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� Photons are absorbed by light-harvesting antennas as electronic
excitations.

� The excitation transport: Antenna→ Reaction center.

� The precise biological structures vary between organisms.

� Most well-studied example→ The light-harvesting apparatus of
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� Efficient excitation transport can not be explained by

classical models.
Quantum models proposed.
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� Presence of quantum coherence over appreciable length and
time scales.
Even at room temperature.

Engel et al., Nature (2007); Fleming et al., Science (2010).
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Fenna-Matthews-Olson (FMO) Complex
Dynamical Model

• For coherent evolution of FMO complex :

H =
7∑

j=1

~ωjσ
+
j σ
−
j +

7∑
i,j=1
i 6=j

~vij (σ
+
i σ
−
j + σ+

j σ
−
i )

• The matrix form (in units of cm−1):

H =



215 −104.1 5.1 −4.3 4.7 −15.1 −7.8
−104.1 220 32.6 7.1 5.4 8.3 0.8

5.1 32.6 0 −46.8 1.0 −8.1 5.1
−4.3 7.1 −46.8 125 −70.7 −14.7 −61.5
4.7 5.4 1.0 −70.7 450 89.7 −2.5
−15.1 8.3 −8.1 −14.7 89.7 330 32.7
−7.8 0.8 5.1 −61.5 −2.5 32.7 280


.

J. Adolphs and T. Renger, Biophysical Journal (2006)

• For the dissipation of excitons to environment:

Ldiss(ρ) =
7∑

j=1

Γj

[
2σ−j ρσ

+
j − {σ

+
j σ
−
j , ρ}

]
Γj = Γdiss = 1/(2× 188) cm−1.• For dephasing interaction with environment:

Ldeph(ρ) =
7∑

j=1

γj

[
2σ+

j σ
−
j ρσ

+
j σ
−
j − {σ

+
j σ
−
j , ρ}

]
γj = {0.157, 9.432, 7.797, 9.432, 7.797, 0.922, 9.433} ps−1.• To couple “preferred” site 3 to sink (site 8) by an irreversible decay process:

Lsink (ρ) = Γ8[2σ+
8 σ
−
3 ρσ

+
3 σ
−
8 − {σ

+
3 σ
−
8 σ

+
8 σ
−
3 , ρ}]

Γ8 = 62.8/1.88 cm−1.• The evolution of the density operator ρ:

ρ̇ = −i[H, ρ] + Ldiss + Ldeph + Lsink

Caruso et. al. JCP (2009)
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Results
Detection of Energy Transfer Route

Procedure :
• Choose one initial state. E.g. |1〉 〈1|.
• Investigate dynamics of the {Di:R} as functions of time.
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• Investigate dynamics of the {Di:R} as functions of time.
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Similarly when the initial excitation is at site 6, we infer...

Primary energy transfer route: 6↔ 5↔ 4↔ 3.



Results
Detection of Energy Transfer Route

Can we detect energy transfer route in FMO complex?
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Conclusions
Summarizing Results

1. In general, multiparty correlations are more than bipartite one for
negativity, opposite for quantum discord.

2. Discord monogamy scores decay faster than that of negativity.
Opposite is true for bipartite contributions.

3. Discord monogamy score is negative most of the time, W -state
like behavior.

4. Categorized seven chromophore sites into three distinct groups.
⇒ Structural arrangements of different sites.

5. Primary energy transfer pathways detected by dynamics of
multipartite quantum correlations.
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