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Classical Random Walk (CRW) and 
Quantum Random Walk (QRW)

CRW QRW

1. Particle can move either to the 
LEFT or to the RIGHT direction.

1. Particle moves in superposition of 
left and right; new degree of freedom 
chirality.chirality.

2. For diffusive CRW,               with γcl

= 1. This scaling governs other 
dynamical behaviours.

2. Quantum walk propagates faster 
than the diffusive CRW;                
where γq = 2.
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Quantum Random Walk
Particle moves in superposition of left and right.

State of the walker is expressed in               basis.

 HP - the Hilbert space spanned by the positions of the particle. For a line with 
grid-length 1 this space is spanned by the basis states {     : x ∈ Z}.

The position Hilbert space HP is augmented by a ‘coin’-space HC spanned by two 
basis states {          }, analogous to the role of the spin-1/2  space.

dx 

x

RL , 1/2  

Total unitary action U may be divided into two parts : translation T [on position 
eigen state] and rotation with Hadamard coin operator  H [on chirality eigen state]. 

Hadamard coin                    

Translation operator T then shifts the position of the particle according to the 
chirality state 

[Aharonov et al PRA 48, 1687(1993); J. Kempe, Contemporary Physics 44, 307 (2003)]
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QRW wave function :

 The two component wave function ψ (x, t ) describing the position of the particle at
a particular time is written as :

 The occupation probability of site x at time t is given by

 The walk is initialized at the origin :
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 The walk is initialized at the origin :

ψL (0,0)=a0, ψR (0,0)=b0; a0
2 + b0

2 =1.

 Initial state with left chirality, i.e., a0= 1, b0 = 0.
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T -5 -4 -3 -2 -1 0 1 2 3 4 5

0 1

1 1/2 1/2

2 1/4 1/2 1/4

3 1/8 3/8 3/8 1/8

4 1/16 1/4 3/8 1/4 1/16

5 1/32 5/32 5/16 5/16 5/32 1/32

Classical Random Walk

Quantum Random Walk
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Quantum computation:
 One of the earliest work by Feynman (1985): A hamiltonian can be constructed to

implement any quantum circuit . The dynamics of any time-independent
Hamiltonian can be viewed as a quantum walk on a weighted graph. Hence a
quantum circuit can in principle be implemented by a quantum walk!

 More recently it was proved that continuous-time quantum walks are universal for
quantum computation, using unweighted graphs of low degree.

Hamiltonian matrix is the adjacency matrix of a low degree graph.

Childs, Phys. Rev. Lett. 102, 180501 (2009)102, 180501

 Correspondence of the two types of walks - - the continuous walk can be obtained as
a limit of the discrete walk.

Childs, Commun. Math. Phys. 294, 581603 (2010)

 Universal computation by discrete time walks also!

Lovett et al, Phys Rev A 81, 042330 (2010)

Both the continuous and the discrete-time quantum walks can be
regarded as computational primitives.



Outline of a typical experiment

Schreiber et al, PRL 104, 050502 (2010);  PRL 106, 180403 (2011)  : 28 steps



Semi-Infinite and Infinite Walks
 Semi-InfiniteWalk (SIW) :

 One absorbing boundary [measurement wise : detector at a particular
position].

 The walk starts from some given site at t = 0, and a detector is placed at
some other given site . The detector detects the particle with probability
unity if it reaches there and the corresponding evolution is stopped.

x

unity if it reaches there and the corresponding evolution is stopped.

 InfiniteWalk (IW) :

 No boundary [measurement wise : no detector upto the time of
observation].

 The system is allowed to evolve unitarily from a given initial state at ti = 0,
up to a terminating time t′ = Δt, when finally a measurement is done and
evolution is stopped. The entire process can be repeated by increasing
terminating times by Δt (which is 1 for our case).

[SG, P. Sen and A. Das, Phys. Rev. E 81, 021121(2010)]



Quenching in different systems :

 For spin glass system, slow quenching is applied to obtain
the classical ground states of the system where there are
many minima in the energy landscape, separated by
barriers which may be overcome by quantum tunnelling.

In ultracold atoms in an optical lattice fast quenching is In ultracold atoms in an optical lattice fast quenching is
applied by shifting the position of the trap potential and
studying its response. In case of the transverse Ising or XY
model, there is a deviation from the equilibrium state under
quenching as the quantum critical point is crossed and the
quantity of interest is the ‘defect’.



Quenched Quantum Walk (QQW)

 Effect of quenching on a discrete quantum random walk : a detector placed at a
position xD is removed abruptly at time tR from its path QQW.

 As xD and tR are the parameters of the system, we further modify our notation:
f(x, t, xD, tR) is the occupation probability of site x at time t respectively for some
given xD and tR.

 if the particle is at xD with probability α and the detector detects the particle with
probability β, then the total absorption probability at xD will be αβ. In our case

β

α
probability β, then the total absorption probability at xD will be αβ. In our case
we have chosen β= 1.
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Snapshots of probabilities

x =10

IW :
Displacement in time t

proportional to t.
Maximum of the occupation

probability at x ∼ t/√2.

SIW and QQW :
Up to t = tR, QQW and SIW

The study for quench must be for a time t ≥ tR ≥ xD

xD=10

xD=10, tR=50

R

are equivalent.
For t > tR, the probability “spills

out” beyond xD for QQW.
Far away from xD, there is little

difference.
Away from the boundary, we

find that maximum probability is
again at a value of |x| ∼ t/√2.



x = xD = 10

f� = normalized occupation probability at x at time t ; in ensemble format, fraction 
of copies that survived the measurement up to time tR ,                         ,
f =  occupation probability at x at time t taking absorption probability into 
account,                                  ; d = probability that it was absorbed earlier,
f0= occupation probability at x at time t for IW.
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The saturation values of the ratio, (f/f0)sat plotted against tR shows an initial 
non-monotonic behaviour. For large tR, (f/f0)sat clearly scales as 1/tR for all 
values of xD .
For fixed and large tR, (f/f0)sat varies as xD

2

=======

For large tR,      (f/f0)sat = kxD
2/tR

For classical walker as tR→ ∞, fc/fc0 scales as xD/√tR  persistence 
probability at time tR



Varying Detection Probability

• The particle is at xD with probability α and
the detector detects the particle with
probability β : Total absorption probability at
xD will be αβ.

• β is different from 1, varying exponentially
with parameter λ , i,e, exp(-λt) or like a
power law t-λ.



Ratio of probabilities

Exponential :

Power law :



Classical
 Exponential decay :
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 Power law decay :
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Detector introduced at time  ti :





Introduction of defect:



Highlights
Quenching :
The detector is present up to tR, the quenched walker cannot go beyond xD, and the undetected
walker will move away from xD.
For t > tR, walker is free once again, it can move towards and beyond xD. Most of the
contributions to xD and beyond come from the density of walkers closer to it. The occupation
probability profile approaches the IW picture, local hill like structures smoothens out. For IW, the
walker has moved reasonably away from xD at tR, such that the ratio can be greater than unity close
to xD.
When tR is greater than tR

lim, the ratio can no longer exceed unity.
Exponential decay :
The occurrence probability is enhanced here also.This is not possible in the classical case.The occurrence probability is enhanced here also.This is not possible in the classical case.
For small x=xD, the saturation value can never cross 1. For larger x=xD, it first increases beyond
1 at small λ and then approaches a constant.
Power law decay :
The ratio is always less than 1.
Detector introduced at ti :
If the detector is introduced for one case at time t and for the other case at a much later time t’,
then the second case will be closer to the IW picture.
As presence of the detector before measurement is made smaller, the gap in the probability
picture becomes larger which is linear in xD.
Defect :
Introduction of defect at a particular site leads to some sort of decoherence among the
probability amplitudes which then leads to asymmetry.



 The observation that the occurrence probability of a QRW may actually be
enhanced by quenching is one of the main results of these studies. This is a
purely quantum mechanical effect.

 The ratio saturates as the “memory” of the detector gets erased in time.
Memory effects are strong for x << xD. The effect of quenching is rather
local.

 Peaks or secondary peaks are always at |t/√2|.


