
Frozen Quantum CorrelationsFrozen Quantum Correlations

Amit Kumar Pal
Harish-Chandra Research Institute, Allahabad, INDIA

Young Quantum - 2015

February 24, 2015



Outline

• Introduction

• Quantum discord & “discord-type” measures
• Dynamics under local noisy channels

• What is freezing?

• Initial state, freezing conditions, phase diagram
• Complementarity, state space, etc.

• Effective freezing

• Quantitative approach: Freezing index
• Quantum phase transition using freezing index

• Conclusion



Quantum correlations: “discord-type”

• Quantum correlations beyond entanglement
• Several measures available..

1. Quantum discord
2. Quantum work deficit
3. Several geometric measures
... Review by Modi et. al., RMP (2012)

• Use as resource?– Debatable

• Even if it is, it faces a problem! Decoherence
Decay of quantum correlations in noisy environments
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Measure: Quantum discord
Classical mutual information: Two equivalent definitions

• I(A : B) = H(A) + H(B)− H(A,B)

• J(A : B) = H(B)− H(B|A)

H(A) = −
∑

a pa log2 pa ← Shannon entropy
H(B|A) = H(A,B)− H(A) = −

∑
a,b pa,bpb|a ← Conditional entropy

pb|a =
pa,b
pa

Quantum mutual information: Two inequivalent definitions
• I(A : B) = S(ρA) + S(ρB)− S(ρAB)

• J (A : B) = S(ρB)− S(ρB|ρA)

S (ρ) = −Tr [ρ log2 ρ]← von Neumann entropy
S(ρB|ρA) =

∑
k pkS

(
ρk

AB

)
← Quantum conditional entropy

QA(ρAB) = min
{ΠA

k }

{
S(ρA)− S(ρAB) +

∑
k

pkS
(
ρk

AB

)}
Minimization over a complete set of projective measurements {ΠA

k }

Ollivier & Zurek, PRL (2001); Henderson & Vedral, J. Phys. A (2001)



Problem: Decoherence!

• Model: Interaction of each qubit with independent local environment
↪→ Local noisy channels

• Evolution of the state ρAB: Kraus operator representation

ρAB(γ) =
1∑

µ,ν=0

Eµ,νρAB(0)E†µ,ν ; Eµ,ν = Eµ ⊗ Eν

γ→ Decoherence parameter
0 ≤ γ ≤ 1

• 3 types of channels:

E0 =

√
1− γ

2
I2; E1 =

√
γ

2
σα

X bit-flip (α = x)
X bit-phase-flip (α = y)
X phase-flip (α = z)
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Examples

• Initial Bell-diagonal state: ρAB = 1
4

[
I ⊗ I +

∑
α=x,y,z cαασαA ⊗ σαB

]
X Diagonal correlators: |cαα| = |〈σαA ⊗ σαB 〉| ≤ 1

Entanglement sudden death
Yu & Eberly, Science (2009)

Discord is robust!
Werlang et. al., PRA (2009)

Sudden change in decay rate
Maziero et. al., PRA (2009)

Freezing!
Mazzola et. al., PRL (2010)

Adiabatic freezing: Listen to Debraj’s talk!
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Freezing so far..

• Initial Bell-diagonal states under bit-flip, phase-flip, and bit-phase-flip
evolutions

X Quantum discord, quantum work deficit, and several geometric measures
X Same initial condition
X Experimental realization

Mazzola et. al., PRL (2010)
Xu et. al., Nature Commun. (2010)

Aaronson et. al., PRA (2013)
Cianciaruso et. al., arXiv: 1411.2978 (2014)

• However, questions remain...
1. More general freezing states..?

2. Conditions for freezing?

3. Measure-dependent phenomena..?
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More general initial state?

Consider bit-flip evolution

• General two-qubit state (up to local unitary transformations)

ρAB =
1
4

IA ⊗ IB +
∑

α=x,y,z

cαασαA ⊗ σαB +
∑

α=x,y,z

cA
ασ

α
A ⊗ IB +

∑
β=x,y,z

cB
β IA ⊗ σB

β


X |cαα| = |〈σαA ⊗ σαB 〉| ≤ 1; X |cA

α| = |〈σαA ⊗ IB〉| ≤ 1; X |cB
β | = |〈IA ⊗ σβB 〉| ≤ 1

Proposal. Canonical initial state

ρ̃AB =
1
4

IA ⊗ IB +
∑

α=x,y,z

cαασαA ⊗ σαB +
(

cA
x σ

x
A ⊗ IB + cB

x IA ⊗ σx
B

)
• Under bit-flip evolution, cxx, cA

x , cB
x are γ-independent
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.., but how to compute discord?

• Freezing of quantum discord with ρ̃AB as initial state
X Calculate discord of ρ̃AB(γ) as function of γ
X Show that discord is γ-independent for a finite interval

• Minimization over {ΠA
k } for general two-qubit state:

Minimization over two real paramters, θ (0 ≤ θ ≤ π), and φ (0 ≤ φ < 2π)

ΠA
k = U|k〉〈k|U†; U =

(
cos θ2 sin θ2 eiφ

− sin θ2 e−iφ cos θ2

)
; |k〉 = |0〉, |1〉

• Analytical calculation of discord: Bell-diagonal states only
Luo, PRA (2008)

• Discord of more general two-qubit mixed state:
Despite several attempts, only numerical results so far..

M. Ali et. al., PRA (2010); Lu et. al., PRA (2011);
Girolami & Adesso, PRA (2011); Chen et. al., PRA (2011)
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Take help from numerics

• ρ̃AB is special!

ρ̃AB =
1
4

IA ⊗ IB +
∑

α=x,y,z

cαασαA ⊗ σαB +
(

cA
x σ

x
A ⊗ IB + cB

x IA ⊗ σx
B

)

• Discord can be calculated analytically for special canonical initial state!

Assumption: For 100% of ρ̃AB, {ΠA
k } → {σx

A, σ
y
A, σ

z
A}

Consequence: εabs = Qa − Q ≤ 2.9088× 10−3
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Freezing conditions

• Set of necessary & sufficient conditions:
1. (cyy/czz) = −(cA

x /cB
x ) = −cxx, |cxx| < 1

2. (czz)2 + (cB
x )2 ≤ 1

3. F(
√

(czz)2 + (cB
x )2) ≤ F(cxx)+F(cB

x )−F(cA
x )

F(y) = 2 (H((1 + y)/2)− 1);
H(α) = −α log2 α− (1− α) log2(1− α)

• Valid for all canonical initial states
• γf from equality in third condition
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F(y) = 2 (H((1 + y)/2)− 1);
H(α) = −α log2 α− (1− α) log2(1− α)

• Valid for all canonical initial states
• γf from equality in third condition
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Points to ponder...

• Complementarity: Trade-off between frozen quantum discord and freezing terminal

Qf + γf ≤ 1

X Can be proved for Bell-diagonal state
X Numerically verified for ρ̃AB
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• Inhomogeneity is crucial!
cA

x = cB
x → |cxx| = 1← Freezing conditions violated

• Freezing states form a non-convex set
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A word on the state space

• Separable states can freeze

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

c
xB

c
zz

|c
xx

| = 0.2

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

c
xB

c
zz

|c
xx

| = 0.8

State space: Current picture



A word on the state space

• Separable states can freeze

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

c
xB

c
zz

|c
xx

| = 0.2

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

c
xB

c
zz

|c
xx

| = 0.8

State space: Current picture



A word on the state space

• Separable states can freeze

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

c
xB

c
zz

|c
xx

| = 0.2

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

c
xB

c
zz

|c
xx

| = 0.8

State space: Current picture



Measure dependent freezing?

YES!
Example: Freezing of quantum work deficit of ρ̃AB under bit-flip evolution

• Set of Necessary & sufficient conditions:
1. (cyy/czz) = −(cA

x /cB
x ) = −cxx, |cxx| < 1

2. (czz)2 + (cB
x )2 ≤ 1

3. F(
√

(czz)2 + (cB
x )2) ≤ F(cxx) + F(cB

x )
↪→ Differs from discord!

• Valid for all canonical initial states

• γf from the equality in third condition
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More practical approach: Effective freezing

• “almost” frozen states: Very slow decay of correlation
• Prescription: Deviate “only a little” from freezing conditions
• Example: ρ̃AB with cA

z , cB
z under phase-flip evolution

ρ̃AB =
1
4

IA ⊗ IB +
∑

α=x,y,z

cαασαA ⊗ σαB +
(

cA
z σ

z
A ⊗ IB + cB

z IA ⊗ σ3
B

)

X Start: freezing in Bell-diagonal state
cyy/cxx = −czz

X Deviate from freezing condition
Introduce small cA

z = cB
z 6= 0
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How good does a state “almost” freeze?

• Freezing index: Quantifies the goodness of freezing

ηf =

 Nf∑
i=1

Qf ,i
(
1− γ1,i

) ∫ γ2,i

γ1,i

Q(γ)dγ

 1
4

• Depends on
X average value of effectively frozen correlation, Qf ,
X duration of freezing, ∆γf ,
X onset of ∆γf , and
X number of freezing intervals, Nf

X Detects quantum phase transition in transverse-field XY model

HXY =
J
2

N∑
i=1

{
(1 + g)σx

i σ
x
i+1 + (1− g)σy

i σ
y
i+1

}
+ h

L∑
i=1

σz
i
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To summarize...

• Freezing in states other than Bell-diagonal state

• Inhomogeneity is crucial

• Choice of quantum correlation measure is important

↪→ Different initial conditions

• Complementarity: trade-off between value and duration

• Effective freezing and freezing index





Quantum work deficit
Minimum difference between amount of pure states extractable under suitably restricted
“global” and “local” operations

Closed operation (CO)

1. Unitary transformation

2. Dephasing by a set of projectors

ICO = log2 dim (H)− S(ρAB)

Closed local operations & classical communica-
tion (CLOCC)

1. Unitary transformation

2. Dephasing by local measurement

3. Sending the dephased qubit via a noiseless
quantum channel

ICLOCC = log2 dim (H)− min
{ΠA

k }
S
(
ρ′AB
)

ρ′AB →
∑

k

pkρ
k
AB

WA(ρAB) = min
{ΠA

k }

[
S(
∑

k

pkρ
k
AB)− S(ρAB)

]



How good does a state “almost” freeze?
• Freezing index: Quantifies the goodness of freezing

ηf =

 Nf∑
i=1

Qf ,i
(
1− γ1,i

) ∫ γ2,i

γ1,i

Q(γ)dγ

 1
4

Q0 − Qγ < δ for all γ1,i ≤ γ ≤ γ2,i

• Depends on
X average value of effectively frozen correlation, Qf ,
X duration of freezing, ∆γf ,
X onset of ∆γf , and
X number of freezing intervals, Nf



Quantum phase transition with ηf

• XY model in a transverse field

HXY =
J
2

N∑
i=1

{
(1 + g)σx

i σ
x
i+1 + (1− g)σy

i σ
y
i+1

}
+ h

L∑
i=1

σz
i

X Second order quantum phase transition at λ = h/J = 1

Lieb, Schultz & Mattis, Ann. Phys. (1961);
Pfeuty, Ann. Phys. (1966); Barouch & McCoy, PRA (1971)
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• Scaling:
How fast does the system
approach thermodynamic limit?

λN
c = λc + kN−0.729


