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◮ Quantum superposition essential for quantum computation

◮ System-environment interaction produces decoherence or
destruction of quantum superposition.

◮ Quantum robustness strategy can be passive [e.g.,
decoherence free subspaces (DFS)] or active [e.g., quantum
Zeno effect (QZE)].

◮ Long coherence times in GaAs and Si based DQDs using QZE

◮ Propose oxide based DQD with small decoherence
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Double quantum dot

Figure: (a) SEM micrograph of a double quantum dot defined by metallic
gates (light gray areas) from Kouwenhoven et al. RMP 75, 1 (2003).

Sudhakar Yarlagadda Saha Institute of Nuclear PhysicsKolkata Collaborator: Amit DeyPolaron dynamics and decoherence in an interacting two-spin system



◮ Miniaturization demands replacement of silicon technology.

◮ Oxides a promising alternative due to small extent of
wavefunction.

◮ Oxide modeling and fabrication more challenging.

◮ Goal to exploit tunability, rich physics, coupling between
various degrees of freedom, and develop control to produce
new functionalities.

◮ Substantial experimental evidence for strong electron-phonon
interaction (EPI) in manganites (EXAFS).

◮ Significant progress made in understanding bulk doped oxides.

◮ Quantum dots from oxides a new area of research.

◮ Novel phenomena, with no counter part in bulk samples,
emerge from quantum-dot/nano-structure physics.

◮ Need to technologically exploit new physics and develop new
devices to meet future challenges such as miniaturization,
decoherence-free and dissipationless operations, etc.
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Interacting two spin system
Anisotropic Heisenberg interaction:

Hs = J‖S
z
1S

z
2 +

J⊥
2
(S+

1 S−
2 + S+

2 S−
1 ).

Local phonon Hamiltonian:

Henv =
∑

k;i=1,2

ωka
†
k,iak,i .

Spin-phonon local interaction (strong coupling g > 1):

HI =
∑

k;i=1,2

gkωkS
z
i (ak,i + a

†
k,i ).

Initially consider only one k-mode. Lang-Firsov transformation:

HLF = eSHe−S

S = −∑

i gS
z
i (ai − a

†
i ) → Transformation generator.
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HLF
s = J‖S

z
1S

z
2 +

J⊥e−g2

2
(S+

1 S−
2 + S+

2 S−
1 )

⇒ spins coupled to the mean phonon field and with reduced
hopping amplitude due to formation of polaron. Harmonic
oscillators are displaced.

HLF
env =

∑

i=1,2

ωa†i ai .

HLF
I =

1

2
[J+⊥S+

1 S−
2 + J−⊥S+

2 S−
1 ]

⇒ Spins coupled to local phonon fluctuations around mean field.
This contains uncontrolled degrees of freedom.

J±⊥ = J⊥e
±g [(a2−a

†
2)−(a1−a

†
1)] − J⊥e

−g2

〈J⊥e±g [(a2−a
†
2)−(a1−a

†
1)]〉T=0 = J⊥e

−g2
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For fixed Sz
T (= 0) only the spin flipping part in the Hamiltonian Hs

contributes to the excitation gap.
The two Sz

T = 0 eigenstates are :
|εt〉 = 1√

2(| ↑↓〉+ | ↓↑〉)
and
|εs〉 = 1√

2(| ↑↓〉 − | ↓↑〉).

So, the energy gap is much smaller than the phonon energy in the
strong coupling (g2 ≫ 1) and non-adiabatic ( J⊥

ω
≤ 1) limit:

J⊥e−g2 ≪ ω.
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Decoherence analysis using non-Markovian master equation

Using time convolutionless (TCL) projection operator technique
the non-Markovian master equation up to second order in
perturbation is given by

d ρ̃s(t)

dt
= −

∫ t

0
dτTrR [H̃I (t), [H̃I (τ), ρ̃s(t)⊗ R0]].

where ρ̃s(t) ≡ TrR [ρ̃T (t)]
Assume initially ρT (0) = ρs(0)⊗ R0.

Initial Bath state: R0 =
∑

n
e−βωn

Z
|n〉ph ph〈n|.

Interaction picture: H̃I (t) = e iHotHI e
−iHot and

ρ̃T (t) = e iHotρT (t)e
−iHot

where H0 = Hs + Henv
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Preparation of separable intial state ρT (0) = ρs(0)⊗ R0

Start with gate voltage set to J⊥ = 0 and introduce an electron in
one of the quantum dots to obtain the state |10〉 ∝ |εs〉+ |εt〉.
Introduce small tunneling J⊥/ω ≪ 1 (say 10−3) rapidly and let
the system evolve.

For small J⊥/ω, |εs〉 and |εt〉 are approximate eigenstates (of the
Hamiltonian in the LF frame) with probability larger than
1− J2⊥/(g

4ω2) (i.e.,> 0.999999).

The evolved state is a general separable initial state (in the dressed
basis) given by:

|ψ(t)〉 ∝ [e iφ cos(J⊥e
−g2

t/2)|10〉 − i sin(J⊥e
−g2

t/2)|01〉]⊗ |0, 0〉ph

where e iφ is Aharnov-Bohm phase factor due to a magnetic flux.

Change the gate voltage and the magnetic flux rapidly to get the
desired value of tunneling J⊥.
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The master equation simplifies as:

d〈εs |ρ̃s(t)|εt〉
dt

= −K
[

′
∑

m1,m2

Cm1,m2〈εs |ρ̃s(t)|εt〉
sin(ωm1,m2t)

ωm1,m2

+
∑

|m1−m2|=odd

Cm1,m2〈εt |ρ̃s(t)|εs〉
sin(ωm1,m2t)

ωm1,m2

+
′

∑

|m1−m2|=even,0

Cm1,m2〈εs |ρ̃s(t)|εt〉
sin(ωm1,m2t)

ωm1,m2

]

,

∑′
m1,m2

→ sum over all (m1,m2) values excluding m1 = m2 = 0.

ωm1,m2 = ωm1 + ωm2 = ω(m1 +m2), K =
J2⊥
2 e−2g2

and

Cm1,m2 =
g2(m1+m2)

m1!m2!
.
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For large coupling strength (g2 ≫ 1), the long time values of the
matrix elements are estimated as:

|〈εs |ρs(t)|εt〉|
∣

∣

∣

∣

∣

t→∞
= |〈εs |ρs(0)|εt〉| exp

[

− 1

4g2

( J⊥
gω

)2
]

〈εs |ρs(t)|εs〉
∣

∣

∣

∣

∣

t→∞
=

1

2
〈εs |ρs(0)|εs〉

{

1 + exp
[

− 1

8g2

( J⊥
gω

)2
]}

+
1

2
〈εt |ρs(0)|εt〉

{

1− exp
[

− 1

8g2

( J⊥
gω

)2
]}

Here, the initial density matrix ρs(0) is considered to be real.
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The coherence factor:

D(t) =
|〈εs |ρs(t)|εt〉|
|〈εs |ρs(0)|εt〉|

= exp[−2K

′
∑

m1,m2

Cm1,m2

(1− cos(ωm1,m2t))

ω2
m1,m2

]

Inelastic factor (indicating dissipation) or population difference:

P(t) =
〈εs |ρs(t)|εs〉 − 〈εt |ρs(t)|εt〉
〈εs |ρs(0)|εs〉 − 〈εt |ρs(0)|εt〉

= exp[−2K
∑

|m1−m2|=odd

Cm1,m2

(1− cos(ωm1,m2t))

ω2
m1,m2

]
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Plots:

coherence factor:
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Figure: γ = J⊥
gω

. For large values of g, D(∞) match with the D(t) values

between 2nπ and 2(n + 1)π values of ωt.
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Including the effect of small J⊥e−g2
/ω:
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Figure: J⊥e
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Including large number of bath modes (0.9ωc ≤ ωk ≤ ωc):
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Figure: (a) J⊥/ωc = 0.05 and
∑

k g
2
k

N
= 1; (b) J⊥/ωc = 0.05 and

∑

k g
2
k

N
= 4.
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Inelasticity (dissipation):
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Figure: γ = J⊥
gω

. For large values of g, P(∞) match with P(t) at ωt
values between two consecutive multiples of π .

Decoherence and dissipation are less for smaller γ and larger

g values.
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Markovian dynamics

As J⊥e−g2 ≪ ω, we can assume that the time scale over which the
system considerably changes is much larger than the correlation
time for the environmental fluctuations, τs ≫ τc . In the TCL, raise
the upper limit of integration to ∞.

d ρ̃s(t)

dt
= −

∫ ∞

0
dτTrR [H̃I (t), [H̃I (t − τ), ρ̃s(t)⊗ R0]].

⇒ does not keep memory as the environmental dynamics is not
resolved in system time scale.
By following the same analysis as for non-Markovian case, we get

d ρ̃s(t)

dt
= i

∑

n

[ |ph〈0|HI |n〉ph|2
ωn

ρ̃s(t)− ρ̃s(t)
|ph〈0|HI |n〉ph|2

ωn

]

.
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Solution:

〈εs |ρs(t)|εt〉 = 〈εs |ρs(0)|εt〉e−i(εs−εt)t ,

〈εt |ρs(t)|εs〉 = 〈εt |ρs(0)|εs〉e−i(εt−εs)t ,

〈εs |ρs(t)|εs〉 = 〈εs |ρs(0)|εs〉,
〈εt |ρs(t)|εt〉 = 〈εt |ρs(0)|εt〉.

No decoherence is observed.

Up to second order in perturbation, the dominant process for the
effective system is twice the adjacent spin flipping simultaneously.

The energy scale for this is
J2⊥
g2ω

. So, the condition

γ2 = (
J2⊥
g2ω

)/ω ≪ 1 leads to the condition τs ≫ τc for Markovian
dynamics. It is evident from the figures that, with decreasing γ,
decoherence becomes less.
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Quantum control for non-Markovian case

Due to the system-environmental coupling, the environment can
distinguish among different states of the system. Thus different
states acquire random relative phases and the reduced system faces
decoherence.
Strategy for protection:

The system is perturbed much faster than the environment
response time; the environment can not follow the change of
system states anymore. So, the system is effectively decoupled
from the environmental fluctuations.
Driving pulse: Pπ = S+

1 S−
2 + S+

2 S−
1 ⇒ flips both the spins

simultaneously.
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Composite evolution operator:
U1 = Ũ(t + 2δt, t + δt)PπŨ(t + δt, t)Pπ

where

Ũ(t, t
′
) = Ũ(t, 0)Ũ†(t

′
, 0) = e iH0te−iHte iHt

′

e−iH0t
′

= e iH0te−iH(t−t
′
)e−iH0t

′

.

Now,
Pπe

−i(H0+HI )δt = e−i(H0−HI )δtPπ

⇒ Pπ pulse changes the sign of interaction. Thus applying Pπ

rapidly, produces decoupling from the environment.
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U1 = Ũ(t + 2δt, t + δt)PπŨ(t + δt, t)Pπ

= I + O(δt2)

If δt is small enough, evolution is almost unitary.

N equispaced pulses (i.e., δt = t
N
) yields:

ρ̃T (t) =
[

I + O[(δt2)]
]

N
2
ρT (0)

[

I + O[(δt2)]
]

N
2

lim
N→∞

ρs(t) = e−iHs tρs(0)e
iHs t .

Error: O[N(δt2)] ∼ O[(δt)] very small for limN→∞.
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Decoupling up to second order in δt:

e−i(H0+HI )δt ≈ e−iH0δte−iHI δte
1
2
[H0,HI ]δt

2
+ O(δt3)

U2 = U1PπU1Pπ

= Ũ(t + 4δt, t + 3δt)PπŨ(t + 3δt, t + 2δt)Ũ(t + 2δt, t + δt)PπŨ(t + δt, t)

= I + O[δt3]

⇒ Composite operator with unequally spaced pulses at δt and
3δt.

Actually, ignoring terms of order δt4 and higher:

〈εs |ρs(t)|εt〉 = [1− i(J⊥g
2ω2tδt2)]〈εs |ρs(0)|εt〉e−i(εs−εt)t ,

〈εs |ρs(t)|εs〉 = 〈εs |ρs(0)|εs〉.
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Summary and conclusions

◮ Using GaAs DQDs, Petta et al. [PRL 86, 246804 (2010)],
Ritchie et al. [Nano Letters 10, 2789 (2010)] obtain
decoherence times ∼ 10 ns.

◮ In oxide materials, dominant interaction is with optical
phonons. Analyzing optical phonon environment, we get a
small decoherence even for local noise [arXiv:1309.5824].

◮ For Markov processes, we do not have any decoherence.

◮ For Heisenberg interaction, dynamical decoupling is possible
for the spin states.

◮ Qubits, based on oxide DQDs, hold promise in terms of
coherence and miniaturization.
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Thank you
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Including large number of bath modes (0.9ωc ≤ ωk ≤ ωc):
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Figure: (a) J⊥/ωc = 0.05 and
∑
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N
= 1; (b) J⊥/ωc = 0.05 and

∑

k g
2
k
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= 4.

Sudhakar Yarlagadda Saha Institute of Nuclear PhysicsKolkata Collaborator: Amit DeyPolaron dynamics and decoherence in an interacting two-spin system



Including the effect of small J⊥e−g2
/ω:
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/ω = 0.02 and g = 2.

Sudhakar Yarlagadda Saha Institute of Nuclear PhysicsKolkata Collaborator: Amit DeyPolaron dynamics and decoherence in an interacting two-spin system



Expanding the double commutator and using the complete set
∑

n |m〉phph〈m| = I

d ρ̃s(t)

dt
= −1

z

∑

n

∫ t

0
dτ

[

ph〈n|H̃I (t)|m〉ph ph〈m|H̃I (τ)|n〉phρ̃s(t)e−βωn

− ph〈n|H̃I (t)|m〉phρ̃s(t)ph〈m|H̃I (τ)|n〉phe−βωm

− ph〈n|H̃I (τ)|m〉phρ̃s(t)ph〈m|H̃I (t)|n〉phe−βωm

+ ρ̃s(t)ph〈n|H̃I (τ)|m〉ph ph〈m|H̃I (t)|n〉phe−βωn

]

T=0K analysis:
First term:

ph〈0|H̃I (t)|m〉ph ph〈m|H̃I (τ)|0〉phρ̃s(t)
=

∑

ε,ε′,ε′′

[

|ε〉〈ε| ph〈0|HI |m〉ph|ε′〉〈ε′| ph〈m|HI |0〉ph|ε′′〉〈ε′′|
]

× e i [(ε−ε′)t+(ε′−ε′′)τ ]ρ̃s(t)e
−iωm(t−τ)
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For fixed Sz
T (= 0) only the spin flipping part in the Hamiltonian Hs

contributes to the excitation gap. The two Sz
T = 0 eigenstates are

|εt〉 = 1√
2(| ↑↓〉+ | ↓↑〉) and |εs〉 = 1√

2(| ↑↓〉 − | ↓↑〉). So, the
energy gap in the strong coupling (g2 ≫ 1) and non-adiabatic
( J⊥
ω

≤ 1) limit J⊥e−g2 ≪ ω. Using this one can write the first
term as

ph〈0|H̃I (t)|m〉ph ph〈m|H̃I (τ)|0〉phρ̃s(t) = ph〈0|HI |m〉ph ph〈m|HI |0〉ph
×ρ̃s(t)e i(ωn−ωm)(t−τ)

Using the same procedure for all four terms the master equation at
T = 0K

d ρ̃s(t)

dt
= −

∫ t

0
dτ

[

∑

m

[|ph〈0|HI |m〉ph|2 ρ̃s(t)e−iωm(t−τ)

+ρ̃s(t) |ph〈0|HI |m〉ph|2e iωm(t−τ)]

−
∑

n

[ph〈n|HI |0〉phρ̃s(t)ph〈0|HI |n〉phe iωn(t−τ)

+ph〈n|HI |0〉phρ̃s(t)ph〈0|HI |n〉phe−iωn(t−τ)]
]

.
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Phonon states |m〉ph ≡ |m1,m2〉ph

ph〈0, 0|HI |m1,m2〉ph =
J⊥
2
e−g2 gm1+m2

√
m1!m2!

(−1)m1

×(S+
1 S−

2 + (−1)m2−m1S+
2 S−

1 ),

where m1 and m2 are not zero simultaneously.

ph〈0, 0|HI |0, 0〉ph = 0.

Sudhakar Yarlagadda Saha Institute of Nuclear PhysicsKolkata Collaborator: Amit DeyPolaron dynamics and decoherence in an interacting two-spin system



Off-diagonal matrix elements of the reduced density matrix:

〈εs |ρs (t)|εt〉e
i(εs−εt )t =

1

2

[

〈εs |ρs (0)|εt〉
{

exp[−2K
′

∑

m1,m2

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]

+exp[−2K
′

∑

|m1−m2|=even,0

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]
}

+〈εt |ρs (0)|εs〉
{

exp[−2K
′

∑

m1,m2

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]

−exp[−2K
′

∑

|m1−m2|=even,0

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]
}

]

,

〈εt |ρs (t)|εs〉e
i(εt−εs )t =

1

2

[

〈εt |ρs (0)|εs〉
{

exp[−2K
′

∑

m1,m2

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]

+exp[−2K
′

∑

|m1−m2|=even,0

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]
}

+〈εs |ρs (0)|εt〉
{

exp[−2K
′

∑

m1,m2

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]

−exp[−2K
′

∑

|m1−m2|=even,0

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]
}

]

.

These show some amount of decoherence.
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Diagonal matrix elements of the reduced density matrix:

〈εs |ρs (t)|εs〉 =
1

2

[

〈εs |ρs (0)|εs〉
{

1 + exp[−2K
∑

|m1−m2|=odd

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]
}

+ 〈εt |ρs (0)|εt〉
{

1 − exp[−2K
∑

|m1−m2|=odd

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]
}

]

,

〈εt |ρs (t)|εt〉 =
1

2

[

〈εt |ρs (0)|εt〉
{

1 + exp[−2K
∑

|m1−m2|=odd

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]
}

+ 〈εs |ρs (0)|εs〉
{

1 − exp[−2K
∑

|m1−m2|=odd

Cm1,m2

(1 − cos(ωm1,m2
t))

ω2
m1,m2

]
}

]

.

Indicates change of probabilities.

∫ ∞

0
dt

sin(ωm1,m2
t)

ωm1,m2

=

∫ ∞

0
dt

e
iωm1,m2

t
− e

−iωm1,m2
t

2iωm1,m2

=
1

2iωm1,m2

[

∫ ∞

0
dt e

i(ωm1,m2
+iη)t

−

∫ ∞

0
dt e

−i(ωm1,m2
−iη)t

]

=
1

ω2
m1,m2
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