^3 \right) \right]$$

- "almost" frozen states: Very slow decay of correlation
- Prescription: Deviate "only a little" from freezing conditions
- **Example:** $\tilde{\rho}_{AB}$ with c_z^A , c_z^B under **phase-flip** evolution

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_z^A \sigma_A^z \otimes I_B + c_z^B I_A \otimes \sigma_B^3 \right) \right]$$

▲□▶▲□▶▲□▶▲□▶ ■ の

✓ Start: freezing in Bell-diagonal state

$$c_{yy}/c_{xx} = -c_{zz}$$

✓ Deviate from freezing condition Introduce small $c_z^A = c_z^B \neq 0$

- "almost" frozen states: Very slow decay of correlation
- Prescription: Deviate "only a little" from freezing conditions
- **Example:** $\tilde{\rho}_{AB}$ with c_z^A , c_z^B under **phase-flip** evolution

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_z^A \sigma_A^z \otimes I_B + c_z^B I_A \otimes \sigma_B^3 \right) \right]$$

- ✓ **Start:** freezing in Bell-diagonal state $c_{yy}/c_{xx} = -c_{zz}$
- ✓ Deviate from freezing condition Introduce small $c_z^A = c_z^B \neq 0$

・ロット (雪) (日) (日) (日)

- "almost" frozen states: Very slow decay of correlation
- Prescription: Deviate "only a little" from freezing conditions
- **Example:** $\tilde{\rho}_{AB}$ with c_z^A , c_z^B under **phase-flip** evolution

$$\tilde{\rho}_{AB} = \frac{1}{4} \left[I_A \otimes I_B + \sum_{\alpha = x, y, z} c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \left(c_z^A \sigma_A^z \otimes I_B + c_z^B I_A \otimes \sigma_B^3 \right) \right]$$

- ✓ **Start:** freezing in Bell-diagonal state $c_{yy}/c_{xx} = -c_{77}$
- ✓ Deviate from freezing condition Introduce small $c_z^A = c_z^B \neq 0$

・ロット (雪) (日) (日) (日)

Quantitative description of effective freezing?

How good does a state "almost" freeze?

• Freezing index: Quantifies the goodness of freezing

$$\eta_{f} = \left(\sum_{i=1}^{N_{f}} \overline{\mathcal{Q}}_{f,i} \left(1 - \gamma_{1,i}\right) \int_{\gamma_{1,i}}^{\gamma_{2,i}} \mathcal{Q}(\gamma) d\gamma\right)^{\frac{1}{4}}$$

▲□▶▲□▶▲□▶▲□▶ ■ の

Depends on

- \checkmark average value of effectively frozen correlation, \overline{Q}_f ,
- \checkmark duration of freezing, $\Delta \gamma_f$,
- \checkmark onset of $\Delta \gamma_f$, and
- \checkmark number of freezing intervals, N_f

How good does a state "almost" freeze?

• Freezing index: Quantifies the goodness of freezing

$$\eta_{f} = \left(\sum_{i=1}^{N_{f}} \overline{\mathcal{Q}}_{f,i} \left(1 - \gamma_{1,i}\right) \int_{\gamma_{1,i}}^{\gamma_{2,i}} \mathcal{Q}(\gamma) d\gamma\right)^{\frac{1}{4}}$$

Depends on

- \checkmark average value of effectively frozen correlation, \overline{Q}_f ,
- \checkmark duration of freezing, $\Delta \gamma_f$,
- \checkmark onset of $\Delta \gamma_f$, and
- \checkmark number of freezing intervals, N_f
- ✓ **Detects quantum phase transition** in transverse-field XY model

$$H_{XY} = \frac{J}{2} \sum_{i=1}^{N} \left\{ (1+g)\sigma_i^x \sigma_{i+1}^x + (1-g)\sigma_i^y \sigma_{i+1}^y \right\} + h \sum_{i=1}^{L} \sigma_i^z$$

To summarize...

- Freezing in states other than Bell-diagonal state
- Inhomogeneity is crucial
- Choice of quantum correlation measure is important
 - $\hookrightarrow \text{Different initial conditions}$
- Complementarity: trade-off between value and duration
- Effective freezing and freezing index

Quantum work deficit

Minimum difference between amount of pure states extractable under suitably restricted "global" and "local" operations

Closed operation (CO)

- 1. Unitary transformation
- 2. Dephasing by a set of projectors

$$I_{\rm CO} = \log_2 \dim (\mathcal{H}) - S(\rho_{AB})$$

Closed local operations & classical communication (CLOCC)

- 1. Unitary transformation
- 2. Dephasing by local measurement
- 3. Sending the dephased qubit via a noiseless quantum channel

$$egin{aligned} & I_{ ext{CLOCC}} = \log_2 \dim \left(\mathcal{H}
ight) - \min_{\left\{ \Pi_k^A
ight\}} S\left(
ho_{AB}'
ight) \ &
ho_{AB}' o \sum p_k
ho_{AB}^k \end{aligned}$$

k

<□▶ <□▷ < □▷ < □▷ < □▷ < □ > □ の

$$W_A(\rho_{AB}) = \min_{\{\Pi_k^A\}} \left[S(\sum_k p_k \rho_{AB}^k) - S(\rho_{AB}) \right]$$

How good does a state "almost" freeze?

• Freezing index: Quantifies the goodness of freezing

$$\eta_f = \left(\sum_{i=1}^{N_f} \overline{\mathcal{Q}}_{f,i} \left(1 - \gamma_{1,i}
ight) \int_{\gamma_{1,i}}^{\gamma_{2,i}} \mathcal{Q}(\gamma) d\gamma
ight)^{\frac{1}{2}}$$

Q

э

 $N_{c} = 1$

- Depends on
 - \checkmark average value of effectively frozen correlation, \overline{Q}_f ,
 - \checkmark duration of freezing, $\Delta \gamma_f$,
 - \checkmark onset of $\Delta \gamma_f$, and
 - \checkmark number of freezing intervals, N_f

Quantum phase transition with η_f

• XY model in a transverse field

 \checkmark

$$H_{XY} = \frac{J}{2} \sum_{i=1}^{N} \left\{ (1+g)\sigma_i^x \sigma_{i+1}^x + (1-g)\sigma_i^y \sigma_{i+1}^y \right\} + h \sum_{i=1}^{L} \sigma_i^z$$

Second order quantum phase transition at $\lambda = h/J = 1$

Lieb, Schultz & Mattis, Ann. Phys. (1961); Pfeuty, Ann. Phys. (1966); Barouch & McCoy, PRA (1971)

• Scaling: How fast does the system approach thermodynamic limit?

 $\lambda_c^N = \lambda_c + k N^{-0.729}$

<ロ> <回> <回> < 回> < 回> < 回> < 回</p>