Numerical Methods, 2012
 Assignment on Monte Carlo Methods
 Due on Dec 4, 2012
 You have to show working codes

1. Write a code to generate random numbers x that are distributed according to the probability density function $p(x)=\sqrt{1-x^{2}}$ in the range $[0,1]$ using the rejection method.

Show that your code indeed gives you the desired distribution by doing the frequency test.
Estimate the value of π using your code. How does your estimate of π change as you increase the number of random points for your estimation? Report π for a few cases.
2. Remember the illustrative example I showed in the class for the transition matrix \mathbf{P} for a 3 -state problem

$$
\mathbf{P}=\left(\begin{array}{ccc}
1 / 4 & 1 / 8 & 2 / 3 \tag{1}\\
3 / 4 & 5 / 8 & 0 \\
0 & 1 / 4 & 1 / 3
\end{array}\right)
$$

that led to the equilibrium probabilities $p_{1}^{*}=4 / 15, p_{2}^{*}=8 / 15$ and $p_{3}^{*}=3 / 15$?
Consider the inverse problem. Suppose you are given the equilibrium probabilities $p_{1}^{*}=3 / 15, p_{2}^{*}=4 / 15$ and $p_{3}^{*}=8 / 15$. Construct the transition matrix \mathbf{A} for a metropolis algorithm for this problem. Now suppose you have a large number of walkers (a few thousand may be a good choice) all in the state 2 at the beginning. In a Metropolis method, at each step try to move each one of them to any of the three states. All the states, to which a move can be attempted, are chosen with equal probability of $1 / 3$. However, the proposed moves are to be accepted with probability given by the matrix \mathbf{A}.
Write a code for this problem, and report how the number of walkers in the three states vary with MC time. You must point out when equilibrium is reached.
3. I will add one more problem by Monday-Tuesday

