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Biological process = combinations of chemical processes = inherently quantum.

ey What is “Quantum Biology”?
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Main directions of quantum biology:
1. Quantum coherent energy transport in photosynthesis.
2. Avian magnetoreception.
3. Several others.

Lambert et al., Nature Physics (2012)
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Introduction
Quantum Coherent Energy Transport in Photosynthesis

5" Photons are absorbed by light-harvesting antennas as electronic
excitations.

I¥" The excitation transport: Antenna — Reaction center.
I¥" The precise biological structures vary between organisms.

= — The light-harvesting apparatus of
green-sulphur bacteria (Fenna-Matthews-Olson (FMO) complex).



Introduction
Quantum Coherent Energy Transport in Photosynthesis

" FMO complex mediates the excitation transport.



Introduction

Quantum Coherent Energy Transport in Photosynthesis

" FMO complex mediates the excitation transport.

15" Efficient excitation transport can not be explained by
classical models.
Quantum models proposed.

Caruso et al., JCP (2009); Mohseni et al., JCP (2008).



Introduction

Quantum Coherent Energy Transport in Photosynthesis

" FMO complex mediates the excitation transport.

15" Efficient excitation transport can not be explained by
classical models.
Quantum models proposed.

Caruso et al., JCP (2009); Mohseni et al., JCP (2008).

5" Presence of quantum coherence over appreciable length and
time scales.

Even at room temperature.

Engel et al., Nature (2007); Fleming et al., Science (2010).
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7\‘1 What is the role of “multipartite” quantum correlation?
e
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o A water soluble pigment-protein complex (PPC), appears in green
sulfur bacteria.
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o A water soluble pigment-protein complex (PPC), appears in green
sulfur bacteria.
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o A water soluble pigment-protein complex (PPC), appears in green
sulfur bacteria.
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Fenna-Matthews-Olson (FMO) Complex

o A water soluble pigment-protein complex (PPC), appears in green

sulfur bacteria.
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Fenna-Matthews-Olson (FMO) Complex
Dynamical Model

® For coherent evolution of FMO complex :

7 7
H= Zﬁwjafraj + Z hv,'j(afraj + ofa, )
j=1 i,j=1
i#
® The matrix form (in units of cm—1):
215 —104.1 5.1 4.3 47  —151 7.8
—104.1 220 32.6 7.1 5.4 8.3 0.8
5.1 32.6 0 —46.8 1.0 —8.1 5.1
H=| —43 7.1 —46.8 125  —70.7 —147 —61.5
4.7 5.4 1.0 —70.7 450 89.7  —2.5
—15.1 8.3 —8.1 —147  89.7 330 32.7
7.8 0.8 5.1 —61.5 —25 327 280

J. Adolphs and T. Renger, Biophysical Journal (2006)
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® For coherent evolution of FMO complex :

7 7
— +5- tom 4+ ot
H= Zhwjaj o+ Z hvj(o; o, + 0/ 0;7)
J=1 i,j=1
i#]

® For the dissipation of excitons to environment:
7
Lass(p) = >_Tj 207 pof —{of o] 0]
j=1

M ="Tgss=1/(2x188) cm~".
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Fenna-Matthews-Olson (FMO) Complex
Dynamical Model

For coherent evolution of FMO complex :

7 7
— +5- tom 4+ ot
H= Zhwjaj o+ Z hvj(o; o, + 0/ 0;7)
J=1 i,j=1
i#]

For the dissipation of excitons to environment:

Laiss(p) = Zr [20' ﬂ(f _{(7' ’7/ 79}]

For dephasing interaction with environment:

7
Ldeph(p) = ZW [2”/%”/-700/%0/7 — {U].*U]-*-,P}]
j=1
v = {0.157,9.432,7.797,9.432,7.797,0.922,9.433} ps—'.
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For coherent evolution of FMO complex :

7 7
— +5- tom 4+ ot
H= Zhwjaj o+ Z hvj(o; o, + 0/ 0;7)
J=1 i,j=1
i#]

For the dissipation of excitons to environment:
7
Laiss(p) = DT} [207 pof — o o0} ]
j=1
For dephasing interaction with environment:

7
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j=1
To couple “preferred” site 3 to sink (site 8) by an irreversible decay process:
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Mg =62.8/1.88cm~".
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For coherent evolution of FMO complex :

7 7
— +5- tom 4+ ot
H= Zhwjaj o+ Z hvj(o; o, + 0/ 0;7)
J=1 i,j=1
I#

For the dissipation of excitons to environment:

7
Laiss(p) = DT} [207 pof — o o0} ]
j=1

For dephasing interaction with environment:

7
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j=1
To couple “preferred” site 3 to sink (site 8) by an irreversible decay process:

Lank(p) = Tel203 03 pof oy — {05 o o5 . p}]

The evolution of the density operator p:
p = —i[H, p] + Liss + Ldeph + Lsink



Fenna-Matthews-Olson (FMO) Complex
Dynamical Model

For coherent evolution of FMO complex :

7 7
_ +,— +,- +,-
H= Zhwjaj o+ Z hvj(a; o, +ojo; )
=1 ij=1
i#]

For the dissipation of excitons to environment:

Laiss(p) = }jr'[zo pof —{of o ,p}]

For dephasing interaction with environment:

7
Laopn(p) = _ [20f o] pofo) —{of o7 .}
j=1
To couple “preferred” site 3 to sink (site 8) by an irreversible decay process:

Lsink(p) = Te[20g 05 pogog —{0f o 0g o5 ,p}]

The evolution of the density operator p:
p= —i[H7 P] + Laiss + 'Cdeph + Lsink

Caruso et. al. JCP (2009)
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Quantum Correlation Measures

W\

e \

Motivation: Multipartite quantum correlations capture global perspective of the entire

7‘\1 What is the role of “multipartite” quantum correlation?

system.
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Quantum Correlation Measures

© Unavllallyofcompuiable mutpar messurs.

® Solution — Concept of monogamy.

If Q is monogamous,
Q(pac) > Qpas) + Lpac)

Coffman, Kundu, Wootters, PRA (2000)
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© Unavllallyofcompuiable mutpar messurs.

® Solution — Concept of monogamy.

3 party case = Monogamy score of O:
0Qa = Qapc — (Qas + Qac)

Prabhu et al., PRA (2012)
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Negativity — absolute sum of the negative eigenvalues of the partial
transposed state.

Quantum Discord — Das = D(pas) = Z(pas) — T (pas)
I(/’AB) = S(,OA) + S([)B) - S(ﬂAB) <— Quantum mutual information, measure of total correlation

j(pAB) — MEIX[S(,OB) — S(pB\A)] <— Measure of classical correlation
(/)B\A) Z Pi ((ﬂ, X /)pAB(n,' X /)/p,) <— Quantum conditional entropy



Quantum Correlation Measures
Negativity — absolute sum of the negative eigenvalues of the partial
transposed state.
Quantum Discord — Da:s = D(pa:s) = Z(pas) — J (pas)
I(pAB) = S(,OA) + S([)B) - S(pAB) <— Quantum mutual information, measure of total correlation

j(pAB) = Max[S(,oB) - S(pB\A)] <— Measure of classical correlation
(pB\A) Z Pi ((ﬂ, X /)pAB(I'I,- & /)/p,) <— Quantum conditional entropy
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Dynamics of Multipartite QC Measures
oo, Closest to

—

RS 4'~..,:antenna

Set initial state:
1. 1) (1]
2. |6) (6|
3. ([1) (1] +16) (6])/2.
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Results

Dynamics of Multipartite QC Measures

Steps:

1. Choose one initial state. E.g. |1) (1].
2. Evolve the state according to master equation.

3. Calculate §Q;, Q;.r and Qg, throughout the dynamics.

= We can classify the results into three groups.
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Sites 1 and 2 as nodal observers

045 Initial smeg N1><1 012 Initial State = |6><6| 025 Imitial State = (1><11+/6><6])2
035 it Nl_; ........
025 i, Ng, semeeeens 0.15
0.15
0.05 0.05
o aug,
-0.05 S
[ 02 04 06 08 1 0 02 04 06 08 1 [] 02 04 06 08 1
‘ Time (in ps) ’ \ Time (in ps) Time (in ps)
| 1
ON; < Np. ;t<0.2ps
l Ri ’ - .
8N; > Npg,

6N; > Npg, ; otherwise
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Sites 3, 4 and 7 as nodal observers

0.06 Initial State = |[6><6]| 0.06 Initial State = (|1><1[+H6><6[)/2
N 8Ny =——
NS:R ........
0.04 0.04
Ng, somsueeen
0.02 0.02
0 ranpas 0 0 e
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
l Time (in ps) Time (in ps) Time (in ps) ]

Y
6N; > Np,
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Dynamics of Multipartite QC Measures

Sites 5 and 6 as nodal observers

Initial State = |6><6|

Initial State = (1><1}+6><6[y2

025

8Ng = 8Ng =
Neg === -"| Neg ===
B NR« .......... 0.15 '-_ NR« ..........
F\ 0.05 it
[} 02 04 06 . A 02 04 06 08 06 038
l Time (in ps) \ Time (in ps) ] | Tlme' (in ps)
1 I

ON; > Ng, ; otherwise
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Results

Classification of Chromophore Sites

Known: Sites 1 and 6 closest to antenna, site 3 coupled to reaction
center.

e Group I: Sites 1 and 2.
e Group ll: Sites 5 and 6.
e Group lll: Sites 3,4 and 7.

Can we predict the structure of FMO complex? YES!!

Take-Home Message : Multiparty QC measures infer structural
geometry of the system.
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0.7 > > 0.08 > > 0.012 5 5
0.6 1R R 0.07 A..“‘ 1R iR 1R SR
05 Dar Dg 0.06 | 4% Dyr - Der 0.01 5 Der

§ 0.05 Dy.g ¢ Dyg e | 0.008 "'.,.l Dy wwovee
0.4 05 b L
03 0.04 4R 0.006

- 0.03 [~ !
0.2 0.02 0.004
0.1 0.01 | 0.002

0 o - -

0 005 01 015 02 025 03 04 06 08 1 12 14 2 3 4 5 6 7 8 910
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Procedure :
® Choose one initial state. E.g. |1) (1].
® [Investigate dynamics of the {D; 5} as functions of time.

0.7 0.08 > > 0.012
0.6 : D‘: 0.07 A“- Dl:R - DS:R 0.01
05 0.06 2R R .
o 00 Dy o Dy e | 0.008
03 0.04 Dym 0.006 |
- 0.03 !
02 0.02 0.004
0.1 0.01 0.002
0 0 0 .
0 .1 015 0.2 0. .3 04 06 08 1 2 14 2 3 45 6 7 8 910
Time (in ps) Time (in ps) Time (in ps)
| Time | Max{D;.p} |

0-04 Ps D1;R or Dz;,q
04 — 0.8ps | Dop
0.8 — 5pS D3:F,v
> 5ps Ds.pr ~ Ds.p
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Detection of Energy Transfer Route

Procedure :
® Choose one initial state. E.g. |1) (1].
® [Investigate dynamics of the {D; 5} as functions of time.

0.7 > o 0.08 0.012 5
0.6 1R 5:R 0.07 5:R
Dar Der 0.06 0.01 5 : Der
. (e Dy weoven 0.05 0.008 L I Dy weovoen
y | 0.04 0.006
U 0.03 1 0.004
s 0.002
0.01 o ST
= 0 0
1015 0.2 04 06 08 1 2 14 2 3 45 6 7 8 910
Time (in ps) Time (in ps) Time (in ps)

’ Time ‘ Max{D,-:R} ‘
0-04 Ps D1;,q or Dz;,q
04 — 0.8ps | Dop
08 — 5 Ps D3:F,)
>5 ps D3:F; ~ Dy4.r

¢ Inference = Primary energy transfer route: 1 <+ 2 <+ 3 < 4.
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Detection of Energy Transfer Route

Similarly when the initial excitation is at site 6, we infer...
Primary energy transfer route: 6 <> 5 <> 4 < 3.
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Conclusions

Summarizing Results

. In general, multiparty correlations are more than bipartite one for
negativity, opposite for quantum discord.

. Discord monogamy scores decay faster than that of negativity.
Opposite is true for bipartite contributions.

. Discord monogamy score is negative most of the time, W-state
like behavior.

. Categorized seven chromophore sites into three distinct groups.
= Structural arrangements of different sites.

. Primary energy transfer pathways detected by dynamics of
multipartite quantum correlations.
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