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In GNST, the states are described by JPD: P (ab|AB).

Figure : Two distant parties have access to a black box: Alice and Bob input
A,B ∈ {0, 1, 2, ...} and get outputs a, b ∈ {0, 1, 2, 3, ...}

Nonlocal and nonsignaling correlations

NS contraints: P (a|AB) =
∑

b P (ab|AB) = P (a|A) and
P (b|AB) =

∑
a P (ab|AB) = P (b|B).

Nonlocality: P (ab|AB) 6=
∑

λ pλPλ(a|A)Pλ(b|B).
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Bell-CHSH Scenario:
NS boxes with 2 binary inputs and outputs. P (am, bn|Ai, Bj) =

P (a0, b0|A0, B0) P (a0, b1|A0, B0) P (a1, b0|A0, B0) P (a1, b1|A0, B0)
P (a0, b0|A0, B1) P (a0, b1|A0, B1) P (a1, b0|A0, B1) P (a1, b1|A0, B1)
P (a0, b0|A1, B0) P (a0, b1|A1, B0) P (a1, b0|A1, B0) P (a1, b1|A1, B0)
P (a0, b0|A1, B1) P (a0, b1|A1, B1) P (a1, b0|A1, B1) P (a1, b1|A1, B1)


The PR-box (Popescu and Rohrlich, Found. Phys 1994),

PPR =


1
2 0 0 1

2
1
2 0 0 1

2
1
2 0 0 1

2
0 1

2
1
2 0


maximally violates the Bell-CHSH inequality (CHSH, PRL 1969):

B := 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2.

Logic contradiction of PR-box with local realism:

A0B0 = A0B1 = A1B0 = 1

A1B1 = −1 (1)
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The NS boxes forms an 8-dim convex polytope.

PαβγPR (am, bn|Ai, Bj) =

{
1
2 , m⊕ n = ij ⊕ αi⊕ βj ⊕ γ
0, otherwise

(2)

PαβγεD =


1, m = αi⊕ β

n = γj ⊕ ε
0, otherwise

(3)

Here α, β, γ, ε ∈ {0, 1} and ⊕ denotes addition modulo 2.

LRO

Alice changing her input i→ i⊕ 1, and changing her output conditioned
on the input: m→ m⊕ αi⊕ β.

Quantum scenario: Ai = ~ai · ~σ and Bj = ~bj · ~σ on ρAB ∈ B(H2⊗H2)

P (am, bn|Ai, Bj) = tr
(
ρABΠAi

am ⊗Π
Bj

bn

)
, where Πam

Ai
and Πbn

Bj
, are the

projectors generating binary outcomes am, bn ∈ {−1, 1}.
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P =

7∑
k=0

pkP
k
PR +

15∑
l=0

qlP
l
D;
∑
k

pk +
∑
l

ql = 1. (4)

 

Figure : NS polytope: Barrett et al PRA 2005
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Bell polytope (L)

L is a convex hull of the 16 deterministic boxes.

If P (am, bn|Ai, Bj) ∈ L,

P (am, bn|Ai, Bj) =

15∑
l=0

qlP
l
D;
∑
l

ql = 1,⇐⇒ Bαβγ ≤ 2a (5)

aFine PRL 1982

Here, P lD = P lD(am|Ai)P lD(bn|Bj).

Bαβγ := (−1)γ 〈A0B0〉+ (−1)β⊕γ 〈A0B1〉
+ (−1)α⊕γ 〈A1B0〉+ (−1)α⊕β⊕γ⊕1 〈A1B1〉

where 〈AiBj〉 =
∑

mn(−1)m⊕nP (am, bn|Ai, Bj).
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My goal:

Local correlations arising from the entangled states and nonzero
quantum discord states have nonclassicality.
I introduced the measures Bell discord (BD) and Mermin discord
(MD) to quantify nonlocality and contextuality of any quantum
correlation.

I found 3-decomposition fact for NS boxes with two inputs and two
outputs using geometry of nonsignaling polytope w.r.t BD and MD.

P = G′P G=4
PR +Q′PQ=2

ML + (1−G′ −Q′)PQ=0
G=0 (6)
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Nonlocality and Bell discord

Nonlocality of quantum theory implies that the correlations arises from
incompatible measurements and entanglement. The Bell state,

|ψ+〉 =
1√
2

(|00〉+ |11〉), (7)

gives rise to the Tsirelson bound 1, B = 2
√

2, for the measurement
observables:

A0 = σx, A1 = σy, B0 =
1√
2

(σx − σy), B1 =
1√
2

(σx + σy). (8)

The JPD that achieves the Tsirelson bound can be decomposed into
PR-box and white noise:

P = pPRPPR + (1− pPR)PN , pPR =
1√
2

(9)

1Tsirelson, Lett. Math. Phys. 1980
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Definition

A correlation is said to have Bell discord iff it admits a decomposition that
has irreducible PR-box component.

For the measurements that gives rise to the Tsirelson bound, the pure
entangled states,

|ψ〉 = cos θ |00〉+ sin θ |11〉 0 ≤ θ ≤ π

4
(10)

and the Werner states,

ρW = p |ψ+〉 〈ψ+|+ (1− p)I (11)

(entangled if p > 1
3 and has Quantum discord if p > 0 (Ollivier and Zurek,

PRL, 2001)), admit the decomposition

P = pPRPPR + (1− pPR)PN , pPR =
sin 2θ√

2
,
p√
2

(12)

These correlations are local if pPR ≤ 1
2 and have Bell discord if pPR > 0.
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Nonclassicality due to Bell discord=incompatible measurements+quantum
discord→PR-box component.
Fig: The isotropic PR-box:P = pPPR + (1− p)PN .

p=1p=1p=1/Sqrt{2}p=1/Sqrt{2}p=1/2p=1/2

Bell discordBell discord

QuantumQuantum

LocalLocal

Figure : Isotropic PR-box:P = pPPR + (1− p)PN
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Bell discord, 0 ≤ G ≤ 4

G =
3

min
i=1
Gi (13)

where G1 :=
∣∣∣|B00 −B01| − |B10 −B11|∣∣∣. G = 0 for the deterministic boxes

and G = 4 for the PR-boxes.

 

Figure : G divides the local polytope into a G > 0 region and G = 0 nonconvex
region.
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P =

7∑
k=0

pkP
k
PR +

15∑
l=0

qlP
l
D;
∑
k

pk +
∑
l

ql = 1. (14)

Unequal mixture of any two PR-box can be reduced to convex mixture of
a single PR-box and a Bell-local box:

pP 000
PR + qP 001

PR = (p− q)P 000
PR + 2q

P 000
PR+P 001

PR
2

Theorem

Any NS box (nonlocal, or not) can be written as,

P = G′PαβγPR + (1− G′)P G=0
L . (15)
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Local contextuality and Mermin discord
Nonlocality is one of the manifestations of contextuality.
The Bell state gives rise to local-contextual correlation (Mermin box),

PM =


1
2 0 0 1

2
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 1
2

1
2 0

 =
1

2


1
2 0 0 1

2
1
2 0 0 1

2
1
2 0 0 1

2
0 1

2
1
2 0

+
1

2


1
2 0 0 1

2
0 1

2
1
2 0

0 1
2

1
2 0

0 1
2

1
2 0


for the measurement observables,

A0 = σx, A1 = σy, B0 = σx, B1 = σy (16)

KS paradox (Peres, PLA 1990):

σx ⊗ σx |ψ+〉 = |ψ+〉
σy ⊗ σy |ψ+〉 = − |ψ+〉

(σx ⊗ σy)(σy ⊗ σx) |ψ+〉 = |ψ+〉 . (17)

A0B0 = 1 A1B1 = −1

A0B1A1B0 = 1 (18)
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For the measurements that gives rise to KS paradox, the pure entangled
states and the Werner states admit the decomposition,

P = pMPM + (1− pM )PN , (19)

with pM = sin 2θ and pM = p.

Definition

A correlation is said to have Mermin discord iff it admits a decomposition
that has irreducible Mermin box component.

Mermin discord, 0 ≤ Q ≤ 2

Q = minQi (20)

where Q1 :=
∣∣∣|M00 −M01| − |M10 −M11|

∣∣∣. Q = 0 for any deterministic

box and PR box. Q = 2 for the Mermin boxes.

Here,

Mαβ := (α⊕ β ⊕ 1)|(−1)α 〈A0B1〉+(−1)α⊕β 〈A1B0〉 |
+ (α⊕ β)|(−1)α 〈A0B0〉+(−1)α⊕β 〈A1B1〉 |, (21)
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For the measurements: A0 = σx, A1 = σy, B0 =
√
pσx −

√
1− pσy &

B1 =
√

1− pσx +
√
pσy, where 1

2 ≤ p ≤ 1, the Bell state, |ψ+〉, gives rise
to the following correlation,

P = G′PPR +Q′PM + (1− G′ −Q′)PN , (22)

where G′ =
√

1− p and Q′ = √p−
√

1− p.
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3-decomposition fact

P = G′PαβγPR + (1− G′)P G=0
L . (23)

Q divides the G = 0 polytope into Q > 0 region and G = Q = 0 polytope.

Theorem

Any NS box (nonlocal, or not) can be written as,

P = G′PαβγPR +Q′PQ=2 + (1− G′ −Q′)P G=0
Q=0. (24)

G(P ) = 4G′ and Q(P ) = 2Q′ which implies that G′ and Q′ are symmetric
and invariant under LRO.

Monogamy:

G + 2Q ≤ 4. (25)

C Jebarathinam Characterizing quantum correlations in the framework of generalized nonsignaling theory (GNST)February 23, 2015 16 / 24



Bell and Mermin discord are semi-device-independent
witnesses for nonclassicality of nonzero quantum discord
states

ρCQ =

1∑
i=0

pi|i〉〈i| ⊗ χi, (26)

ρQC =

1∑
j=0

pjφj ⊗ |j〉〈j|, (27)

where, {|i〉} and {|j〉} are the orthonormal sets on Alice’s and Bob’s side
and χi and φi are the quantum states.

ρCQ =
p0
4

(1 + r̂ · σ̃)⊗ (1 + s̃0 · σ̃) +
p1
4

(1− r̂ · σ̃)⊗ (1 + s̃1 · σ̃) (28)

〈AiBj〉 = (âi · r̂)
(
b̂j · (p0~s0 − p1~s1)

)
(29)

For the Werner states, 〈AB〉 = p(â · b̂).
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Tripartite Scenario
The set of tripartite NS boxes with 2 binary inputs and outputs forms a
convex polytope in 26-dimensional space with 53728 extremals. I
restricted to the Svetlichny-box polytope, P (am, bn, co|Ai, Bj , Ck)

=

15∑
i=0

piP
i
Sv +

15∑
i=0

qiP
i
12 +

15∑
i=0

riP
i
13 +

15∑
i=0

siP
i
23 +

63∑
j=0

tjP
j
D, (30)

A correlation is said to be Bell nonlocal if

P (am, bn, co|Ai, Bj , Ck) 6=
∑
λ

pλPλ(am|Ai)Pλ(bn|Bj)Pλ(ck|Ck). (31)

A correlation is said to be genuinely nonlocal if

P (am, bn, co|Ai, Bj , Ck) 6= p1
∑
λ

pλP
AB|C
λ + p2

∑
λ

qλP
AC|B
λ

+ p3
∑
λ

rλP
A|BC
λ . (32)
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Svetlichny discord
The GHZ state, |ψGHZ〉 = 1√

2
(|000〉+ |111〉), violates the SI (Svetlichny

1987),

S := 〈A0B0C0〉+〈A0B0C1〉+〈A0B1C0〉−〈A0B1C1〉+
〈A1B0C0〉−〈A1B0C1〉−〈A1B1C0〉−〈A1B1C1〉 ≤ 4, (33)

to the quantum bound, S = 4
√

2, for the measurements,

A0 = σx, A1 = σy, B0 = σx, B1 = σy, Ck =
1√
2

(
σx − (−1)kσy

)
(34)

The JPD that gives this bound can be decomposed as the convex mixture
of the Svetlichny box and white noise:

P = pSvP
0000
Sv + (1− pSv)PN , (35)

with pSv = 1√
2

; the GGHZ states, cos θ |000〉+ sin θ |111〉, have

pSv = sin 2θ. Notice that the correlation is local if pSv ≤ 1
2
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For the measurements,

A0 = σx, A1 = σy, B0 = σx, B1 = σy, C0 = σx, C1 = σy, (36)

the GHZ state maximally violates the MI (Mermin, 1990),

M := | 〈A0B0C0〉 − 〈A0B1C1〉 − 〈A1B0C1〉 − 〈A1B1C0〉 | ≤ 2, (37)

i.e., it gives M = 4. The correlations can be decomposed as follows,

PM =
1

4

4∑
λ=1

Pλ(am|Ai)Pλ(bn, co|Bj , Ck), (38)

GHZ paradox:

σy ⊗ σy ⊗ σx |ψGHZ〉 = − |ψGHZ〉
σx ⊗ σy ⊗ σy |ψGHZ〉 = − |ψGHZ〉
σy ⊗ σx ⊗ σy |ψGHZ〉 = − |ψGHZ〉
σx ⊗ σx ⊗ σx |ψGHZ〉 = |ψGHZ〉 (39)

Mermin box:

PM =
1

2

(
P 0000
Sv + P 1111

Sv

)
. (40)
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Svetlichny discord: 0 ≤ G ≤ 8; G = 0 for all the bipartite PR-boxes
and local deterministic boxes, whereas any Svetlichny box has G = 8.

Mermin discord: 0 ≤ Q ≤ 4; Q = 0 for all the local deterministic
boxes, bipartite PR-boxes and Svetlichny boxes, whereas Q = 4 for
the Mermin boxes.

3-decomposition fact of quantum boxes

Any box (genuinely nonlocal, or not) that belongs to the Svetlichny box
polytope can be written as,

P = G′PαβγεSv +Q′PαβγεM + (1− G′ −Q′)PQ=0
G=0 (41)

Genuinely nonclassical states which cannot be decomposed in the
classical-quantum form,

ρCQ =
∑
i

ρAi ⊗ ρBCi , (42)

and the permutations, can give rise to nonzero G′ and Q′.
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ρW = p |ψGHZ〉 〈ψGHZ |+ (1− p)1 (43)

The Werner states are separable iff p ≤ 0.2, biseparable iff
0.2 < p ≤ 0.429 and genuinely entangled iff p > 0.429

P = p√
2
PSv +

(
1− p√

2

)
PN ; local if p ≤ 1√

2
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Thank you!
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