
Numerical integration
Grid based methods

Consider the 1D integration

F =
∫ b
a
f(x)dx (1)

Rieman sum: Let a closed interval be parti-
tioned by points a < x1 < x2, · · · < xN−1 < b,
where the lengths of the resulting intervals be-
tween the points are denoted by ∆x1, ∆x2, . . .,
∆xk, . . ., ∆xN . Let ∆x∗k be an arbitrary point
in the kth subinterval. Then the quantity

N∑
k=1

f(x∗k)∆xk (2)

is called a Riemann sum for a given function
and partition, and the value max ∆xk is called
the mesh size of the partition.

If the limit of the Riemann sums exists as
max ∆xk → 0, this limit is known as the Rie-
mann integral of f(x) over the interval [a, b].
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So the previous integral can be evaluated as

F = lim
N→∞

FN (3)

FN =
b− a
N

N∑
k=1

f(xk) (4)

Suppose a 1D integral is performed with n grid
points.

A d-dim integral with n grid points in each
dimension: time taken will scale as ??

Suppose the 1D integral takes 2 seconds.
A 10-dim integral will take ∼ 1024 seconds.
A 100-dim integral will take ∼ 1030 seconds
∼ 4× 1022 years !
Age of the universe is ??
Hopeless situation !!!

Can we do something smarter?
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Rather than evaluating the function at a fixed

set of grid points, we can evaluate it at a ran-

dom set of points Xk drawn from a given prob-

ability density function.

Question is: what probability density func-

tion to use?

Uniform sampling:

A set of N points Xk can be chosen from a

uniform probability density function. Different

set of N points will give different results for FN .

So there will be a statistical error associated

with such stochastic evaluation of the integral.

3



A concrete example

F = erf(y) =
2
√
π

∫ y
0
e−x

2
dx (5)

F evaluated by randomly choosing 10,000 points

from a uniform distribution in the interval [0, y].

y Uniform sampling Exact Error
MC (%)

0.01 0.0113 0.0113 0
0.10 0.1125 0.1125 0
1.00 0.8420 0.8427 0.08
2.00 0.9900 0.9953 5
10.0 1.0297 1.0000 2.97

100.0 1.1272 1.0000 12.72

Why is the agreement getting worse with in-

creasing y?

4



The function e−x
2

is peaked at x = 0, we are

sampling points uniformly over the entire in-

terval [0, y].

So we are wasting our efforts in regions where

the function contributes very little to the inte-

gral.

We need to devise a strategy in which we sam-

ple more points xk where the function value is

large.
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Importance sampling

Suppose we have a function w(x) defined over

the interval [a, b] so that w(x) ≈ f(x).

Also assume we can generate (pseudo)random

numbers xk from the normalized probability

density function

p(x) =
w(x)∫ b

a w(x)dx
, (6)

where p(x) is defined over [a, b].

How to generate such (pseudo)random num-

bers will be discussed later.

To the extent that w ≈ f , there will be more

‘random grid points’ in regions where f(x) is

large.
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Define a function g ≡ f/p. Then f = gp, and

the integral becomes

F =
∫ b
a
g(x)p(x)dx ≈

1

M

M∑
k=1

g(xk) (7)

The continuous integral is replaced by the av-

erage of g over a finite set of points xi which

are chosen from the probability density func-

tion p(x).

What have we achieved using importance sam-

pling?



In our example of erf(y), let us use w(x) = e−x.

y US IS Exact
MC MC

0.01 0.0113 0.0113 0.0113
0.10 0.1125 0.1125 0.1125
1.00 0.8420 0.8427 0.8427
2.00 0.9900 0.9919 0.9953
10.0 1.0297 0.9996 1.0000

100.0 1.1272 1.0019 1.0000

We will discuss the idea of statistical error

later.
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Examples from physics

In statistical mechanics, thermal averages of
observables are calculated as

〈O〉 =

∫
Oe−βEdE∫
e−βEdE

(8)

In quantum mechanics, expectation value of
the Hamiltonian in a state |Ψ〉 is calculated as

〈H〉Ψ =

∫
Ψ∗HΨd~R∫
|Ψ|2d~R

(9)

If Ψ is an n-electron wave function, then the
above integral is 3n-dimensional.

The above two integrals are exactly like Eq. 7
with p(x) = e−βE∫

e−βEdE
in the first one.

Eq. 9 can be rewritten as

〈H〉Ψ =

∫ HΨ
Ψ |Ψ|

2d~R∫
|Ψ|2d~R

(10)

8



This is in the form of Eq. 7 with p(x) = |Ψ|2∫
|Ψ|2d~R

.

To evaluate such integrals:

For Eq. 8 generate E (micro-states of the sys-

tem with energy E) with probability e−βE∫
e−βEdE

and use

〈O〉 =

∫
Oe−βEdE∫
e−βEdE

=
1

M

M∑
k=1

O(Ek). (11)

For Eq. 9 use

〈H〉Ψ =

∫ HΨ
Ψ |Ψ|

2d~R∫
|Ψ|2d~R

=
1

M

M∑
k=1

HΨ(~Rk)

Ψ(~Rk)
. (12)

electron configurations ~R with probability |Ψ|2∫
|Ψ|2d~R



The task now is to be able to generate

(pseudo)-random variables from arbitrary

probability density functions.

9



Basics of probability and statistics

Set A collection or an aggregate of well-defined
objects is called a set.

k-variate population A set whose every el-
ement is characterized by k characteristics is
called a k−variate population, where k is a pos-
itive integer. If k = 1 then the population is
univariate. Statistical population is the refer-
ence set based on which statistical hypotheses
are tested and statistical decisions are made.

We will NOT study testing of statistical hy-
potheses in these lectures.

Example 1 Let s be the set of height measure-
ments of all individuals in the campus. s is an
example of a univariate finite population.

Example 2 Let S be the set of height and
weight measurements of all individuals. Then
S is an example of a bivariate finite population.
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Sample A subset of a statistical population

can be called a sample. A sample, in general,

means only a subset of a given statistical popu-

lation. It may or may not be useful statistically.

Example: Let us take example 1 above. A

subset of that population can be the set s1 of

the height measurements of all people below

12 years of age. However, clearly, the mean of

the heights in this sample cannot be taken as

an estimate of the population mean.

Representative Sample As we just discussed,

any subset of a statistical population is called

a sample. A sample can thus be selected in

many different ways. Often what one aims to

do is to draw inferences about the population

from an analysis of the sample. It may be ne-

cessitated by the fact that the population is so

large that it is impossible to study every mem-

ber in it. Or that the inference one is trying to
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draw is not worth the time, money and effort

one needs to spend in order to study or survey

every member of the population. However, in

such situations, for the inference drawn to be

of any relevance to the population, the sample

has to be ‘representative’ of the population in

some sense. Let us take an example, suppose

8 out of 10 steel balls produced by a machine

in a particular 1 minute interval are found to be

defective. It would wrong to infer that 80% of

all bullets produced by the machine are defec-

tive unless it is known that the functioning of

the machine in that 1-minute interval is typical

of its behavior. How to draw samples that are

representative of the population is a question

of sampling technique, and we will not worry

about that here. We will learn some definitions

for now.



Simple Random Sample Consider a popu-

lation of size N (distinct elements) and let a

sample of size n be taken. If a sample of size

n is obtained in such a way that all possible

samples of size n had an equal chance of be-

ing selected then the sample obtained is called

a simple random sample from the population

under consideration.

This is the idea of simple random sample from

a statistical population. You should be able

to appreciate this intuitively. What will be

more relevant for us in the discussion of Monte

Carlo methods is simple random sample from

a theoretical population. We now proceed to

define that.



Stochastic variables In order to understand

the definition of a stochastic variable, let us

understand the idea of random experiments

first.

Random experiments: A random experiment

is a procedure which results in some nonde-

terministic outcomes in a particular situation.

An outcome is a single realization of a phe-

nomenon under consideration.

The Outcome Set: The set of all possible

outcomes of a random experiment is called an

outcome set.

Question: If two coins are tossed simulate-

neously, what is the outcome set?

Event: Event is a subset of the outcome set,

and elementary event is an event consisting of

only one element.
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Stochastic Variable A stochastic variable (s.v.

also called random variable, variate etc.) is a

variable which is obtained as the outcome of a

set of random experiments and can take a set

of predefined values.

Probability Function Probability that a ran-

dom variable takes a particular value is denoted

by a probability function (or probability density

function) p(x). p(x) ≥ 0.

Usually, a probability function is normalized to

unity: ∑
i

p(xi) = 1 (13)

if x is a discrete variable and∫
p(x)dx = 1 (14)

if x is a continuous variable.
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Measures of central tendency

The Mean (arithmetic mean) is

µ =
∫
xp(x)dx (15)

Moments about the Origin r-th moment about

the origin is

µ′r =
∫
xrp(x)dx. (16)

Thus mean is the 1st moment about the origin.

Central Moments The r-th central moment

is defined as

µr =
∫

(x− µ)rp(x)dx. (17)

The variance is defined as the second central

moment,

µ2 = σ2 =
∫

(x− µ)2p(x)dx. (18)
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Some probability density functions we have men-

tioned, or will find useful...

Uniform distribution

f(x) =
1

β − α
, β > α. (19)

Gaussian or normal distribution

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

. (20)

This is also denoted by N(µ, σ2): mean = µ.

variance= σ2

Standard normal distribution Is the case of

normal distribution when µ = 0 and σ = 1,

f(x) =
1√
2π
e−x

2/2. (21)
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Expected value: If X is a s.v. with probability

function f(X) and if φ(X) is a function of X

which is again a s.v. then the mathematical

expectation of φ(X) is defined as,

E(φ(X)) =
∫ ∞
−∞

φ(X)f(X)dX (22)

Statistically independent: Two s.v.s X and

Y are said to be statistically independent if

their joint probability density function can be

written as a product of probability functions of

X and Y .

If h(x, y) denotes the joint probability function

and if f(x) and g(y) are the individual proba-

bility functions of X and Y ,

then X and Y are independent if,

h(x, y) = f(x)g(y). (23)
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Theoretical Population

We will now consider the idea of a theoretical

population, a population defined by a stochas-

tic variable and its probability density function.

So we can have Uniform population, Normal

population, Binomial population etc.

Simple random sample: tA set of n s.v.’s

X1, X2, . . . Xn which are independently and iden-

tically distributed is said to be a simple random

sample of size n from f(X), if f(X) is the com-

mon probability function.

Further if (X1, X2, . . . Xn) is a simple random

sample of size n from a population designated

by a probability function f(X), the joint prob-

ability function of the sample values is

h(X1, X2, . . . Xn) = f(X1) . . . f(Xn) = Πn
i=1f(Xi).

(24)
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Observed random sample: A set of numbers

x1, x2, . . . xn is said to be an observed random

sample of size n from a theoretical population

if x1, x2, . . . xn are one set of values assumed

by X1, X2, . . . Xn where X1, X2, . . . Xn is a

simple random sample of size n from the same

theoretical population.

Note: Simple random sample→ a set of stochas-

tic variables.

Observed random sample → a set of numbers.
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Statistic: Any function of a simple random

sample X1, X2, . . . , Xn, which is again a stochas-

tic variable is called a statistic.

Example: Sample mean X̄ = X1+X2+···+Xn
n .

Sample variance S2 =
∑n
i=1

(Xi−X̄)2

n .

Theorem: If (X1, X2, . . . Xn) is a random

sample from a population with finite mean value

µ, then the mean of the sample means is also

µ.

Estimator: If T is a statistic, and if E(T ) =

θ (θ is some parameter), then T is called an

unbiased estimator for θ .

X̄ is an unbiased estimator for µ.
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Covariance: The covariance between two vari-
ates X and Y , denoted by Cov(X,Y ), is

Cov(X,Y )

=
∫ ∫

(X − X̄)(Y − Ȳ )f(x)g(y)dxdy

=
∫ ∫

XY f(x)g(y)dxdy − X̄Ȳ .

Other notations are also used: C(x, y), σx,y
etc.

What is Cov(X,Y ) when X and Y are statisti-
cally independent?

Theorem: Whenever the population variance
σ2 is finite, the variance of the sample mean is
σ2

n .

Standard error: The positive square root of
the variance of any statistic is called the stan-
dard error of the statistic.

Standard error of X̄ is σ√
n

.
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Theorem: E(S2) = n−1
n σ2, where S2 is the

sample variance, and σ2 is the population vari-

ance.

Thus E

(∑ (Xi−X̄)2

n−1

)
= σ2.

∑ (Xi−X̄)2

n−1 is an unbiased estimator for σ2,

∑ (Xi−X̄)2

n is not unbiased for σ2.
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The Central Limit Theorem: There are sev-

eral versions of the Central Limit Theorem.

We will mention two here.

1. If a s.v. x has a large number of indepen-

dent degrees of freedom, in other words, if

x is a sum of a large number of s.v.’s, then

the distribution of x goes asymptotically to

a normal distribution.

2. Let X1, X2, . . . Xn be a simple random sam-

ple from a population, continuous or dis-

crete, with finite variance σ2 and a mean

value µ. Then the sample mean X̄ = 1
n

∑n
i=1Xi

is distributed according to N(µ, σ
2

n ) in the

limit n→∞.
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We are back to the problem of generating con-

figurations according to arbitrary probability

density functions:

According to e−βE in case of thermal average,

|Ψ(~R)|2 for calculation of expectation value.

Let us look at the general problem of generat-

ing random numbers.
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What are random numbers? It is a collec-

tion of digits between 0 and 9, each chosen

with probability 1/10.

Not rigorous, but will serve our purpose.

How to generate random numbers? Time

sequence on decay of nuclei in a radioactive

material.

May be random numbers, but not useful prac-

tically, particularly for computations.

For computations we use pseudo-random num-

bers.
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Important differences between random num-

bers and pseudo-random numbers.

Pseudo-random numbers Random numbers
Reproducible Not reproducible
Finite period Not periodic

Many pseudo-random number generators pass

required statistical tests to be useful for prac-

tical applications

RNG suitable in one case may not be suitable

in another case.
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We may need RN from various distributions:

1. Uniform random numbers [−W,W ] for elec-

tron moving in a disordered medium.

2. RN from distribution e−βE.

3. Gaussian RN

Many such distributions can be generated from

a set random numbers uniformly distributed

between [0,1], which in turn can be gener-

ated from a set of uniform random integers

distributed in [0,m].

So first we will try to generate uniform random

integers.
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Using the system clock on a computer Try

the following command (works on SUSE, doesn’t

seem to work on Ubuntu):

> date +%N

We will only get 106 random numbers.

This number is too small. This algo cannot be

used during a computation.

If the system clock is read at regular intervals

the random numbers generated will be highly

correlated.

In many practical RNG routines, the system

clock is called once and that number is used

as a ‘seed’ for the generator.
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von Neumann Algo Suppose we take an in-

teger of several digits and square it.

The initial and final digits are often predictable.

What are not predictable are the intermediate

digits.

By chopping off the leading and trailing digits

we take the middle part as the random number.

We square this number and repeat the process.

Example (123)2 = 15129; (512)2 = 262144.

This can, on occasions, lead into unwanted di-

rections. Suppose one of the numbers in the

sequence turns out to be 0. Then all subse-

quent numbers will be 0.
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Linear Congruence Method

One of the most popular methods for generat-

ing random integers is the linear congruence

method, which incorporates ideas from sys-

tems clock and middle of the square methods.

In this algo, given a number Xn in the sequence

the next one is generated by

Xn+1 = (aXn + c) mod m. (25)

m is a positive integer.

0 < m; 0 < a < m; 0 ≤ c < m.

To start the sequence, we need a value for X0

called the ‘seed’ of the RNG.
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LCM, von Neumann algo and the systems clock

ideas: Instead of taking the square, the num-

ber Xn is multiplied by a in LCM.

To prevent a bad sequence (all zeros) develop-

ing, an increment c is added.

Somewhat in the spirit of the systems clock

approach, the least significant part of the sum

is retained.

The quality of random numbers generated by

LCM critically depends on the values of a, c

and m.

The range of integers generated by this method

is [0,m− 1].
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Some judicious set of values for a, c and m

In order to have a long period:

1. c and m must be relative prime to each

other.

2. If p is a prime factor of m, then p should

be a prime factor of a− 1.

3. If 4 divides m, then 4 divides a− 1.
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Conversion to random FP numbers Ran-

dom integers in the range [0,m− 1] as gener-

ated above can be converted to random num-

bers in the range [0,1] by simply dividing each

number by m− 1. Sometimes, a small variant

of the algorithm given in eq. (25) is used.

Xn+1 =
aXn + c

d
mod m, (26)

where d is another integer.

Park and Miller have shown that the use of

increment c is not essential if the values of a

and m are chosen very carefully (NR).

ran0 in NR is based on such an algo.
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Improving the randomness

Improving Randomness by Shuffling

LCM is a very efficient way of generating ran-

dom numbers, but it has certain known limi-

tations. In order to improve upon it, several

modifications have been suggested. We will

mention a few here.

• Instead of using the numbers from a LCM

on the fly, store L of them in an array of

length L. While using, generate a random

integer j in the range [1, L], and use the

number at the j-th location of the array.

Once the number at the j-th location is

used, generate another random number to

be stored in the j-th location.

ran1 in NR is based on this.
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• In order to increase the period, two dif-

ferent sequences with different periods can

be combined. The idea is to add the two

sequences modulo the modulus of either

one of them. If overflow in the intermedi-

ate stage is a concern, the sequences can

be subtracted, and m− 1 can be added to

any negative numbers. This way, the pe-

riod becomes the lowest common multiple

of the two periods.

ran2 in the NR uses this algo.



• Another way to improve upon LCM is to

use more than one previous members of

the sequence. For example, define

Xn+1 =
(
Xn +Xn−k

)
mod m, (27)

where k ≥ 15.

Another possibility is

Xn+1 =
(
Xn−24 +Xn−55

)
mod m, for n ≥ 55.

(28)

The above two are called additive genera-

tors. One can also use a subtractive gen-

erator,

Xn+1 =
(
Xn−55 −Xn−24

)
mod m. (29)

These RNG’s are completely portable.

ran3 in NR is based on this algo.



Inversion method

Rejection Method

As we saw, random numbers with a given prob-

ability density function p(y) can be generated

from a uniform random variate x only when

the indefinite integeral P (y) =
∫
p(y)dy can be

calculated, and the resulting function P (y) can

be inverted easily.

The last step may be particularly difficult in a

general situation. Therefore, we look for other

methods to generate random numbers with a

given pdf.
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Generate pairs of random numbers (X1, X2) in

a unit square. Equate X1 = x and X2 = y,

which becomes coordinates of points on the

2D plane. Reject those points that lie above

the curve p(x), i.e., reject those points for

which y > p(x). Consider now the distribu-

tion of only the points remaining. The ra-

tio of the number of points in two small (and

equal) intervals at x = a and x = b will be

p(x = a)/p(x = b). In other words, the distri-

bution of x values is p(x)dx.

A simple example will illustrate the point. Con-

sider the semicircular distribution,

p(x) =
√

1− x2 for |x| < 1. (30)

For x > 0, the distribution covers only a quar-

ter of a circle. We can now generate pairs of

random numbers (X1, X2) between [0,1], and

reject those for which X2
1 +X2

2 ≥ 1.
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Metropolis sampling
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One of the most powerful tools within MC

methods is the random walk.

We will only use the idea of a (random) walker

to develop the methods that we need. In fact,

we will use random walk to generate a set of

pseudorandom numbers distributed according

to a desired probability density function.

This method is widely known in the literature

as the Metropolis algorithm or samplng.
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We define a mathematical entity called ‘walker’

whose attributes completely define the state

of a system. Attributes of a walker can be

completely general.

Two relevant examples from physics can be:

1. state of all spins (up or down) in an Ising

model

2. The coordinates of all the particles in an

interacting many-particle system.

The walker moves in an appropriate state space

by a combination of deterministic and stochas-

tic steps in general. This sequence of steps

forms a chain.
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If the system is in a state Sj at time j, then

the sequence Sj from the beginning to the end

of the random walk form a chain.

Markov chain: This sequence of states of the

system is a Markov chain if the transition prob-

abilities between any two states are indepen-

dent of time and history.

That is they depend only on the current state

of the system (and the one to which it at-

tempts to make a transition), and not on when

or how the system got there.

Let us define

Pkj =
(
Sk ← Sj

)
(31)

as the probability of the system changing from

state Sj at time j to the state Sk at time j+1.

If the process is a Markov process then this

probability depends on the state Sj, but on the

time index j, or what other states the walker

visited at earlier times.
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Probability has to be normalized. the total

transition probability from any state at a given

time to all other states at the next point of

time must be 1. Thus we have the normaliza-

tion condition

N∑
k=1

Pkj = 1. (32)

Let the probability that the system is in a state

Sk at a time i be p
(i)
k . The probability-space

density may then be represented by a column

vector

p =

 p
(i)
1...

p
(i)
N

 . (33)

These probabilities also have to be normalized

which gives

N∑
k=1

p
(i)
k = 1. (34)
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At each point in time, the system may move

from state Sj to Sk with a probability Pkj. The

probability distribution will then evolve as

p
(i+1)
k =

∑
j

Pkjp
(i)
j . (35)

This can be written in a matrix form p(i+1) =

Pp(i). Using this rule, the system evolves the

initial distribution as follows, p(1) = Pp(0),

p(2) = Pp(1) etc. After m steps

p(m) = Pmp(0). (36)

Suppose, after a sufficiently large number of

steps M , |p(M+1) − p(M)| → 0.
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This implies the existence of an equilibrium

probability distribution p∗ such that

p∗ = Pp∗. (37)

The equilibrium distribution is a stationary state

or fixed point distribution of the transition ma-

trix P.

Example Consider a Markov process with

P =

 1/4 1/8 2/3
3/4 5/8 0

0 1/4 1/3

 (38)

The steady state fixed point can be obtained

by solving the set of equations

p∗1 = 1/4p∗1 + 1/8p∗2 + 2/3p∗3 (39)

p∗2 = 3/4p∗1 + 5/8p∗2 (40)

p∗3 = 1/4p∗2 + 1/3p∗3 (41)

And the answer is, p∗1 = 4/15, p∗2 = 8/15 and

p∗3 = 3/15.
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If a walker performs a random walk starting

from p
(0)
1 = 1, p(0)

2 = p
(0)
3 = 0.

Iteration p1 p2 p3
0 1.00000 0.00000 0.00000
5 0.27213 0.53021 0.19766

10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.19999
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000
p∗ 0.26667 0.53333 0.20000
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Generalization to continuous variables (config-

uration space of N-particles). Here both space

and time are taken as continuous variables.

The probability of moving a particle from x at

time t to a point y at time t + ∆t is denoted

by G(y,x,∆t) – the continuous analog of the

matrix Pkj.

Let the probability density of a particle at x at

time t be f(x, t). Then we have

f(y, t+ ∆t) =
∫
f(x, t)G(y,x; ∆t)dx, (42)

and

f(y, t+m∆t) =
∫
f(x, t)G(y,x;m∆t)dx. (43)

Again, there exists an equilibrium distribution

that is independent of time

f∗(y) =
∫
f∗(x)G(y,x; t)dx. (44)
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Random walk in state space So far we fo-

cused on the evolution of the probability den-

sity function along a Markov chain. Let us now

focus on the evolution of the distribution in the

state space Sk.

A single walker will be in a single state at a

given time. So what does it mean for a Markov

chain to converge to an equilibrium density?

For a single walker, equilibrium refers to the

probability density with which the states are

sampled in time. Therefore, during the walk,

the states are sampled with probability p∗. Apart

from small fluctuations, all averages will be in-

dependent of time.
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One of the conditions necessary for the random

walk to reach equilibrium is ergodicity.

A process is ergodic if the spatial averages in

the limit of infinite system is equal to temporal

averages just discussed.

For a process to be ergodic it is necessary

(though not sufficient) that all states have a

non-zero probability of being visited.
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To illustrate the point better, assume that a

single walker visits points X0, X1, . . ., Xm dur-

ing the walk. The time average of the function

f(X) during this walk is given by

〈f〉t ≡
1

m

m∑
i=1

f(Xi). (45)

Once equilibrium has been achieved, 〈f〉t is in-

dependent of the starting point and time.

Now rather than following a single walker, con-

sider an ensemble of walkers {X} = X1, X2, . . . ,XN ,

each performing independent random walks.

The ensemble of spatial average is

〈f〉X ≡
1

N

N∑
k=1

f(Xk). (46)
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If the ensemble is drawn from the equilibrium

distribution, then the two averages in eqs. 45

and 46 are equivalent. In such cases we may

average over time and space in any combina-

tion to obtain,

〈f〉p =
1

Nm

m∑
i=1

N∑
k=1

f(X(i)
k ). (47)

Taking either m → ∞ or N → ∞ then makes

the average exact.

In our discussions so far the stationary distri-

bution p∗ is a consequence of P.

If we wish to generate a distribution, we need

to invert the above procedure to find a P for

the desired p∗.

This is accomplished by the Metropolis method.
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Consider a discrete N-state system with equi-

librium probabilities p∗. Assume that Si is the

state of maximum probability, i.e., p∗i = max(p∗).

We now use an acceptance/rejection step to

arrive at the equilibrium probability distribu-

tion.

Acceptance probabilities (elements of Pki) are

chosen such that the probability of moving to

any state Sk from the state Si of maximum

probability is Aki = p∗k/p
∗
i .

This acceptance ratio ensures that the relative

probability of the states Si and Sk are consis-

tent with the probability density function.

Similarly, for the second most probable state

Sj, the acceptance probability of moving to

any other state Sk (k 6= i) is taken to be Akj =

p∗k/p
∗
j .
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From these, AkjAji = Aki, so that the proba-

bility of moving from i to k is independent of

the path.

The above argument can be continued till all

the elements Aji with p∗i ≥ p
∗
j are constructed.

The remaining matrix elements of A corre-

spond to moves to states with higher prob-

ability.

The correct probabilities are achieved by set-

ting all these elements to 1 (including the di-

agonal elements Aii).

Thus if we order the states in ascending prob-

ability (p∗1 ≥ p∗2 · · · ≥ p∗N), then A will have

Aji = p∗j/p
∗
i as its lower triangle and 1 else-

where.
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How does this lead to equilibrium distribution?

Let νi and νj be present populations in two

states Si and Sj in a large ensemble. Let p∗i >
P ∗j .

All νj walkers can move to Si since Aij = 1.

Fractions of νi that can move to Sj is νi
p∗j
p∗i

=

νiAji.

Net change of population in state Sj is

δνj = νi
p∗j
p∗i
− νj (48)

When νi/νj > p∗i /p
∗
j , δνj > 0, and the popula-

tion in Sj increases driving it towards equilib-

rium.

When νi/νj < p∗i /p
∗
j , δνj < 0.

When νi/νj = p∗i /p
∗
j , δνj = 0.
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So the general form of acceptance probability

is

Aji = min

(
p∗j
p∗i
,1

)
(49)

In Ising spin system: the acceptance probabil-

ity is e−β∆E.

Attempt a move → calculate ∆E → calculate

e−β∆E.

Generate a uniform RN r.

If r < e−β∆E accept, else reject and retain the

existing configuration.
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Consider the two situations for three states Si,

Sj and Sk we discussed in the class. When

Ei < Ej < Ek,

Aki =
p∗k
p∗j
×
p∗j
p∗i

= AkjAji.

So the process is Markovian.

What happens to Aki when Ei < Ek < Ej?

Aji =
p∗j
p∗i

, Akj = 1, Aki =
p∗k
p∗j

.

So

Aki 6= AkjAji. (50)

The process is apparently non-Markovian.
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Suppose we have a condition

Akjp
∗
j = Ajkp

∗
k. (51)

This will turn eq 50 into

Aki =
p∗k
p∗j
×
p∗j
p∗i

=
Akj

Ajk
Aji.

But Ajk = 1, so

Aki = AkjAji (52)

Eq 51 is called detail balance. The way we

have constructed the transition matrix A for

Metropolis, detail balance is satisfied (convince

yourself if it is not already clear to you).

How did we get the detail balance condition?
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Rate of change of probability of occupation of

a certain state Si is given by the rate equation

dpi
dt

=
∑
j

(
Aijpj −Ajipi

)
(53)

This has to be equal to zero at equilibrium.

Thus
∑
j

(
Aijpj −Ajipi

)
= 0.

As further constraint, we can demand that

terms for each j be zero

Aijp
∗
j = Ajip

∗
i .

We get the detail balance condition.

Imposition of detail balance also ensures that

we reach desired equilibrium, and not a limit

cycle of the transition matrix A.
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I cheated a bit in the Ising simulation problem.

What I did is a little more complicated, and
involves generalized Metropolis.

In problem 2 of the assignment, each walker
attempts to move to all the three states with
equal probability.

In the Ising problem, we flipped only one spin
at a time. So given the system is in a state Si,
not all other states are accessible.

This idea can be formalized by stating that
the probability of attempting a move from
state Si to Sj is Tji. Then the proposed moves
are accepted with probabilities Bji.

In analogy with simple Metropolis, detailed bal-
ance will be satisfied if we take

Bji

Bij
=
p∗j
p∗i

Tij

Tji
(54)
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And this leads to

Bji = min

(
p∗j
p∗i

Tij

Tji
,1

)
(55)



What are the thse probabilities Tijs in the way

we did MC for the Ising model?

State Si → a definite configuration of spins.

State Sj → a new configuration of spins.

Can be generated by flipping any 1, any 2, any

3 etc. spins.

We considered single-spin-flip dynamics.

Notice that single-spin-flip dynamics is distinct

from Metropolis algorithm. It is the specific

acceptance probabilities which constitutes Metropo-

lis algorithm.

In single-spin-flip if Si and Sj differ by more

than one spin flips Tji = 0.

If there are n states Sj that differ by a single

spin flip from Si, Tji = 1
n for each one of them.
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