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SOME FUNDAMENTAL QUESTIONS CONCERNING
THE NATURE OF QUANTUM REALITY

1. What is the relationship between the weird microscopic world described by
quantum physics and the everyday macroscopic world of human experience? To
what extent it is possible to test quantum mechanics in the macro-limit? How
the macroscopic emerges from the microscopic, and what concepts are
needed to understand this transition remains one of the most intriguing
issues in modern physics.

2. Are realist models possible that can account for the observable quantum
phenomena by ascribing definite values to all observables at any given instant
for a complete specification of the state of an individual system? By the term
‘complete specification of state’ one means a theory which supplements the
standard wave function description by some suitable additional variables (the
so-called ‘hidden variables’). To what extent the possibility of such a realist
model of quantum phenomena can be restricted that can be
experimentally tested?
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TESTABLE FEATURES OF QUANTUM MECHANICS
WITH FUNDAMENTAL CONCEPTUAL IMPLICATIONS

The key Goal of such studies is to provide feasible tests that demonstrate
quantum behaviour having implications for realist models of quantum
phenomena that ascribe definite values to all observables for a complete
specification of the relevant state.

Bell’s inequality and its variants → Testable algebraic consequence of the
combination of the notions of realism and locality.

Contextuality inequalities → Testable algebraic consequence of the
combination of the notions of realism and noncontextuality (i.e.,
assuming that the individual outcome of measuring an observable does
not depend on which other commuting observable is measured along with
it).
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Bell-type inequalities involve correlations between results of joint measurements
on spatially separated systems, whereas Contextuality inequalities involve
correlations between results of joint measurements of commuting pairs of
observables for a single system.

On the other hand, Leggett-Garg inequality (LGI) is concerned with
measurements of an observable at different instants, thereby providing another
fundamental signature of non-classicality of Quantum Mechanics(QM) through
QM violation of LGI.

Motivations underlying LGI :

(i) To show non-classicality by probing QM violation of the ‘realist’ notion of a
definite value ascribed to any observable at any instant t, independent of
testing the notion of locality or noncontextuality.

(ii) To formulate an effective scheme for probing the Macroscopic limit of QM
or the Quantum-Classical Transition.

In our work, we use LGI in the context of QM treatment of a system with
classical analogue, like a harmonic oscillator, so that by varying the value of
mass one can study the extent up to which the system displays quantum
behaviour and then approaches classicality.

Dipnkar Home

Non-classicality and its Macro-limit for the Schrödinger Coherent State of Harmonic Oscillator using Leggett-Garg Inequality

4



HISTORICAL DEVELOPMENT

Some key breakthroughs

EPR paper (1935)→ Concept of a ‘realist model ’ underlying quantum
phenomena, based on ‘complete specification’ of a state; ‘Non-locality’ of
QM.

Schrödinger’s paper (1935) → Entanglement, Quantum Steerability,
Quantum Measurement Problem, Macro-limit of QM.

Bohm’s explicit construction of a realist model accounting for quantum
phenomena (1952).

Bell’s inequality (BI) showing testability of local realist models (1964).

Expt. tests of BI (1974, 1981 - 83, ....).

Leggett-Garg inequality (LGI) (1985).

Application of BI for security check in Quantum Cryptography (1991).

Application of Entanglement for more efficient information transfer -
Dense Coding (1992).
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HISTORICAL DEVELOPMENT

Use of Entanglement to transfer Quantum State-Quantum Teleportation
(1993). Development of the research area of Quantum Information (.... 2013).

Expt. test of BI achieved for 18 km separation between detectors (2008).

Quantum Teleportation achieved over a distance of 143 km (2012).

Quantum Interference of C60 molecules (size ∼ 1 nm) with mass = 720 a.m.u
(1999).

Quantum Interference of bigger biomolecules of size ∼2 nm and mass
∼ 2× 103 a.m.u (2003).

Quantum Interference of Large Organic Molecules, molecules of size ∼ 60Å
with 430 atoms and masses up to ∼ 7000 a.m.u (2011).

Expt. tests of LGI (2000, 2002,...) for SQUID system involving superposition
of micro-amperes current flowing along clockwise and anticlockwise directions.

Expt. tests of LGI for systems, ranging from solid-state qubit systems to
nuclear spins precessing in an external magnetic field (2006 - 2012).
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I Leggett-Garg inequality (LGI)1 2 is a temporal analogue of
Bell’s inequality (BI) in terms of time-separated correlation
functions corresponding to successive measurement outcomes
for a system whose state evolves in time.

I Notion of realism is invoked in deriving LGI by assuming that
a system, during its time evolution, is at any given time in a
definite one of the available states.

I Noninvasive measurability (NIM) is assumed which means
that, it is possible to determine which of the states the system
is in, without affecting the state itself or the system’s
subsequent dynamics.

1A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
2A. J. Leggett, J. Phys. Condens. Matter 14, R415 (2002).
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I NIM can be satisfied classically for ‘negative result’ type
measurements. QM violation of LGI in suitable examples
would, therefore, signify repudiation of the notion of realism
that includes the assumption of NIM.

I Thus, in furnishing a signature of distinctly quantum
behaviour, LGI can be regarded as complementing BI in
providing insight into the nature of physical reality, while
enabling probing of the applicability of QM for
mesoscopic/macroscopic systems, or, can be used for studying
the Quantum-Classical transition.

I Hence it has been of considerable interest to investigate the
extent to which LGI is violated by QM for various types of
systems.
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I The original motivation that led to LGI was to use it for
probing the possible limits of quantum mechanics in the
macroscopic regime; e.g., experiments involving the rf-SQUID
device.3

I In recent years, LGI has been extensively studied for various
types of microsystems and for probing the Quantum-Classical
transition. 4 5 6 7 8

3C. H. van der Wal et al., Science 290, 773 (2000); J. R. Friedman et al.
Nature 406, 43 (2002).; A. Palacios et al. Nature Phys. 6, 442 (2010).

4J. Kofler and C. Brukner, Phys. Rev. Lett. 101, 090403 (2008); 99,
180403 (2007).

5R. Ruskov et al., Phys. Rev. Lett. 96, 200404 (2006).
6M. E. Gossin et al., Proc. Natl Acad. Sci. 108, 1256 (2011).
7J. Dressel et al., Phys. Rev. Lett. 106, 040402 (2011).
8G. Waldherr et al., Phys. Rev. Lett. 107, 090401 (2011); V. Athalye et

al., Phys. Rev. Lett. 107, 130402 (2011); G. C. Knee et al., Nature
Communications 3, 606 (2012); D. Home et al., Phys. Rev. A 88, 022115
(2013).
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DERIVATION OF THE LEGGETT-GARG INEQUALITY

I We focus on a two-state system whose temporal evolution
consists of oscillations between the states, say, 1 and 2.

I Let Q(t) be an observable quantity such that, whenever
measured, it is found to take a value +1(−1) depending on
whether the system is in the state 1(2).

I Next, consider a collection of runs starting from the identical
initial state such that on the first series of runs Q is measured
at times t1 and t2, on the second at t2 and t3, on the third at
t3 and t4, and on the fourth at t1 and t4 (here
t1 < t2 < t3 < t4).
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I It is possible to adapt in this context, the standard argument
leading to a Bell-type inequality with the times ti playing the
role of apparatus settings.

I One can then use the following consequence of the
assumptions of realism and NIM that were mentioned earlier.
For any set of runs corresponding to the same initial state,
any individual Q(ti ) has the same definite value, irrespective
of the pair Q(ti )Q(tj) in which it occurs; i.e., the value of
Q(ti ) in any pair does not depend on whether any prior
measurement has been made on the system.
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I Consequently, the combination
[Q(t1)Q(t2) + Q(t2)Q(t3) + Q(t3)Q(t4)− Q(t1)Q(t4)] is
always +2 or −2. If all the individual product terms in this
expression are replaced by their averages over the entire
ensemble of such sets of runs, the following form of LGI is
then obtained

C ≡ |C12 + C23 + C34 − C14| ≤ 2 (1)

where the temporal correlation Cij ≡ 〈Q(ti )Q(tj)〉.
I The above is, thus, an inequality imposing realist constraints

on the temporal correlations pertaining to oscillations in any
two-state system.
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THE IDEA OF NEGATIVE RESULT MEASUREMENT
JUSTIFYING NIM AS A CONSEQUENCE OF REALISM

I Let us arrange our measuring apparatus so that if Q(t) is, say,
+1, it is triggered, while if Q(t) = −1 it is not. We then do a
series of runs in which Q is measured at some instant, say, t0.
One then uses the results of those runs on which Q(t0) = −1,
and the rest are discarded.
We then invert the measuring setup so that a value of
Q(t) = −1 triggers it, while for Q(t) = +1, it does not. For
this case, one then uses the results of those runs on which
Q(t0) = +1, and the rest are discarded.
In this way, one can evaluate the temporal correlations which
occur in the argument leading to LGI. Note that it is only the
first measurement of any pair which needs to be noninvasive.
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LEGGETT-GARG INEQUALITY FROM JOINT
PROBABILITY DISTRIBUTION

If the assumptions used in deriving LGI are true then one would be able
to define an overall joint probability distribution ρ(Q1,Q2,Q3,Q4) for an
ensemble of systems prepared in an identical state where any Qi has a
definite value (+1 or -1) assigned to the observable Q at any time
ti , i = 1, 2, 3, 4 (t1 < t2 < t3 < t4). Then the pair-wise joint probability
distributions like P(Q1,Q2),P(Q2,Q3),P(Q3,Q4),P(Q1,Q4) can be
obtained by appropriate marginalizations. For example,

P(Q1,Q2) =
∑

Q3=±1,Q4=±1

ρ(Q1,Q2,Q3,Q4)

= ρ(Q1,Q2,+,+) + ρ(Q1,Q2,−,+) + ρ(Q1,Q2,+,−) + ρ(Q1,Q2,−,−).
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LEGGETT-GARG INEQUALITY FROM JOINT
PROBABILITY DISTRIBUTION

Hence the correlation function like C12 is given by

C12 = 〈Q1Q2〉 = P(Q1+,Q2+)+P(Q1−,Q2−)−P(Q1−,Q2+)−P(Q1+,Q2−)

=
∑

Q3=±1,Q4=±1

[ρ(+,+,Q3,Q4)+ρ(−,−,Q3,Q4)−ρ(−,+,Q3,Q4)−ρ(+,−,Q3,Q4)]

Similarly, one can write the relevent expressions for C23,C34,C14. It can then be
seen that

|C12 + C23 + C34 − C14| ≤ 2 (2)

which can be obtained by using
∑
ρ(Q1,Q2,Q3,Q4) = 1 where the summation

is over all possible outcomes Q1,Q2,Q3,Q4 = ±1.
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A SIMPLE EXAMPLE SHOWING QM VIOLATION OF
LGI

Consider a system oscillating between two states |A〉 and |B〉 which are
degenerate eigenstates of the Hamiltonian H0

H0|A〉 = E0|A〉, H0|B〉 = E0|B〉 and 〈A|H0|A〉 = 〈B|H0|A〉 = 0

Oscillatory transitions between |A〉 and |B〉 are induced by H
′

where

〈A|H
′
|B〉 = 〈B|H

′
|A〉 = ∆E .

If we take at t = 0, |ψ(0)〉 = |A〉, then from (H0 + H
′
|ψ(t)〉 = i~ d

dt
|ψ(t)〉

we obtain

|ψ(t)〉 = e−iE0t/~ (cos(∆Et/~)|A〉 − isin(∆Et/~)|B〉) (3)

whence

|(A|ψ(t)|2 =
1

2
(1 + cosωt) (4)

|(B|ψ(t)|2 =
1

2
(1− cosωt) (5)

where ω = 2∆E
~
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A SIMPLE EXAMPLE SHOWING QM VIOLATION OF
LGI

If we measure an observable Q = |A〉〈A| − |B〉〈B| at two different
distants 0 and t, then the correlation function
C12 = 〈Q(t = 0)Q(t = t)〉 will be given by

C12 = P(++) + P(−−)− P(−+)− P(+−) = cosωt (6)

Choosing equal time intervals t2 − t1 = t3 − t2 = t4 − t3 = ∆t ,

C12 + C23 + C34 − C14 = 3cos(ω∆t)− cos(3ω∆t)

If ω∆t = π/4, the above quantity maximally violates LGI.
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EXAMPLE USING SPIN SYSTEM

Consider an ensemble of spin- 1
2 particles where an external magnetic field

is applied along x-direction. The Hamiltonian of the system is,
H = 1

2ωσx , where ω is the angular precession frequency (taking ~ = 1).
Let the initial state be a mixture of two eigenstates of σx with equal
weightage. Then the relevant density operator is I2 . Now, if we measure
the dichotomic observable σz (spin along z = direction) at different
instants with the time intervals ∆t, then the correlation function will be
(taking the initial time t = 0)

C12 = 〈Q1Q2〉 = P(Q1+,Q2+)+P(Q1−,Q2−)−P(Q1−,Q2+)−P(Q1+,Q2−)

=
1

2
cos2(

ω∆t

2
)+

1

2
cos2(

ω∆t

2
)− 1

2
sin2(

ω∆t

2
)− 1

2
sin2(

ω∆t

2
) = cos(ω∆t)

Choosing equal time interval t2− t1 = t3− t2 = t4− t3 = ∆t, one obtains

C12 + C23 + C34 − C14 = 3cos(ω∆t)− cos(3ω∆t).

Taking ω∆t = π
4 , the above expression has the value 2

√
2, thereby

maximally violating LGI.
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SCHEMATIC DESCRIPTION OF OUR WORK

Linear Harmonic Oscillator
I Initial wavepacket is

ψ(x , 0) =

√
1√

2πσ0

exp

(
− x2

4σ2
0

+
ip0x

}

)
(7)

I Here one considers measuring localization of the particle. If
the particle is found in the region between x → −∞ and
x = 0, then the measurement outcome is denoted by +1. If
the particle is found in the region between x = 0 and x →∞,
then the outcome is denoted by −1.

I The above mentioned condition is satisfied by defining the
following measurement operator

Ô =

∫ 0

−∞
|x〉〈x |dx −

∫ ∞
0
|x〉〈x |dx (8)
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PROPERTIES OF THE OBSERVABLE Ô

I The observable Ô has two eigenstates having eigenvalues +1
and −1 respectively. For the eigenvalue +1 , we have the
corresponding eigenstate defined by

Ô

∫ 0

−∞
〈x |ψ〉|x〉dx = +1

∫ 0

−∞
〈x |ψ〉|x〉dx (5)

I For the eigenvalue −1 we have the corresponding eigenstate
defined by

Ô

∫ ∞
0
〈x |ψ〉|x〉dx = −1

∫ ∞
0
〈x |ψ〉|x〉dx (6)
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OUR SETUP
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TIME EVOLUTION

I Initial wave packet is evolved by the following propagator

K (x ′, t ′; x , t) =

√
mω

2πi} sinω(t − t ′)
(9)

exp

(
imω

2} sinω(t − t ′)

(
(x ′2 + x2) cosω(t − t ′)− 2xx ′

))
I Wave packet at the instant t is given by

ψ(x , t) =

√
1√

2πσt
exp

(
−α(t) + βx + γ(t)x2

4}σ0σt

)
(10)
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TIME EVOLUTION

I α(t), β, γ(t) are given by

α(t) = 2iσ2
0〈x(t)〉 (11)

β = 2ip0σ
2
0

γ(t) = } cosωt + 2imωσ2
0 sinωt

〈x(t)〉 =
p0

mω
sinωt

σt =
i} sinωt + 2mωσ2

0 cosωt

2mωσ0.

I Note that p0/mω = ACl is the amplitude of the corresponding
classical oscillation.
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MEASUREMENT RESULTS AT TIME t

I Probability at time t of finding the particle in the region
between x → −∞ and x = 0 is given by

P+(t) =

∫ 0

−∞
|ψ(x , t)|2dx =

1

2

(
1− Erf (

〈x(t)〉√
2|σt |

)

)
(12)

I Probability at time t of finding the particle in the region
between x = 0 and x →∞ is given by

P−(t) =

∫ ∞
0
|ψ(x , t)|2dx =

1

2

(
1 + Erf (

〈x(t)〉√
2|σt |

)

)
(13)
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ERROR FUNCTION

I Error function is defined as

Erf (t) =
2√
π

∫ t

0
exp (−z2)dz (14)

I Few properties of error function are

Erf (∞) = 1 (15)

Erf (−t) = −Erf (t) (16)
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POST-MEASUREMENT STATE AT TIME t

I When the particle is found at the instant t in the region
between x → −∞ and x = 0, the post-measurement state is
given by

|ψPM
+ (t)〉 =

∫ 0

−∞
ψ(x ′, t)|x ′〉dx ′ (17)

I When the particle is found at the instant t in the region
between x = 0 and x →∞, the post-measurement state is
given by

|ψPM
− (t)〉 =

∫ ∞
0

ψ(x ′, t)|x ′〉dx ′ (18)
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FURTHER EVOLUTION OF THE STATE AFTER 1st
MEASUREMENT

I If +1 result is obtained at, say, t = t1, then the
post-measurement state under the harmonic oscillator
potential evolves into the following state at the instant t = t2

|ψPM
+ (t2)〉 =

∫ ∞
−∞

K (x ′, t1; x , t2)ψ(x ′, t1)PM+ |x ′〉dx ′ (19)

I If −1 result is obtained at, say, t = t1, then the
post-measurement state under the harmonic oscillator
potential evolves into the following state at the instant t = t2

|ψPM
− (t2)〉 =

∫ ∞
−∞

K (x ′, t1; x , t2)ψ(x ′, t1)PM− |x ′〉dx ′ (20)
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JOINT PROBABILITIES AFTER THE 2nd
MEASUREMENT

I Conditional Probability of finding the particle in the region between
x → −∞ and x = 0 at the instant t2 when ± result for the
measurement of the localization operator 0̂ has been obtained at
the instant t1 is given by

P±/+(t1, t2) =

∫ 0

−∞
|ψ(x , t2)PM± |2dx (21)

I Similarly, the Conditional Probability of finding the particle in the
region between x = 0 and x →∞ at the instant t2 when ± result
for the measurement of the localization operator 0̂ has been
obtained at the instant t1 is given by

P±/−(t1, t2) =

∫ ∞
0

|ψ(x , t2)PM± |2dx (22)
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TEMPORAL CORRELATION FUNCTIONS

I The temporal correlation function, say, C12 occurring in the
Leggett-Garg inequality is given by

C12 = P++(t1, t2)− P+−(t1, t2) + P−−(t1, t2)− P−+(t1, t2)
(23)

I where P++(t1, t2) is the joint probability of finding the
measurement outcomes +1, +1 at the respective times t1 and
t2; similarly, P+−(t1, t2),P−−(t1, t2), and P−+(t1, t2) denote
the corresponding joint probabilities. Thus, by evaluating
these joint probabilities, one can calculate the quantity C12.
In a similar way, the other temporal correlation functions
C23,C34,C14 occurring in LGI can also be calculated, thereby
checking whether
|C12 + C23 + C34 − C14| ≤ 2
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SCHRÖDINGER COHERENT STATE

I Initial wave packet is given by

ψ(x , 0) =

√
1√

2πσ0

exp

(
− x2

4σ2
0

+
ip0x

}

)
(24)

I At time t it evolves into (Here σ0 =
√

}
2mω )

ψ(x , t) =

√
1√

2πσt
exp

(
−
√
mω

α(t) + βx + γ(t)x2

4}3/2σt

)
(25)

I Here α(t), β, γ(t), σt are defined as earlier.
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SCHRÖDINGER COHERENT STATE

I Probability density of this state is given by

|ψ(x , t)|2 =

√
mω

}π
exp

(
−mω

(x − p0
mω sinωt)2

}

)
(26)

I Thus, the probability density of this wave packet oscillates
without spreading or changing shape with its peak following
classical motion and ∆x∆p = }/2. Hence coherent state is
regarded as the “best possible” quasi-classical quantum
description of the motion of a classical harmonic oscillator.
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SALIENT FEATURES OF CALCULATIONAL RESULTS

In our setup, the key parameters are p0, ω where p0 is the initial peak
momentum (expectation value of momentum corresponding to the initial
wave packet) and ω is the angular frequency of the corresponding
classical oscillation. Suitably choosing p0, ω and by appropriate tuning of
t,∆t, the QM violation of LGI for a given mass (m) may be shown.

In the calculational results we present, p0 and ω are throughout chosen
such that the corresponding classical amplitude of oscillation
(ACl = p0/mω) ranges from that of the order of centimetres to
thousands of nanometer, and the time period (T) of oscillation remains
of the order of seconds.
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SALIENT FEATURES OF CALCULATIONAL RESULTS

The results are given for the following cases:

(a) The QM violation of LGI with changing mass is studied by keeping
p0, ω fixed.

(b) The QM violation of LGI is studied by changing the corresponding
classical amplitude of oscillation for a given mass. This is done by
changing ω, keeping p0 fixed (ACl then varies from centimetres to a
metre).

(c) For different masses up to, say, 1015 amu (this range can be
extended), by appropriately choosing p0, ω, t1,∆t for a given mass, the
QM violation of LGI can be shown by keeping the classical amplitude of
oscillation ranging from centimetres to thousands and hundreds of
nanometre, and the time period of oscillation within of the order of
seconds, up to a minute.

The action quantity relevant to our setup is given by p0ACl(= p2
0/mω)

and the QM violation of LGI is exhibited under the conditions when
(p2

0/mω)〉〉}; or, (S/})〉〉1 where S = p2
0/mω.
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QUANTUM VIOLATION OF LGI WITH CHANGING
MASS

I Here the key parameters p0, ω are kept fixed and t1,∆t are
appropriately chosen to maximize quantum violation of LGI.

MASS(amu) S/} ACl(m) C

10 1.66× 105 10−2 2.72

100 1.66× 104 10−3 2.701

500 3.32× 103 10−3 2.70

1000 1.66× 103 10−4 2.69

10000 1.66× 102 10−5 2.36

20000 83 10−5 2.09

30000 55 10−5 1.85

I ω = 0.4Hz ,p0 = 3.32× 10−28kgm/s,T = 15s,ACl = p0/mω,
t1 = 7.5s,∆t = 12s.

Dipnkar Home

Non-classicality and its Macro-limit for the Schrödinger Coherent State of Harmonic Oscillator using Leggett-Garg Inequality

34



QUANTUM VIOLATION OF LGI WITH CHANGING
MASS

I Here the key parameters p0, ω are kept fixed and t1,∆t are
appropriately chosen to maximize quantum violation of LGI.

MASS(amu) S/} ACl(m) C

10 3.32× 105 10−1 2.78

100 3.32× 104 10−2 2.73

500 6.64× 103 10−3 2.71

1000 3.32× 103 10−3 2.7

10000 3.32× 102 10−4 2.54

20000 1.66× 102 10−5 2.35

30000 1.1× 102 10−5 2.2

50000 66 10−5 1.97
I ω = 0.2Hz ,p0 = 3.32× 10−28kgm/s,T = 31s,ACl = p0/mω,

t1 = 15s,∆t = 24s.
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QUANTUM VIOLATION OF LGI FOR CHANGING
CLASSICAL AMPLITUDE

I For a given mass(here 100amu), keeping ω fixed, classical
amplitude is changing with p0.

p0(Kgm/s) ACl(m) C

3.32× 10−28 10−2 2.81

1.66× 10−27 0.05 2.69

3.32× 10−27 0.01 2.65

1.66× 10−26 0.5 2.51

3.32× 10−26 1 2.30

I ω = 0.2Hz , t1 = 15s,∆t = 24s,T = 31s.

I Quantum violation of LGI decreases with increasing classical
amplitude.
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QUANTUM VIOLATION OF LGI FOR LARGER MASSES

I Tuning p0 and ω, QM violation of LGI is computed for larger masses
MASS (amu) p0(Kgm/s) ω(Hz) ACl(m) T (s) C

3000 3.3× 10−27 .2 3× 10−3 31 2.7

5000 3.3× 10−27 .2 2× 10−3 31 2.68

10000 3.3× 10−27 .1 2× 10−3 63 2.7

50000 3.3× 10−26 .1 4× 10−3 63 2.77

105 3.3× 10−26 .1 2× 10−3 63 2.74

106 3.3× 10−26 .1 2× 10−4 63 2.66

107 3.3× 10−25 .1 2× 10−4 63 2.48

108 3.3× 10−25 .1 2× 10−5 63 2.73

109 3.3× 10−25 .1 2× 10−6 63 2.7

1010 3.3× 10−24 .1 2× 10−6 63 2.75

1012 3.3× 10−23 .1 2× 10−7 63 2.78

1015 3.3× 10−21 .1 2× 10−8 63 2.67

I For T = 31s, t1 = 15s, ∆t = 24s, and when T = 63s, t1 = 30s,
∆t = 48s.
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FURTHER DIRECTIONS OF STUDY

(a) To study the effect of decoherence due to coupling with
dissipative environment and probe the QM violation of LGI for the
Schrödinger Coherent State for a wider range of variation of the
relevant parameters.

(b) To compare in detail the QM violation of LGI for different cases
by varying the choice of the initial wave packet (say, comparing the
cases of non-spreading and spreading wave packets, or minimum
uncertainty vis-a-vis non-minimum uncertainty wave packets).

(c) To explore in the context of such an example the feasibility of
relevant experimental studies.
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CONCLUDING REMARKS

In our treatment, we’ve dichotomised the outcomes of relevant measurements
for the time evolution of a system involving continuous variables.

This enables us to show QM violation of LGI for a quasi-classical quantum
state of linear harmonic oscillator, viz. for the Schrödinger Coherent State,
even for masses quite large compared to the typical microscopic masses.

Such QM violation of LGI, if experimentally detected, would thus enable to
repudiate the notion of realism, even for large masses undergoing linear
harmonic oscillation; also, would enable empirical study of precisely how the
quantum-classical transition occurs for such a system.

Einstein had once remarked, “I like to think that the moon is there even if I
don’t look at it.” LGI is a powerful tool for providing scripts for quantitative
tests of such an assertion for different types of systems corresponding to
various degrees of macroscopicness. Besides, like what happened in the case of
BI, LGI might offer similar surprises of its own as regards possible applications
in quantum communication.
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ENERGY ESTIMATION

I E = 1
2mω

2A2
Cl =

p2
0

2m

MASS(amu) ω(Hz) p0(kgm/s) T(s) ACl(m) E(eV)

100 0.2 3.3× 10−28 31 10−2 2× 10−12

10000 0.2 3.3× 10−28 31 10−4 2× 10−14

5× 104 0.2 3.3× 10−28 31 10−5 4× 10−15

106 0.1 3.3× 10−26 63 10−4 2× 10−12

107 0.1 3.3× 10−25 63 10−4 2× 10−11

109 0.1 3.3× 10−25 63 10−6 2× 10−13

1010 0.1 3.3× 10−24 63 10−6 2× 10−12
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RELATION OF ERROR FUNCTION WITH GAMMA
FUNCTION

I Error function can be expressed as

Erf (z) =
1√
π
γ(1/2, z2),Erfc(z) =

1√
π

Γ(1/2, z2) (27)

γ(a, x) =

∫ x

0
exp−t ta−1dt, Γ(a, x) =

∫ ∞
x

exp−t ta−1dt (28)

I Normalization of these functions are

Γ(a, x) + γ(a, x) = γ(a),Erf (z) + Erfc(z) = 1 (29)
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PICTORIAL REPRESENTATION OF ERROR FUNCTION

I Error function with real argument.
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I Error function is plotted along vertical axis while argument is
along horizontal axis..
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DOUBLE WELL POTENTIAL

I In double well potential there is two distinct possibilities
whether the particle or flux will be in 1st or 2nd well.
Superposition of these two possibilities arise as well.

x

V(x)
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THANK YOU
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