Hardy's test provides 100 % contradiction with Local-Realism in GNST

Some Sankar Bhattacharya¹

¹Physics and Applied Mathematics Unit Indian Statistical Institute, Kolkata

YouQu2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

QM incompatible with LR Theories

- 2 Hardy Paradox in two-outcome Scenario
- Hardy Paradox in many-outcome Scenario

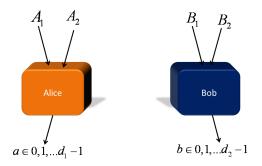
4 Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

An Event

 $(A_i = a)$: an Event. Described by $p(A_i = a)$ for a given preparation procedure.

A Phenomenon



 $(A_i = a, B_j = b)$: a Phenomenon. Described by $p(A_i = a, B_j = b)$ for a given preparation procedure.

Bipartite Scenario Local Realistic Hidden Variable Theory

Ontic state: $\lambda \in \Lambda$ is the complete specification of the properties of the system such that,

$$p(A_i = a, B_j = b) = \int d\lambda \rho_\lambda p(A_i = a, B_j = b | \lambda).$$

Local determinism¹: Conjunction of the following two conditions

• Parameter Independence or Locality

$$p(A_i = a | B_j = b, \lambda) = p(A_i = a | b, \lambda)$$
$$p(B_j = b | A_i = a, \lambda) = p(B_j = b | a, \lambda)$$

• Determinism

$$p(A_i = a, B_j | \lambda) \in \{0, 1\}$$

¹E.G. Cavalcanti, PhD Thesis, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Bipartite Scenario Local Realistic Hidden Variable Theory

Ontic state: $\lambda \in \Lambda$ is the complete specification of the properties of the system such that,

 $p(A_i = a, B_j = b) = \int d\lambda \rho_\lambda p(A_i = a, B_j = b|\lambda).$ Local determinism¹: Conjunction of the following two conditions

Parameter Independence or Locality

$$p(A_i = a | B_j = b, \lambda) = p(A_i = a | b, \lambda)$$
$$p(B_j = b | A_i = a, \lambda) = p(B_j = b | a, \lambda)$$

Determinism

$$p(A_i = a, B_j | \lambda) \in \{0, 1\}$$

¹E.G. Cavalcanti, PhD Thesis, 2008

・ロト < 同ト < 目ト < 目ト < 目と のQQ

Hardy's Test in Two-outcome Scenario

Hardy's Argument:

$$p(A_1 = 0, B_2 = 1) = 0$$

$$p(A_2 = 1, B_2 = 0) = 0$$

$$p(A_2 = 0, B_1 = 1) = 0$$

$$p(A_1 = 0, B_1 = 1) = q_H > 0$$
 (Hardy '92)

Hardy's Test in Two-outcome Scenario

Hardy's Argument:

$$p(A_1 = 0, B_2 = 1) = 0 \implies Contradiction!!!$$

$$p(A_2 = 1, B_2 = 0) = 0 \implies B_2 = 1$$

$$p(A_2 = 0, B_1 = 1) = 0 \implies A_2 = 1$$

$$p(A_1 = 0, B_1 = 1) = q_H > 0 \implies A_1 = 0, B_1 = 1$$

For Local-Realistic theory: $q_H = 0$. q_H : the probability of observing Non-local phenomena.

$$q_{H} = \lim_{\# of \ runs \to \infty} \frac{\# \ of \ Nonlocal \ events}{\# \ of \ runs}$$

Hardy's Test in Two-outcome Scenario

Hardy's Argument:

$$p(A_1 = 0, B_2 = 1) = 0 \implies Contradiction!!!$$

$$p(A_2 = 1, B_2 = 0) = 0 \implies B_2 = 1$$

$$p(A_2 = 0, B_1 = 1) = 0 \implies A_2 = 1$$

$$p(A_1 = 0, B_1 = 1) = q_H > 0 \implies A_1 = 0, B_1 = 1$$

For Local-Realistic theory: $q_H = 0$. q_H : the probability of observing Non-local phenomena.

$$q_{H} = \lim_{\# of \ runs \to \infty} \frac{\# \ of \ Nonlocal \ events}{\# \ of \ runs}$$

Hardy's Test in Two-outcome Scenario

Hardy's Argument:

$$p(A_1 = 0, B_2 = 1) = 0 \implies Contradiction!!!$$

$$p(A_2 = 1, B_2 = 0) = 0 \implies B_2 = 1$$

$$p(A_2 = 0, B_1 = 1) = 0 \implies A_2 = 1$$

$$p(A_1 = 0, B_1 = 1) = q_H > 0 \implies A_1 = 0, B_1 = 1$$

For Local-Realistic theory: $q_H = 0$. q_H : the probability of observing Non-local phenomena.

$$q_{H} = \lim_{\# of \ runs \to \infty} \frac{\# \ of \ Nonlocal \ events}{\# \ of \ runs}$$

Hardy's Test in Two-outcome Scenario

Hardy's Argument:

$$p(A_1 = 0, B_2 = 1) = 0 \implies Contradiction!!!$$

$$p(A_2 = 1, B_2 = 0) = 0 \implies B_2 = 1$$

$$p(A_2 = 0, B_1 = 1) = 0 \implies A_2 = 1$$

$$p(A_1 = 0, B_1 = 1) = q_H > 0 \implies A_1 = 0, B_1 = 1$$

For Local-Realistic theory: $q_H = 0$. q_H : the probability of observing Non-local phenomena.

$$q_{H} = \lim_{\# of \ runs \to \infty} \frac{\# \ of \ Nonlocal \ events}{\# \ of \ runs}$$

Hardy's Test in Two-outcome Scenario

Hardy's Argument:

$$p(A_{1} = 0, B_{2} = 1) = 0 \implies Contradiction!!!$$

$$p(A_{2} = 1, B_{2} = 0) = 0 \implies B_{2} = 1$$

$$p(A_{2} = 0, B_{1} = 1) = 0 \implies A_{2} = 1$$

$$p(A_{1} = 0, B_{1} = 1) = q_{H} > 0 \implies A_{1} = 0, B_{1} = 1$$

For Local-Realistic theory: $q_H = 0$. q_H : the probability of observing Non-local phenomena.

$$q_{H} = \lim_{\# \text{ of } runs \to \infty} \frac{\# \text{ of Nonlocal events}}{\# \text{ of } runs}$$

Hardy's Test in Two-outcome Scenario

Hardy's Argument:

$$p(A_{1} = 0, B_{2} = 1) = 0 \implies Contradiction!!!$$

$$p(A_{2} = 1, B_{2} = 0) = 0 \implies B_{2} = 1$$

$$p(A_{2} = 0, B_{1} = 1) = 0 \implies A_{2} = 1$$

$$p(A_{1} = 0, B_{1} = 1) = q_{H} > 0 \implies A_{1} = 0, B_{1} = 1$$

For Local-Realistic theory: $q_H = 0$. q_H : the probability of observing Non-local phenomena.

$$q_{H} = \lim_{\# \text{ of } runs \to \infty} \frac{\# \text{ of } Nonlocal \text{ events}}{\# \text{ of } runs}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Hardy's Test in Two-outcome Scenario

Maximum allowed probability of non-local phenomena in Hardy's test in a theory

 $q_{H}^{opt} \rightarrow$ The maximum probability of phenomena that cannot be explained by local theories.

In Quantum theory, $q_H^{opt} = 0.09$ (Hardy '92) In GNST, $q_H^{opt} = 0.500$ (Kukri '05)

An observation

In two-outcome scenario, even the PR box, which is maximally non-local (i.e. BI violation is algebraic maximum), provides only 50% probability of observing non-local events in Hardy's test under GNST.

Hardy's Test in Two-outcome Scenario

Maximum allowed probability of non-local phenomena in Hardy's test in a theory

 $q_{H}^{opt} \rightarrow$ The maximum probability of phenomena that cannot be explained by local theories.

In Quantum theory, $q_H^{opt} = 0.09$ (Hardy '92) In GNST, $q_H^{opt} = 0.500$ (Kukri '05)

An observation

In two-outcome scenario, even the PR box, which is maximally non-local (i.e. BI violation is algebraic maximum), provides only 50% probability of observing non-local events in Hardy's test under GNST.

Hardy's Test in Two-outcome Scenario

Maximum allowed probability of non-local phenomena in Hardy's test in a theory

 $q_{H}^{opt} \rightarrow$ The maximum probability of phenomena that cannot be explained by local theories.

In Quantum theory, $q_H^{opt} = 0.09$ (Hardy '92) In GNST, $q_H^{opt} = 0.500$ (Kukri '05)

An observation

In two-outcome scenario, even the PR box, which is maximally non-local(i.e. BI violation is algebraic maximum), provides only 50% probability of observing non-local events in Hardy's test under GNST.

Hardy's Test in Two-outcome Scenario

Maximum allowed probability of non-local phenomena in Hardy's test in a theory

 $q_{H}^{opt} \rightarrow$ The maximum probability of phenomena that cannot be explained by local theories.

In Quantum theory, $q_H^{opt} = 0.09$ (Hardy '92) In GNST, $q_H^{opt} = 0.500$ (Kukri '05)

An observation

In two-outcome scenario, even the PR box, which is maximally non-local(i.e. BI violation is algebraic maximum), provides only 50% probability of observing non-local events in Hardy's test under GNST.

A question

Can this test of Hardy's, be extended in many-outcome scenario such that the maximum probability of observing non-local events in Hardy's test is increased in GNST?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Hardy's Test in Many-outcome Scenario

Conventional Extension of Hardy's Argument:

$$\begin{aligned} p(A_1 = 0, B_1 = 0) &= 0\\ p(A_1 \neq 0, B_2 = 0) &= 0\\ p(A_2 = 0, B_1 \neq 0) &= 0\\ p(A_2 = 0, B_2 = 0) &= q_H > 0 \end{aligned} \tag{Kukri'05}$$

¹S. K. Chudhary, S. Ghosh, G. Kar, S. Kunkri, R. Rahaman, and A. Roy, Quant. Inf. Comp. 10, 0859 (2010)

Hardy's Test in Many-outcome Scenario

Conventional Extension of Hardy's Argument:

$$p(A_{1} = 0, B_{1} = 0) = 0 \implies Contradiction!!!$$

$$p(A_{1} \neq 0, B_{2} = 0) = 0 \implies A_{1} = 0$$

$$p(A_{2} = 0, B_{1} \neq 0) = 0 \implies B_{1} = 0$$

$$p(A_{2} = 0, B_{2} = 0) = q_{H} > 0 \implies A_{2} = 0, B_{2} = 0$$

Maximum success probability of conventional extention

In Quantum theory $q_{H}^{opt} = 0.09$ for $d \otimes d$ (*Kukri* '05) $q_{H}^{opt} = 0.09$ for $d_{1} \otimes d_{2}$ (*Rabelo* '12)

¹R. Rabelo, L. Y. Zhi and V. Scarani, Phys. Rev. Lett. 109, 180401 (2012) = ∽०० ~

Hardy's Test in Many-outcome Scenario

Conventional Extension of Hardy's Argument:

$$p(A_{1} = 0, B_{1} = 0) = 0 \implies Contradiction!!!$$

$$p(A_{1} \neq 0, B_{2} = 0) = 0 \implies A_{1} = 0$$

$$p(A_{2} = 0, B_{1} \neq 0) = 0 \implies B_{1} = 0$$

$$p(A_{2} = 0, B_{2} = 0) = q_{H} > 0 \implies A_{2} = 0, B_{2} = 0$$

Maximum success probability of conventional extention

In Quantum theory $q_{H}^{opt} = 0.09$ for $d \otimes d$ (*Kukri* '05) $q_{H}^{opt} = 0.09$ for $d_{1} \otimes d_{2}$ (*Rabelo* '12)

¹R. Rabelo, L. Y. Zhi and V. Scarani, Phys. Rev. Lett. 109, 180401 (2012)= ∽००∾

Hardy's Test in Many-outcome Scenario

Conventional Extension of Hardy's Argument:

$$p(A_{1} = 0, B_{1} = 0) = 0 \implies Contradiction!!!$$

$$p(A_{1} \neq 0, B_{2} = 0) = 0 \implies A_{1} = 0$$

$$p(A_{2} = 0, B_{1} \neq 0) = 0 \implies B_{1} = 0$$

$$p(A_{2} = 0, B_{2} = 0) = q_{H} > 0 \implies A_{2} = 0, B_{2} = 0$$

Maximum success probability of conventional extention

In Quantum theory $q_{H}^{opt} = 0.09$ for $d \otimes d$ (*Kukri* '05) $q_{H}^{opt} = 0.09$ for $d_{1} \otimes d_{2}$ (*Rabelo* '12)

¹R. Rabelo, L. Y. Zhi and V. Scarani, Phys. Rev. Lett. 109, 180401 (2012)= ∽००∾

Hardy's Test in Many-outcome Scenario

Conventional Extension of Hardy's Argument:

$$p(A_{1} = 0, B_{1} = 0) = 0 \implies Contradiction!!!$$

$$p(A_{1} \neq 0, B_{2} = 0) = 0 \implies A_{1} = 0$$

$$p(A_{2} = 0, B_{1} \neq 0) = 0 \implies B_{1} = 0$$

$$p(A_{2} = 0, B_{2} = 0) = q_{H} > 0 \implies A_{2} = 0, B_{2} = 0$$

Maximum success probability of conventional extention

In Quantum theory $q_{H}^{opt} = 0.09$ for $d \otimes d$ (*Kukri* '05) $q_{H}^{opt} = 0.09$ for $d_{1} \otimes d_{2}$ (*Rabelo* '12)

¹R. Rabelo, L. Y. Zhi and V. Scarani, Phys. Rev. Lett. 109, 180401 (2012) = ∽०० ~

Hardy's Test in Many-outcome Scenario

Conventional Extension of Hardy's Argument:

$$p(A_1 = 0, B_1 = 0) = 0 \implies Contradiction!!!$$

$$p(A_1 \neq 0, B_2 = 0) = 0 \implies A_1 = 0$$

$$p(A_2 = 0, B_1 \neq 0) = 0 \implies B_1 = 0$$

$$p(A_2 = 0, B_2 = 0) = q_H > 0 \implies A_2 = 0, B_2 = 0$$

Maximum success probability of conventional extention

In Quantum theory $q_H^{opt} = 0.09 \text{ for } d \otimes d \quad (Kukri '05)$ $q_H^{opt} = 0.09 \text{ for } d_1 \otimes d_2 \quad (Rabelo '12)$

¹R. Rabelo, L. Y. Zhi and V. Scarani, Phys. Rev. Lett. 109, 180401 (2012) = ७००

SSB Hardy Paradox

Hardy's Test in Many-outcome Scenario

Conventional Extension of Hardy's Argument:

$$p(A_1 = 0, B_1 = 0) = 0 \implies Contradiction!!!$$

$$p(A_1 \neq 0, B_2 = 0) = 0 \implies A_1 = 0$$

$$p(A_2 = 0, B_1 \neq 0) = 0 \implies B_1 = 0$$

$$p(A_2 = 0, B_2 = 0) = q_H > 0 \implies A_2 = 0, B_2 = 0$$

Maximum success probability of conventional extention

In Quantum theory $q_{H}^{opt} = 0.09$ for $d \otimes d$ (Kukri '05) $q_{H}^{opt} = 0.09$ for $d_1 \otimes d_2$ (Rabelo '12)

¹R. Rabelo, L. Y. Zhi and V. Scarani, Phys. Rev. Lett. 109, 180401 (2012) - 9

Hardy's Test in Many-outcome Scenario

Conventional Extension of Hardy's Argument:

$$p(A_1 = 0, B_1 = 0) = 0$$

$$p(A_1 \neq 0, B_2 = 0) = 0$$

$$p(A_2 = 0, B_1 \neq 0) = 0$$

$$p(A_2 = 0, B_2 = 0) = q_H > 0$$

An observation

In the conventional scheme of many-outcome extension \rightarrow assign zero probability to a set of outcomes and retain the paradox in an effective two dimensional subspace. But the recently proposed generalized extension of Hardy's test by Chen et. al. doesn't look that trivial.

Hardy's Test in Many-outcome Scenario

New Generalized Hardy Argument:

$$p(A_2 < B_1) = 0$$

$$p(B_1 < A_1) = 0$$

$$p(A_1 < B_2) = 0$$

$$p(A_2 < B_2) = q_{RH} > 0$$
 (Chen'13) (1)

where

.

$$p(A_2 < B_1) = \sum_{m < n} p(A_2 = m, B_1 = n)$$

¹J-L. Chen, A. Cabello, Z.P.Xu, H.Y.Su, C. Wu, and L. C. Kwek, Phys. Rev. A 88, 062116 (2013).

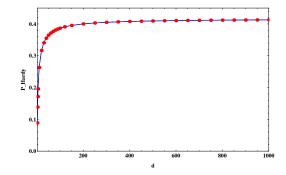
Hardy's Test in three-outcome Scenario

$$\begin{array}{rrrr} p(A_2=0,B_1=1) &+& p(A_2=0,B_1=2) \\ &+& p(A_2=1,B_1=2)=0 \\ p(A_1=1,B_1=0) &+& p(A_1=2,B_1=0) \\ &+& p(A_1=2,B_1=1)=0 \\ p(A_1=0,B_2=1) &+& p(A_1=0,B_2=2) \\ &+& p(A_1=1,B_2=2)=0 \\ p(A_2=0,B_2=1) &+& p(A_2=0,B_2=2) \\ &+& p(A_2=1,B_2=2)=q_{RH}>0 \end{array}$$

Hardy's Test in Many-outcome Scenario

In Quantum world

Dimension of system	q_{RH}^{opt}
2 ⊗ 2	0.09
3 🛛 3	0.14
4 ⊗ 4	0.17
5 🛛 5	0.20
6 ⊗ 6	0.22
7⊗7	0.24



The maximum allowed probability of non-local events is increasing with system dimension. (Plot from Chen et. al. '13)

・ロト < 同ト < 目ト < 目ト < 目と のQQ

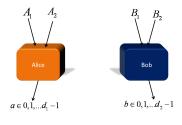
A Question

How to understand the structural difference between these two possible extensions in many-outcome scenario?

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Summary

General no-signaling correlations in many-outcome scenario



No-signaling:

$$\sum_{b=0}^{d_2-1} P(X_1 = x_1, B_1 = b)$$

$$\sum_{a=0}^{d_1-1} P(A_1 = a, X_2 = x_2) =$$

$$\sum_{a,b\in\{0,\ldots,d_i-1\}} p(A_i = a, B_j = b) = 1 \forall A_i, B_i$$

$$\sum_{b'=0}^{i} P(X_1 = x_1, B_2 = b')$$

$$\forall X_1 \in \{A_1, A_2\} \text{ and } x_1 \in \{0, d_1 - 1\}$$

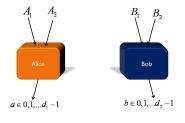
$$\sum_{a'=0}^{d_1-1} P(A_2 = a', X_2 = x_2)$$

$$\forall X_n \in \{B, B_n\} \text{ and } x_n \in \{0, d_n = 1\}$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Summary

General no-signaling correlations in many-outcome scenario



No-signaling:

$$\sum_{b=0}^{d_2-1} P(X_1 = x_1, B_1 = b) = \sum_{b'=0}^{d_2-1} P(X_1 = x_1, B_2 = b')$$

$$\forall X_1 \in \{A_1, A_2\} \text{ and } x_1 \in \{0, d_1 - 1\}$$

$$\sum_{a=0}^{d_1-1} P(A_1 = a, X_2 = x_2) = \sum_{a'=0}^{d_1-1} P(A_2 = a', X_2 = x_2)$$

 $\forall X_2 \in \{B_1, B_2\}$ and $x_2 \in \{0, d_2 - 1\}$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Normalization:

$$\sum_{a,b\in\{0,\ldots,d_i-1\}} p(A_i = a, B_j = b) = 1 \forall A_i, B_i$$

Hardy's Test in Many-outcome Scenario

No-Signaling Polytopes P(2, d)

Extreme Points/Vertices

- Partial-output vertices \rightarrow at least one of the conditions P(X = a) = 0 or P(Y = b) = 0 hold.
- 2 Full-output vertices \rightarrow all $P(X = a) \neq 0$ and $P(Y = b) \neq 0$.

Partial-output vertices of **P** correspond to the full-output vertices of some other polytope $\tilde{\mathbf{P}}$ with fewer local dimension (i.e. $d'^A < d^A$ or

$$d'^B < d^B$$
).

Non-local Box

$$P_{L}^{\alpha\beta\gamma\delta} = \begin{cases} 1 & \text{if } a = \alpha X \oplus \beta, b = \gamma Y \oplus \delta \\ 0 & \text{otherwise} \end{cases} \qquad P_{NL}^{\alpha\beta\gamma} = \begin{cases} \frac{1}{d} & \text{if } (b \ominus a) = XY \\ a, b \in \{1, ..., d\} \\ 0 & \text{otherwise} \end{cases}$$

Hardy's Test in Many-outcome Scenario

No-Signaling Polytopes P(2, d)

Extreme Points/Vertices

- Partial-output vertices \rightarrow at least one of the conditions P(X = a) = 0 or P(Y = b) = 0 hold.
- 2 Full-output vertices \rightarrow all $P(X = a) \neq 0$ and $P(Y = b) \neq 0$.

Partial-output vertices of **P** correspond to the full-output vertices of some other polytope \tilde{P} with fewer local dimension (i.e. $d'^A < d^A$ or $d'^B = d^B$)

Non-lo

$$\mathsf{P}_{L}^{\alpha\beta\gamma\delta} = \begin{cases} 1 & \text{if } a = \alpha X \oplus \beta, b = \gamma \\ 0 & \text{otherwise} \end{cases}$$

 $B^{\gamma} = \begin{cases} \frac{1}{d} & \text{if } (b \in a, b \in a, b \in a) \end{cases}$

if
$$(b \ominus a) = XY \oplus \alpha X \oplus \beta Y \oplus \gamma$$
,
 $a, b \in \{1, ..., d\}$
otherwise

Hardy's Test in Many-outcome Scenario

No-Signaling Polytopes P(2, d)

Extreme Points/Vertices

- **1** Partial-output vertices \rightarrow at least one of the conditions P(X = a) = 0 or P(Y = b) = 0 hold.
- **2** Full-output vertices \rightarrow all $P(X = a) \neq 0$ and $P(Y = b) \neq 0$.

Partial-output vertices of **P** correspond to the full-output vertices of some other polytope $\tilde{\mathbf{P}}$ with fewer local dimension (i.e. $d^{'A} < d^A$ or $d^{'B} < d^B$).

Local Box

Non-local Box

$$\sum_{L}^{\alpha\beta\gamma\delta} = \begin{cases} 1 & \text{if } a = \alpha X \oplus \beta, b = \gamma \\ 0 & \text{otherwise} \end{cases}$$

Hardy's Test in Many-outcome Scenario

No-Signaling Polytopes P(2, d)

Extreme Points/Vertices

- **1** Partial-output vertices \rightarrow at least one of the conditions P(X = a) = 0 or P(Y = b) = 0 hold.
- **2** Full-output vertices \rightarrow all $P(X = a) \neq 0$ and $P(Y = b) \neq 0$.

Partial-output vertices of **P** correspond to the full-output vertices of some other polytope \tilde{P} with fewer local dimension (i.e. $d'^A < d^A$ or

$$d'^{B} < d^{B}$$
).

Local Box

Non-local Box

1= 990

$$P_{L}^{\alpha\beta\gamma\delta} = \begin{cases} 1 & \text{if } a = \alpha X \oplus \beta, b = \gamma Y \oplus \delta \\ 0 & \text{otherwise} \end{cases} \qquad P_{NL}^{\alpha\beta\gamma} = \begin{cases} \frac{1}{d} & \text{if } (b \ominus a) = XY \oplus \alpha X \oplus \beta Y \oplus \gamma, \\ a, b \in \{1, ..., d\} \\ 0 & \text{otherwise} \end{cases}$$

Hardy's Test in Many-outcome Scenario

The maximum value of q_{RH} that can be achieved by a full-output vertex of **P**(2, d)

$$q_{RH}^{full} = rac{d-1}{d}$$

where $d = \min\{d_1, d_2\}$.

Hardy's Test in Many-outcome Scenario

An observation

The conventional scheme of extending Hardy's argument for many-outcomes, assigns zero probability to a set of outcomes \rightarrow corresponds to a partial-output vertex in $P(2, d) \rightarrow$ equivalent to a full-output vertex of P(2, 2).

The maximum value for q_H , achieved by any non-local full-output vertex of P(2, 2) is

$$q_H^{full} = \frac{1}{2}$$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Hardy's Test in Many-outcome Scenario

An observation

The conventional scheme of extending Hardy's argument for many-outcomes, assigns zero probability to a set of outcomes \rightarrow corresponds to a partial-output vertex in $P(2, d) \rightarrow$ equivalent to a full-output vertex of P(2, 2).

The maximum value for q_H , achieved by any non-local full-output vertex of P(2, 2) is

$$q_H^{full} = rac{1}{2}$$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Hardy's Test in Many-outcome Scenario

Using Convexity of the no-signaling polytope,

In GNST:
•
$$q_{RH}^{opt} = \frac{\min\{d_1, d_2\} - 1}{\min\{d_1, d_2\}}$$
 for any $(d_1 \otimes d_2)$ system.
• $q_H^{opt} = \frac{1}{2}$ for any $(d_1 \otimes d_2)$ system.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Hardy's Test in Many-outcome Scenario

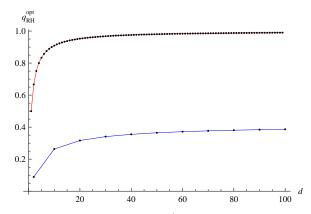


Figure: The line in blue shows the increase of q_{RH}^{opt} with increasing system dimension for quantum systems (Chen et. al. '13). The red line shows q_{RH}^{opt} for generalized no-signaling correlations.

212 DQC

Summary

- We observe that in any theory that only respects relativistic causality, the maximum probability of observing non-local events in the generalized Hardy argument increases with local dimensions of the two subsystems.
- We provide a proof which emphasizes a simple functional dependence of the maximum probability of non-local events in the generalized non-locality argument on local dimensions.
- This result also suggests that the non-locality argument proposed by Chen et. al. is the most natural higher-dimensional generalization of Hardy's argument in two-input scenario.

・ロト < 同ト < 目ト < 目ト < 目と のQQ

Acknowledgement

I would like to thank Prof. Guruprasad Kar, Dr. Ramij Rahaman, Manik Banik, Arup Roy, Amit Mukherjee for many fruitful discussions and useful contributions.

Reference I

 J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts.
 Non-local correlations as an information theoretic resource. *Phys. Rev. A*, 71, 022101 (2005).

J.-L. Chen, A. Cabello, Z.-P. Xu, H.-Y. Su, C. Wu, and L. C. Kwek.
 Hardy's Paradox for High-Dimensional Systems: Beyond Hardy's Limit.
 Phys. Rev. A, 88, 062116 (2013).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの