

Time dynamics of multiparty quantum correlations in light-harvesting complexes

Titas Chanda

Harish-Chandra Research Institute, Allahabad, INDIA

February 24, 2015

Quantum Biology Quantum Coherent Energy Transport in Photosynthesis

Quantum Biology

Quantum Coherent Energy Transport in Photosynthesis

• Fenna-Matthews-Olson (FMO) Complex

Dynamical Model

Quantum Biology

Quantum Coherent Energy Transport in Photosynthesis

• Fenna-Matthews-Olson (FMO) Complex

Dynamical Model

Quantum Correlation Measures

Quantum Biology

Quantum Coherent Energy Transport in Photosynthesis

Fenna-Matthews-Olson (FMO) Complex

Dynamical Model

- Quantum Correlation Measures
- Results

Dynamics of Multipartite QC Measures Classification of Chromophore Sites Detection of Energy Transfer Route

Quantum Biology

Quantum Coherent Energy Transport in Photosynthesis

Fenna-Matthews-Olson (FMO) Complex

Dynamical Model

- Quantum Correlation Measures
- Results

Dynamics of Multipartite QC Measures Classification of Chromophore Sites Detection of Energy Transfer Route

Conclusions

Quantum Biology

Quantum Biology

Biology!!!!

Quantum Biology

Biology!!!!

But it has a "Quantum" part too!!!!

Quantum Biology

Biology!!!!

But it has a "Quantum" part too!!!!

Biological process \Rightarrow combinations of chemical processes \Rightarrow inherently quantum.

Quantum Biology

Biology!!!!

But it has a "Quantum" part too!!!!

Biological process \Rightarrow combinations of chemical processes \Rightarrow inherently quantum.

What is "Quantum Biology"?

• "Biology" part : Deals in complex biological systems (macroscopic).

- "Biology" part : Deals in complex biological systems (macroscopic).
- "Quantum" part :

- "Biology" part : Deals in complex biological systems (macroscopic).
- "Quantum" part :
 - ✓ Can these biological systems use quantum mechanics to perform a task that cannot be done classically?

• "Biology" part : Deals in complex biological systems (macroscopic).

• "Quantum" part :

- ✓ Can these biological systems use quantum mechanics to perform a task that cannot be done classically?
- ✓ Is that task more efficient than the best classical one?

Quantum Biology

Main directions of quantum biology:

- 1. Quantum coherent energy transport in photosynthesis.
- 2. Avian magnetoreception.
- 3. Several others.

Main directions of quantum biology:

- 1. Quantum coherent energy transport in photosynthesis.
- 2. Avian magnetoreception.
- 3. Several others.

For details see: Lambert et al., Nature Physics (2012)

Quantum Coherent Energy Transport in Photosynthesis

Photons are absorbed by light-harvesting antennas as electronic excitations.

- Photons are absorbed by light-harvesting antennas as electronic excitations.
- The excitation transport: Antenna \rightarrow Reaction center.

- Photons are absorbed by light-harvesting antennas as electronic excitations.
- The excitation transport: Antenna \rightarrow Reaction center.
- The precise biological structures vary between organisms.

- Photons are absorbed by light-harvesting antennas as electronic excitations.
- The excitation transport: Antenna \rightarrow Reaction center.
- The precise biological structures vary between organisms.
- Most well-studied example → The light-harvesting apparatus of green-sulphur bacteria (Fenna-Matthews-Olson (FMO) complex).

Quantum Coherent Energy Transport in Photosynthesis

FMO complex mediates the excitation transport.

Quantum Coherent Energy Transport in Photosynthesis

- **FMO** complex mediates the excitation transport.
- Efficient excitation transport can not be explained by classical models.

Quantum models proposed.

Caruso et al., JCP (2009); Mohseni et al., JCP (2008).

Quantum Coherent Energy Transport in Photosynthesis

- **FMO** complex mediates the excitation transport.
- Efficient excitation transport can not be explained by classical models.

Quantum models proposed.

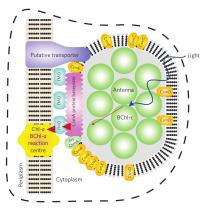
Caruso et al., JCP (2009); Mohseni et al., JCP (2008).

Presence of quantum coherence over appreciable length and time scales.

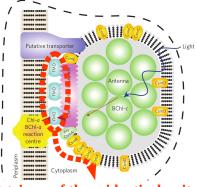
Even at room temperature.

Engel et al., Nature (2007); Fleming et al., Science (2010).

Quantum Coherent Energy Transport in Photosynthesis

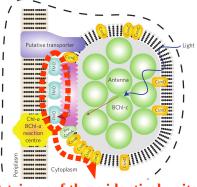

What is the role of quantum correlation?

Quantum Coherent Energy Transport in Photosynthesis

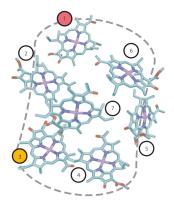


What is the role of "multipartite" quantum correlation?

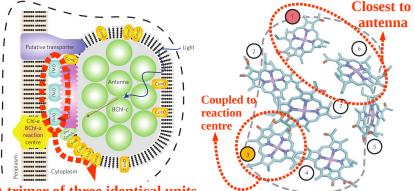
• A water soluble pigment-protein complex (PPC), appears in green sulfur bacteria.



• A water soluble pigment-protein complex (PPC), appears in green sulfur bacteria.



A trimer of three identical units


• A water soluble pigment-protein complex (PPC), appears in green sulfur bacteria.

A trimer of three identical units

 A water soluble pigment-protein complex (PPC), appears in green sulfur bacteria.

A trimer of three identical units

Dynamical Model

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_j \sigma_j^+ \sigma_j^- + \sum_{\substack{i,j=1\\i\neq j}}^{7} \hbar v_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-)$$

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_j \sigma_j^+ \sigma_j^- + \sum_{\substack{i,j=1\\i\neq j}}^{7} \hbar v_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-)$$

• The matrix form (in units of cm⁻¹):

	/ 215	-104.1	5.1	-4.3	4.7	-15.1	-7.8 \	
	-104.1	220	32.6	7.1	5.4	8.3	0.8	
	5.1	32.6	0	-46.8	1.0	-8.1	5.1	
H =	-4.3	7.1	-46.8	125	-70.7	-14.7	-61.5	
	4.7	5.4	1.0	-70.7	450	89.7	-2.5	
	-15.1	8.3	-8.1	-14.7	89.7	330	32.7	
	\ _7.8	-104.1 220 32.6 7.1 5.4 8.3 0.8	5.1	-61.5	-2.5	32.7	280 /	

J. Adolphs and T. Renger, Biophysical Journal (2006)

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_{j} \sigma_{j}^{+} \sigma_{j}^{-} + \sum_{\substack{i,j=1\\i\neq j}}^{7} \hbar v_{ij} (\sigma_{i}^{+} \sigma_{j}^{-} + \sigma_{j}^{+} \sigma_{j}^{-})$$

• For the dissipation of excitons to environment:

$$\mathcal{L}_{diss}(\rho) = \sum_{j=1}^{r} \Gamma_j \left[2\sigma_j^- \rho \sigma_j^+ - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_{j} \sigma_{j}^{+} \sigma_{j}^{-} + \sum_{\substack{i,j=1\\i\neq i}}^{7} \hbar v_{ij} (\sigma_{i}^{+} \sigma_{j}^{-} + \sigma_{j}^{+} \sigma_{i}^{-})$$

• For the dissipation of excitons to environment:

$$\mathcal{L}_{diss}(\rho) = \sum_{j=1}^{\prime} \Gamma_j \left[2\sigma_j^- \rho \sigma_j^+ - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

$$\Gamma_j = \Gamma_{diss} = 1/(2 \times 188) \text{ cm}^{-1}.$$

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_{j} \sigma_{j}^{+} \sigma_{j}^{-} + \sum_{\substack{i,j=1\\i\neq i}}^{7} \hbar v_{ij} (\sigma_{i}^{+} \sigma_{j}^{-} + \sigma_{j}^{+} \sigma_{i}^{-})$$

• For the dissipation of excitons to environment:

$$\mathcal{L}_{diss}(\rho) = \sum_{j=1}^{r} \Gamma_j \left[2\sigma_j^- \rho \sigma_j^+ - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• For dephasing interaction with environment:

$$\mathcal{L}_{deph}(
ho) = \sum_{j=1}^{\prime} \gamma_j \left[2\sigma_j^+ \sigma_j^-
ho \sigma_j^+ \sigma_j^- - \{\sigma_j^+ \sigma_j^-,
ho\}
ight]$$

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_j \sigma_j^+ \sigma_j^- + \sum_{\substack{i,j=1\\i\neq j}}^{7} \hbar v_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-)$$

• For the dissipation of excitons to environment:

$$\mathcal{L}_{diss}(\rho) = \sum_{j=1}^{\prime} \Gamma_j \left[2\sigma_j^- \rho \sigma_j^+ - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• For dephasing interaction with environment:

$$\mathcal{L}_{deph}(\rho) = \sum_{j=1}^{\prime} \gamma_j \left[2\sigma_j^+ \sigma_j^- \rho \sigma_j^+ \sigma_j^- - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

 $\gamma_j = \{0.157, 9.432, 7.797, 9.432, 7.797, 0.922, 9.433\}$ ps⁻¹.

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_j \sigma_j^+ \sigma_j^- + \sum_{\substack{i,j=1\\i\neq j}}^{7} \hbar v_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-)$$

• For the dissipation of excitons to environment:

$$\mathcal{L}_{diss}(\rho) = \sum_{j=1}^{\prime} \Gamma_j \left[2\sigma_j^- \rho \sigma_j^+ - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• For dephasing interaction with environment:

$$\mathcal{L}_{deph}(\rho) = \sum_{j=1}^{l} \gamma_j \left[2\sigma_j^+ \sigma_j^- \rho \sigma_j^+ \sigma_j^- - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• To couple "preferred" site 3 to sink (site 8) by an irreversible decay process:

$$\mathcal{L}_{sink}(\rho) = \Gamma_8[2\sigma_8^+\sigma_3^-\rho\sigma_3^+\sigma_8^- - \{\sigma_3^+\sigma_8^-\sigma_8^+\sigma_3^-, \rho\}]$$

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_j \sigma_j^+ \sigma_j^- + \sum_{\substack{i,j=1\\i\neq j}}^{7} \hbar v_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-)$$

• For the dissipation of excitons to environment:

$$\mathcal{L}_{diss}(\rho) = \sum_{j=1}^{\prime} \Gamma_j \left[2\sigma_j^- \rho \sigma_j^+ - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• For dephasing interaction with environment:

$$\mathcal{L}_{deph}(\rho) = \sum_{j=1}^{l} \gamma_j \left[2\sigma_j^+ \sigma_j^- \rho \sigma_j^+ \sigma_j^- - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• To couple "preferred" site 3 to sink (site 8) by an irreversible decay process:

$$\mathcal{L}_{sink}(\rho) = \Gamma_8[2\sigma_8^+\sigma_3^-\rho\sigma_3^+\sigma_8^- - \{\sigma_3^+\sigma_8^-\sigma_8^+\sigma_3^-, \rho\}]$$

 $\Gamma_8 = 62.8/1.88 \text{ cm}^{-1}$.

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_j \sigma_j^+ \sigma_j^- + \sum_{\substack{i,j=1\\i\neq j}}^{7} \hbar v_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-)$$

• For the dissipation of excitons to environment:

$$\mathcal{L}_{diss}(\rho) = \sum_{j=1}^{\prime} \Gamma_j \left[2\sigma_j^- \rho \sigma_j^+ - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• For dephasing interaction with environment:

$$\mathcal{L}_{deph}(\rho) = \sum_{j=1}^{\prime} \gamma_j \left[2\sigma_j^+ \sigma_j^- \rho \sigma_j^+ \sigma_j^- - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• To couple "preferred" site 3 to sink (site 8) by an irreversible decay process:

$$\mathcal{L}_{sink}(\rho) = \Gamma_8[2\sigma_8^+\sigma_3^-\rho\sigma_3^+\sigma_8^- - \{\sigma_3^+\sigma_8^-\sigma_8^+\sigma_3^-, \rho\}]$$

The evolution of the density operator ρ:

$$\dot{
ho} = -i[H,
ho] + \mathcal{L}_{diss} + \mathcal{L}_{deph} + \mathcal{L}_{sink}$$

Dynamical Model

• For coherent evolution of FMO complex :

$$H = \sum_{j=1}^{7} \hbar \omega_j \sigma_j^+ \sigma_j^- + \sum_{\substack{i,j=1\\i\neq j}}^{7} \hbar v_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^+ \sigma_i^-)$$

• For the dissipation of excitons to environment:

$$\mathcal{L}_{diss}(\rho) = \sum_{j=1}^{\prime} \Gamma_j \left[2\sigma_j^- \rho \sigma_j^+ - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• For dephasing interaction with environment:

$$\mathcal{L}_{deph}(\rho) = \sum_{j=1}^{\prime} \gamma_j \left[2\sigma_j^+ \sigma_j^- \rho \sigma_j^+ \sigma_j^- - \{\sigma_j^+ \sigma_j^-, \rho\} \right]$$

• To couple "preferred" site 3 to sink (site 8) by an irreversible decay process:

$$\mathcal{L}_{sink}(\rho) = \Gamma_8[2\sigma_8^+\sigma_3^-\rho\sigma_3^+\sigma_8^- - \{\sigma_3^+\sigma_8^-\sigma_8^+\sigma_3^-, \rho\}]$$

The evolution of the density operator ρ:

$$\dot{
ho} = -i[H,
ho] + \mathcal{L}_{diss} + \mathcal{L}_{deph} + \mathcal{L}_{sink}$$

Caruso et. al. JCP (2009)

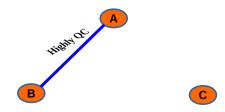
What is the role of "multipartite" quantum correlation?

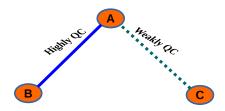
What is the role of "multipartite" quantum correlation?

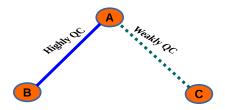
Motivation: Multipartite quantum correlations capture global perspective of the entire system.

• Problem \rightarrow Unavailability of computable multipartite measures.

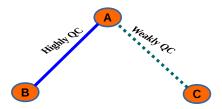
- Problem \rightarrow Unavailability of computable multipartite measures.
- Solution \rightarrow Concept of monogamy.


- Problem \rightarrow Unavailability of computable multipartite measures.
- Solution \rightarrow Concept of monogamy.




- Problem \rightarrow Unavailability of computable multipartite measures.
- Solution \rightarrow Concept of monogamy.

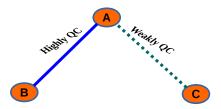
- Problem \rightarrow Unavailability of computable multipartite measures.
- **Solution** \rightarrow Concept of monogamy.


- Problem \rightarrow Unavailability of computable multipartite measures.
- Solution \rightarrow Concept of monogamy.

If Q is monogamous, $Q(\rho_{A:BC}) \ge Q(\rho_{A:B}) + Q(\rho_{A:C})$

Coffman, Kundu, Wootters, PRA (2000)

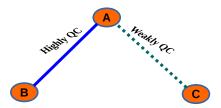
- Problem \rightarrow Unavailability of computable multipartite measures.
- Solution \rightarrow Concept of monogamy.



3 party case \Rightarrow Monogamy score of \mathcal{Q} :

 $\delta \mathcal{Q}_{A} = \mathcal{Q}_{A:BC} - (\mathcal{Q}_{A:B} + \mathcal{Q}_{A:C})$

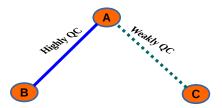
Prabhu et al., PRA (2012)


- Problem \rightarrow Unavailability of computable multipartite measures.
- **Solution** \rightarrow Concept of monogamy.

N party case \Rightarrow Monogamy score of Q: $\delta Q_i = Q(\rho_{i:R}) - \sum_{j=1, j \neq i}^N Q(\rho_{j:j})$

Prabhu et al., PRA (2012)

- Problem \rightarrow Unavailability of computable multipartite measures.
- **Solution** \rightarrow Concept of monogamy.



N party case \Rightarrow Monogamy score of Q: $\delta Q_i = Q(\rho_{i:R}) - \sum_{j=1, j \neq i}^N Q(\rho_{j:i})$

Prabhu et al., PRA (2012)

For details: Asutosh Kumar's talk

- Problem \rightarrow Unavailability of computable multipartite measures.
- **Solution** \rightarrow Concept of monogamy.

N party case \Rightarrow Monogamy score of Q: $\delta Q_i = Q(\rho_{i:R}) - \sum_{j=1, j \neq i}^N Q(\rho_{j:i})$

Prabhu et al., PRA (2012)

For details: Asutosh Kumar's talk

Monogamy scores for negativity (*N*) and quantum discord (*D*).

 $\ensuremath{\text{Negativity}} \rightarrow \ensuremath{\text{absolute}}$ sum of the negative eigenvalues of the partial transposed state.

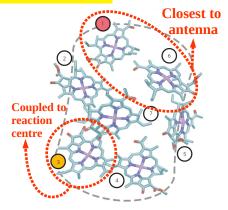
 $\ensuremath{\text{Negativity}} \rightarrow \ensuremath{\text{absolute}}$ sum of the negative eigenvalues of the partial transposed state.

Quantum Discord \rightarrow $D_{A:B} \equiv D(\rho_{A:B}) = \mathcal{I}(\rho_{AB}) - \mathcal{J}(\rho_{AB})$

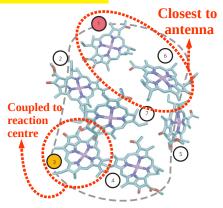
 $\mathcal{I}(
ho_{AB}) = S(
ho_A) + S(
ho_B) - S(
ho_{AB}) \leftarrow$ Quantum mutual information, measure of total correlation $\mathcal{J}(
ho_{AB}) = \operatorname{Max}[S(
ho_B) - S(
ho_{B|A})] \leftarrow$ Measure of classical correlation $S(
ho_{B|A}) = \sum p_i S((\Pi_i \otimes I)
ho_{AB}(\Pi_i \otimes I) / p_i) \leftarrow$ Quantum conditional entropy

 $\ensuremath{\text{Negativity}} \rightarrow \ensuremath{\text{absolute}}$ sum of the negative eigenvalues of the partial transposed state.

Quantum Discord \rightarrow $D_{A:B} \equiv D(\rho_{A:B}) = \mathcal{I}(\rho_{AB}) - \mathcal{J}(\rho_{AB})$


 $\mathcal{I}(
ho_{AB}) = S(
ho_A) + S(
ho_B) - S(
ho_{AB}) \leftarrow$ Quantum mutual information, measure of total correlation $\mathcal{J}(
ho_{AB}) = \operatorname{Max}[S(
ho_B) - S(
ho_{B|A})] \leftarrow$ Measure of classical correlation $S(
ho_{B|A}) = \sum p_i S((\Pi_i \otimes I)
ho_{AB}(\Pi_i \otimes I) / p_i) \leftarrow$ Quantum conditional entropy

Now back to the FMO complex


Results

Dynamics of Multipartite QC Measures

Results

Dynamics of Multipartite QC Measures

Set initial state:

- 1. $|1\rangle\langle 1|$
- 2. |6> (6|
- 3. $(|1\rangle \langle 1| + |6\rangle \langle 6|)/2.$

Steps:

Steps:

1. Choose one initial state. E.g. $|1\rangle \langle 1|$.

Steps:

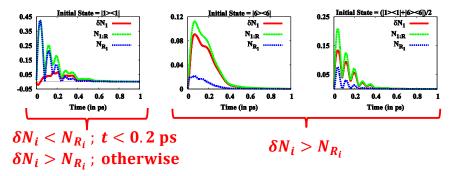
- 1. Choose one initial state. E.g. $|1\rangle \langle 1|$.
- 2. Evolve the state according to master equation.

Steps:

- 1. Choose one initial state. E.g. $|1\rangle \langle 1|$.
- 2. Evolve the state according to master equation.
- 3. Calculate δQ_i , $Q_{i:R}$ and Q_{R_i} throughout the dynamics.

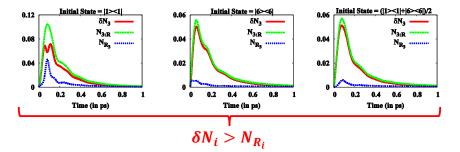
Steps:

- 1. Choose one initial state. E.g. $|1\rangle \langle 1|$.
- 2. Evolve the state according to master equation.
- 3. Calculate δQ_i , $Q_{i:R}$ and Q_{R_i} throughout the dynamics.


\Rightarrow We can classify the results into three groups.

Sites 1 and 2 as nodal observers

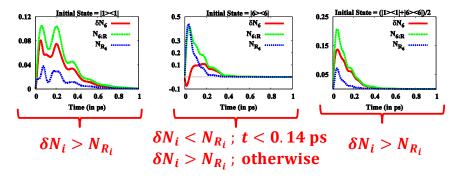
Sites 1 and 2 as nodal observers



Sites 3, 4 and 7 as nodal observers

Dynamics of Multipartite QC Measures

Sites 3, 4 and 7 as nodal observers


Dynamics of Multipartite QC Measures

Sites 5 and 6 as nodal observers

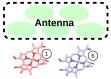
Dynamics of Multipartite QC Measures

Sites 5 and 6 as nodal observers

Based on the observation:

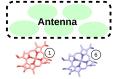
Based on the observation:

- Group I: Sites 1 and 2.
- Group II: Sites 5 and 6.
- Group III: Sites 3, 4 and 7.

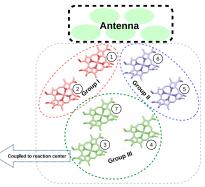

Based on the observation:

- Group I: Sites 1 and 2.
- Group II: Sites 5 and 6.
- Group III: Sites 3, 4 and 7.

Can we predict the structure of FMO complex?

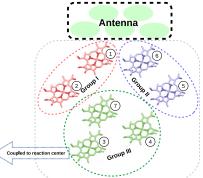


Coupled to reaction center


- Group II: Sites 5 and 6.
- Group III: Sites 3, 4 and 7.

Coupled to reaction center

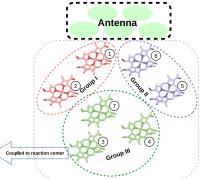
Classification of Chromophore Sites


- Group I: Sites 1 and 2.
- Group II: Sites 5 and 6.
- Group III: Sites 3, 4 and 7.

Classification of Chromophore Sites

Known: Sites 1 and 6 closest to antenna, site 3 coupled to reaction center.

- Group I: Sites 1 and 2.
- Group II: Sites 5 and 6.
- Group III: Sites 3, 4 and 7.



Can we predict the structure of FMO complex? YES!!

Classification of Chromophore Sites

Known: Sites 1 and 6 closest to antenna, site 3 coupled to reaction center.

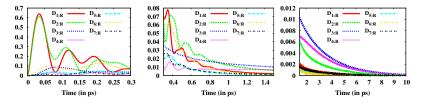
- Group I: Sites 1 and 2.
- Group II: Sites 5 and 6.
- Group III: Sites 3, 4 and 7.

Can we predict the structure of FMO complex? YES!!

Take-Home Message : Multiparty QC measures infer structural geometry of the system.

Can we detect energy transfer route in FMO complex?

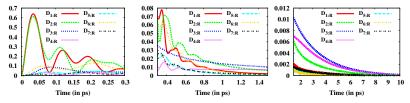
Detection of Energy Transfer Route


Procedure :

- Choose one initial state. E.g. $|1\rangle \langle 1|$.
- Investigate dynamics of the $\{D_{i:R}\}$ as functions of time.

Detection of Energy Transfer Route

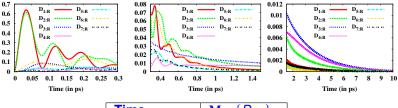
Procedure :


- Choose one initial state. E.g. |1> (1|.
- Investigate dynamics of the {D_{i:R}} as functions of time.

Detection of Energy Transfer Route

Procedure :

- Choose one initial state. E.g. |1> (1|.
- Investigate dynamics of the {D_{i:R}} as functions of time.



Time	$\mathbf{Max}\{D_{i:R}\}$
0 - 0.4 ps	$D_{1:R}$ or $D_{2:R}$
0.4 - 0.8 ps	D _{2:R}
0.8 - 5 ps	D _{3:R}
> 5 ps	$D_{3:R} \simeq D_{4:R}$

Detection of Energy Transfer Route

Procedure :

- Choose one initial state. E.g. |1> (1).
- Investigate dynamics of the {D_{i:R}} as functions of time.

Time	$\mathbf{Max}\{D_{i:R}\}$
0 - 0.4 ps	$D_{1:R}$ or $D_{2:R}$
0.4 - 0.8 ps	D _{2:R}
0.8 - 5 ps	D _{3:R}
> 5 ps	$D_{3:R} \simeq D_{4:R}$

• Inference \Rightarrow Primary energy transfer route: $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4$.

Similarly when the initial excitation is at site 6, we infer...

Primary energy transfer route: $6 \leftrightarrow 5 \leftrightarrow 4 \leftrightarrow 3$ **.**

Can we detect energy transfer route in FMO complex?

Can we detect energy transfer route in FMO complex?

Yes!!! The primary one.

Can we detect energy transfer route in FMO complex?

Yes!!! The primary one.

Note : Other QC measures can also detect the route.

Summarizing Results

Summarizing Results

1. In general, multiparty correlations are more than bipartite one for negativity, opposite for quantum discord.

- 1. In general, multiparty correlations are more than bipartite one for negativity, opposite for quantum discord.
- 2. Discord monogamy scores decay faster than that of negativity. Opposite is true for bipartite contributions.

- 1. In general, multiparty correlations are more than bipartite one for negativity, opposite for quantum discord.
- 2. Discord monogamy scores decay faster than that of negativity. Opposite is true for bipartite contributions.
- 3. Discord monogamy score is negative most of the time, *W*-state like behavior.

- 1. In general, multiparty correlations are more than bipartite one for negativity, opposite for quantum discord.
- 2. Discord monogamy scores decay faster than that of negativity. Opposite is true for bipartite contributions.
- 3. Discord monogamy score is negative most of the time, *W*-state like behavior.
- 4. Categorized seven chromophore sites into three distinct groups. ⇒ Structural arrangements of different sites.

- 1. In general, multiparty correlations are more than bipartite one for negativity, opposite for quantum discord.
- 2. Discord monogamy scores decay faster than that of negativity. Opposite is true for bipartite contributions.
- 3. Discord monogamy score is negative most of the time, *W*-state like behavior.
- 4. Categorized seven chromophore sites into three distinct groups. \Rightarrow Structural arrangements of different sites.
- 5. Primary energy transfer pathways detected by dynamics of multipartite quantum correlations.

Collaborators

Ref : TC, Utkarsh Mishra, Aditi Sen(De), Ujjwal Sen, arXiv:1412.6519 [quant-ph]

Thank You!!!