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An Event

(Ai = a): an Event.
Described by p(Ai = a) for a given preparation procedure.
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A Phenomenon

(Ai = a,Bj = b): a Phenomenon.
Described by p(Ai = a,Bj = b) for a given preparation

procedure.
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Bipartite Scenario
Local Realistic Hidden Variable Theory

Ontic state: λ ∈ Λ is the complete specification of the properties
of the system such that,

p(Ai = a,Bj = b) =
∫

dλρλp(Ai = a,Bj = b|λ).
Local determinism1: Conjunction of the following two conditions

Parameter Independence or Locality

p(Ai = a|Bj = b, λ) = p(Ai = a|b, λ)

p(Bj = b|Ai = a, λ) = p(Bj = b|a, λ)

Determinism

p(Ai = a,Bj |λ) ∈ {0,1}
1E.G. Cavalcanti, PhD Thesis, 2008
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Hardy’s Test in Two-outcome Scenario

Hardy’s Argument:

p(A1 = 0,B2 = 1) = 0
p(A2 = 1,B2 = 0) = 0
p(A2 = 0,B1 = 1) = 0
p(A1 = 0,B1 = 1) = qH > 0 (Hardy ′92)
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Summary

Hardy’s Test in Two-outcome Scenario

Hardy’s Argument:

p(A1 = 0,B2 = 1) = 0 =⇒ Contradiction!!!

p(A2 = 1,B2 = 0) = 0 =⇒ B2 = 1
p(A2 = 0,B1 = 1) = 0 =⇒ A2 = 1
p(A1 = 0,B1 = 1) = qH > 0 =⇒ A1 = 0,B1 = 1

For Local-Realistic theory: qH = 0.
qH : the probability of observing Non-local phenomena.

qH = lim
# of runs→∞

# of Nonlocal events
# of runs
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Hardy’s Test in Two-outcome Scenario

Maximum allowed probability of non-local phenomena in Hardy’s test
in a theory

qopt
H → The maximum probability of phenomena that cannot be

explained by local theories.

In Quantum theory,
qopt

H = 0.09 (Hardy ′92)
In GNST,

qopt
H = 0.500 (Kukri ′05)

An observation
In two-outcome scenario, even the PR box, which is maximally
non-local(i.e. BI violation is algebraic maximum), provides only 50%
probability of observing non-local events in Hardy’s test under GNST.
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A question
Can this test of Hardy’s, be extended in many-outcome
scenario such that the maximum probability of observing
non-local events in Hardy’s test is increased in GNST?
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Hardy’s Test in Many-outcome Scenario

Conventional Extension of Hardy’s Argument:

p(A1 = 0,B1 = 0) = 0
p(A1 6= 0,B2 = 0) = 0
p(A2 = 0,B1 6= 0) = 0
p(A2 = 0,B2 = 0) = qH > 0 (Kukri ′05)

1S. K. Chudhary, S. Ghosh, G. Kar, S. Kunkri, R. Rahaman, and A. Roy,
Quant. Inf. Comp. 10, 0859 (2010)
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Hardy’s Test in Many-outcome Scenario

Conventional Extension of Hardy’s Argument:

p(A1 = 0,B1 = 0) = 0 =⇒ Contradiction!!!

p(A1 6= 0,B2 = 0) = 0 =⇒ A1 = 0
p(A2 = 0,B1 6= 0) = 0 =⇒ B1 = 0
p(A2 = 0,B2 = 0) = qH > 0 =⇒ A2 = 0,B2 = 0

Maximum success probability of conventional extention
In Quantum theory

qopt
H = 0.09 for d ⊗ d (Kukri ′05)

qopt
H = 0.09 for d1 ⊗ d2 (Rabelo ′12)

1R. Rabelo, L. Y. Zhi and V. Scarani, Phys. Rev. Lett. 109, 180401 (2012)
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Hardy’s Test in Many-outcome Scenario

Conventional Extension of Hardy’s Argument:

p(A1 = 0,B1 = 0) = 0
p(A1 6= 0,B2 = 0) = 0
p(A2 = 0,B1 6= 0) = 0
p(A2 = 0,B2 = 0) = qH > 0

An observation
In the conventional scheme of many-outcome extension→
assign zero probability to a set of outcomes and retain the
paradox in an effective two dimensional subspace.
But the recently proposed generalized extension of Hardy’s test
by Chen et. al. doesn’t look that trivial.
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Hardy’s Test in Many-outcome Scenario

New Generalized Hardy Argument:

p(A2 < B1) = 0
p(B1 < A1) = 0
p(A1 < B2) = 0
p(A2 < B2) = qRH > 0 (Chen ′13) (1)

where
p(A2 < B1) =

∑
m<n

p(A2 = m,B1 = n)

.

1J-L. Chen, A. Cabello, Z.P.Xu, H.Y.Su, C. Wu, and L. C. Kwek, Phys. Rev.
A 88, 062116 (2013).

SSB Hardy Paradox



QM incompatible with LR Theories
Hardy Paradox in two-outcome Scenario

Hardy Paradox in many-outcome Scenario
Summary

Hardy’s Test in three-outcome Scenario

p(A2 = 0,B1 = 1) + p(A2 = 0,B1 = 2)

+ p(A2 = 1,B1 = 2) = 0
p(A1 = 1,B1 = 0) + p(A1 = 2,B1 = 0)

+ p(A1 = 2,B1 = 1) = 0
p(A1 = 0,B2 = 1) + p(A1 = 0,B2 = 2)

+ p(A1 = 1,B2 = 2) = 0
p(A2 = 0,B2 = 1) + p(A2 = 0,B2 = 2)

+ p(A2 = 1,B2 = 2) = qRH > 0
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Hardy’s Test in Many-outcome Scenario

In Quantum world

Dimension of system qopt
RH

2⊗ 2 0.09
3⊗ 3 0.14
4⊗ 4 0.17
5⊗ 5 0.20
6⊗ 6 0.22
7⊗ 7 0.24

200 400 600 800 1000
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The maximum allowed probability of non-local events is increasing with
system dimension. (Plot from Chen et. al. ’13)
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A Question
How to understand the structural difference between these two
possible extensions in many-outcome scenario?
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General no-signaling correlations in many-outcome
scenario

Normalization:

∑
a,b∈{0,...,d1−1}

p(Ai = a, Bj = b) = 1∀Ai , Bi

No-signaling:

d2−1∑
b=0

P(X1 = x1, B1 = b) =

d2−1∑
b′=0

P(X1 = x1, B2 = b′)

∀X1 ∈ {A1, A2} and x1 ∈ {0, d1 − 1}
d1−1∑
a=0

P(A1 = a, X2 = x2) =

d1−1∑
a′=0

P(A2 = a′, X2 = x2)

∀X2 ∈ {B1, B2} and x2 ∈ {0, d2 − 1}
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Hardy’s Test in Many-outcome Scenario

No-Signaling Polytopes P(2, d)

Extreme Points/Vertices

1 Partial-output vertices→ at least one of the conditions
P(X = a) = 0 or P(Y = b) = 0 hold.

2 Full-output vertices→ all P(X = a) 6= 0 and P(Y = b) 6= 0.

Partial-output vertices of P correspond to the full-output vertices of
some other polytope P̃ with fewer local dimension (i.e. d

′A < dA or
d
′B < dB).

Local Box

PαβγδL =

{
1 if a = αX ⊕ β, b = γY ⊕ δ
0 otherwise

Non-local Box

PαβγNL =


1
d if (b 	 a) = XY ⊕ αX ⊕ βY ⊕ γ,

a, b ∈ {1, ..., d}
0 otherwise

α, β, γ, δ ∈ {0, ...,min(d1, d2)− 1}, d = min{d1, d2}.
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Hardy’s Test in Many-outcome Scenario

The maximum value of qRH that can be achieved by a
full-output vertex of P(2, d)

qfull
RH =

d − 1
d

where d = min{d1,d2}.
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Hardy’s Test in Many-outcome Scenario

An observation
The conventional scheme of extending Hardy’s argument for
many-outcomes, assigns zero probability to a set of outcomes
→ corresponds to a partial-output vertex in P(2, d)→
equivalent to a full-output vertex of P(2, 2).

The maximum value for qH , achieved by any non-local
full-output vertex of P(2, 2) is

qfull
H =

1
2
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Using Convexity of the no-signaling polytope,

In GNST:

1 qopt
RH = min{d1,d2}−1

min{d1,d2} for any (d1 ⊗ d2) system.

2 qopt
H = 1

2 for any (d1 ⊗ d2) system.
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Figure: The line in blue shows the increase of qopt
RH with increasing system dimension for

quantum systems (Chen et. al. ’13). The red line shows qopt
RH for generalized no-signaling

correlations.
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Summary

We observe that in any theory that only respects relativistic
causality, the maximum probability of observing non-local
events in the generalized Hardy argument increases with
local dimensions of the two subsystems.
We provide a proof which emphasizes a simple functional
dependence of the maximum probability of non-local
events in the generalized non-locality argument on local
dimensions.
This result also suggests that the non-locality argument
proposed by Chen et. al. is the most natural
higher-dimensional generalization of Hardy’s argument in
two-input scenario.
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