Einstein's Recoiling-Slit Experiment: Uncertainty and Complementarity

Radhika Vathsan
BITS Pilani K K Birla Goa Campus

QIPA 2013, 4th Dec

Collaborator: Tabish Qureshi
Center for Theoretical Physics Jamia Millia Islamia, New Delhi

Outline

(1) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ...and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

Outline

(9) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ...and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

The Two-Slit Experiment with Quantum particles

Setup

The Two-Slit Experiment with Quantum particles

Slit 1 open

The Two-Slit Experiment with Quantum particles

Slit 2 open

The Two-Slit Experiment with Quantum particles

Both slits open

Two-slit experiment with electrons

Tonomura, Endo, Matsuda, Kawasaki, Ezawa, Am. J. Phys. 57(2) (1989).

Two-slit experiment with electrons

Tonomura, Endo, Matsuda, Kawasaki, Ezawa, Am. J. Phys. 57(2) (1989).

Two-slit experiment with electrons

Tonomura, Endo, Matsuda, Kawasaki, Ezawa, Am. J. Phys. 57(2) (1989).

Two-slit experiment with electrons

Tonomura, Endo, Matsuda, Kawasaki, Ezawa, Am. J. Phys. 57(2) (1989).

Outline

(9) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ...and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

Which slit did the electron pass through?

Getting the "Welcher-Weg" (which-way) information

Which slit did the electron pass through?

Getting the "Welcher-Weg" (which-way) information

No Interference!

Bohr's Complementarity Principle

Niels Bohr in 1928

In describing the results of quantum mechanical experiments, certain physical concepts are complementary. If two concepts are complementary, an experiment that clearly illustrates one concept will obscure the other complementary one... .
("The Quantum Postulate and the Recent Development of Atomic Theory," Supplement to Nature, April 14, 1928, p.580)

Bohr's Complementarity Principle

Niels Bohr in 1928

In describing the results of quantum mechanical experiments, certain physical concepts are complementary. If two concepts are complementary, an experiment that clearly illustrates one concept will obscure the other complementary one... .
("The Quantum Postulate and the Recent Development of Atomic Theory," Supplement to Nature, April 14, 1928, p.580)

- In the two-slit experiment: the "which-way" information vs existence of interference pattern.

Bohr's Complementarity Principle

Niels Bohr in 1928

In describing the results of quantum mechanical experiments, certain physical concepts are complementary. If two concepts are complementary, an experiment that clearly illustrates one concept will obscure the other complementary one... .
("The Quantum Postulate and the Recent Development of Atomic Theory," Supplement to Nature, April 14, 1928, p.580)

- In the two-slit experiment: the "which-way" information vs existence of interference pattern.

Bohr's Complementarity Principle

Niels Bohr in 1928
In describing the results of
quantum mechanical experiments,
certain physical concepts are
complementary. If two concepts
are complementary, an experiment
that clearly illustrates one concept
will obscure the other
complementary one... .
("The Quantum Postulate and the Recent Development of
Atomic Theory," Supplement to Nature, April 14, 1928, p.580)

- In the two-slit experiment: the "which-way" information vs existence of interference pattern.

They can NEVER be observed at the same time, in the same experiment.

5th Solvay Conference (1927)

A Piccard, E Henriot, P Ehrenfest, E Herzen, T de Donder, E Schrodinger, J-E Verschaffelt,W Pauli, W Heisenberg, R H Fowler, L Brillouin,
P Debye, M Knudsen, W L Bragg, H A Kramers, P Dirac, A Compton, L de Broglie, M Born, N Bohr,
I Langmuir, M Planck, M Sklodowska Curie, H Lorentz,A Einstein, P Langevin, C Guye, C T R Wilson, O W Richardson

5th Solvay Conference (1927)

A Piccard, E Henriot, P Ehrenfest, E Herzen, T de Donder, E Schrodinger, J-E Verschaffelt, W Pauli, W Heisenberg, R H Fowler, L Brillouin,
P Debye, M Knudsen, W L Bragg, H A Kramers, P Dirac, A Compton, L de Broglie, M Born, N Bohr,
I Langmuir, M Planck, M Sklodowska Curie, H Lorentz, A Einstein, P Langevin, C Guye, C T R Wilson, O W Richardson

Outline

(1) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ...and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

Einstein's Recoiling-Slit Gedanken Experiment

... Einstein thought he had found a counterexample to the uncertainty principle. "It was quite a shock for Bohr he did not see the solution at once. During the whole evening he was extremely unhappy, going from one to the other and trying to persuade them that it couldn't be true, that it would be the end of physics if Einstein were right; but he couldn't produce any refutation. I shall never forget the vision of the two antagonists leaving the club [of the Fondation Universitaire]: Einstein a tall majestic figure, walking quietly, with a somewhat ironical smile, and Bohr trotting near him, very excited

Einstein's Recoiling-Slit Gedanken Experiment

... Einstein thought he had found a counterexample to the uncertainty principle. "It was quite a shock for Bohr he did not see the solution at once. During the whole evening he was extremely unhappy, going from one to the other and trying to persuade them that it couldn't be true, that it would be the end of physics if Einstein were right; but he couldn't produce any refutation. I shall never forget the vision of the two antagonists leaving the club [of the Fondation Universitaire]: Einstein a tall majestic figure, walking quietly, with a somewhat ironical smile, and Bohr trotting near him, very excited

ROSENFELD (1968)

Fundamental Problems in Elementary Particle Physics
Proceedings of the Fourteenth Solvay Conference, Interscience, New York, p. 232.

Einstein's Recoiling-Slit Gedanken Experiment

... Einstein thought he had found a counterexample to the uncertainty principle. "It was quite a shock for Bohr he did not see the solution at once. During the whole evening he was extremely unhappy, going from one to the other and trying to persuade them that it couldn't be true, that it would be the end of physics if Einstein were right; but he couldn't produce any refutation. I shall never forget the vision of the two antagonists leaving the club [of the Fondation Universitaire]: Einstein a tall majestic figure, walking quietly, with a somewhat ironical smile, and Bohr trotting near him, very excited The next morning came Bohr's triumph."

ROSENFELD (1968)
Fundamental Problems in Elementary Particle Physics
Proceedings of the Fourteenth Solvay Conference, Interscience, New York, p. 232.

Einstein's Recoiling-Slit Gedanken Experiment

Replace the static source slit

Figures after Bohs

Einstein's Recoiling-Slit Gedanken Experiment

Replace the static source slit

by a movable slit

Einstein's Recoiling-Slit Gedanken Experiment

Replace the static source slit

by a movable slit to obtain which-way information without disturbing the particle

Einstein's Recoiling-Slit Gedanken Experiment

Einstein's Recoiling-Slit Gedanken Experiment

- Particle going through upper/lower slit has momentum $\pm p_{0}$

Einstein's Recoiling-Slit Gedanken Experiment

- Particle going through upper/lower slit has momentum $\pm p_{0}$
- Momentum conservation \Longrightarrow recoil $\mp p_{0}$ of slit

Einstein's Recoiling-Slit Gedanken Experiment

- Particle going through upper/lower slit has momentum $\pm p_{0}$
- Momentum conservation \Longrightarrow recoil $\mp p_{0}$ of slit
- Momentum of slit \rightarrow which-way information

Outline

(1) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ...and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

Bohr's reply

- Min uncertainty in position of source slit: $\Delta x=\frac{\hbar}{2 \Delta p_{x}}=\frac{\lambda L}{4 \pi d}$.

Bohr's reply

- Min uncertainty in position of source slit: $\Delta x=\frac{\hbar}{2 \Delta p_{x}}=\frac{\lambda L}{4 \pi d}$.
- This is the uncertainty in position of a fringe.

Bohr's reply

- Min uncertainty in position of source slit: $\Delta x=\frac{\hbar}{2 \Delta p_{x}}=\frac{\lambda L}{4 \pi d}$.
- This is the uncertainty in position of a fringe.
- Fringe separation $=\frac{\lambda L}{d}$.

Bohr's reply

- Min uncertainty in position of source slit: $\Delta x=\frac{\hbar}{2 \Delta p_{x}}=\frac{\lambda L}{4 \pi d}$.
- This is the uncertainty in position of a fringe.
- Fringe separation $=\frac{\lambda L}{d}$.
- Interference pattern is lost!

Implication of Bohr's resolution

- Complementarity enforced by Uncertainty Principle?

Implication of Bohr's resolution

- Complementarity enforced by Uncertainty Principle?
- Getting which-way information will necessarily disturb the state of the particle.

Implication of Bohr's resolution

- Complementarity enforced by Uncertainty Principle?
- Getting which-way information will necessarily disturb the state of the particle.
- Disturbance will be enough to wash out interference.

Implication of Bohr's resolution

- Complementarity enforced by Uncertainty Principle?
- Getting which-way information will necessarily disturb the state of the particle.
- Disturbance will be enough to wash out interference.
- This viewed as a restatement of Uncertainty Principle

Realization of Recoiling-Slit Experiment

PHYSICAL REVIEW A 75, 062105 (2007)

Trapped-iors realization of Einstein's recoiling-slit experiment

Robert S. Utter and James M. Feagin*
Department of Physics, California State University-Fullerton, Fullerton, California 92834, USA
(Received 10 July 2006; revised manuscript received 9 October 2006; published 13 June 2007)

We analyze photon scattering by a harmonically trapped ion using two-port interferometry of the scattered photon and coherent-state measurement of the ion's external recoil motion. We examine how the coherent-state measurement could be used to mimick both momentum and position ion measurements and thus a modern realization of Wootters and Zurek's pioneering analysis of Einstein's historic recoiling-slit gedanken experi-

Realization of Recoiling-Slit Experiment

Letters to Nature > Abstract

Letters to Nature

subscribe to nature

Nature 411, 166-170 (10 May 2001) | doi:10.1038/35075517; Received 22 December 2000; Accepted 7 March 2001

A complementarity experiment with an interferometer at the quantum-classical boundary
P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J. M. Raimond \& S. Haroche

1. Laboratoire Kastler Brossel, Département de Physique, Ecole Normale Supérieure, 24 rue Lhomond, F-75231, Paris Cedex 05, France

Is uncertainty a requirement for Complementarity?

Now it turns out that the concept of Uncertainty is not necessary for explaining complementarity!

Is uncertainty a requirement for Complementarity?

Now it turns out that the concept of Uncertainty is not necessary for explaining complementarity!

Obtaining information about a quantum system is through Measurement, which yields classical result.

Outline

(1) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ...and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

Quantum measurement

According to von Neumann

A quantum measurement consists of two processes:

Quantum measurement

According to von Neumann

A quantum measurement consists of two processes:
(1) Process 1: Unitary operation establishes correlation between system \& detector.

Quantum measurement

According to von Neumann

A quantum measurement consists of two processes:
(Process 1: Unitary operation establishes correlation between system \& detector. Initial states: System: $\sum_{i=1}^{n} c_{i}\left|\psi_{i}\right\rangle ; \quad$ Detector: $\left|d_{0}\right\rangle$

Quantum measurement

According to von Neumann

A quantum measurement consists of two processes:
(Process 1: Unitary operation establishes correlation between system \& detector. Initial states: System: $\sum_{i=1}^{n} c_{i}\left|\psi_{i}\right\rangle ; \quad$ Detector: $\left|d_{0}\right\rangle$

$$
\left|d_{0}\right\rangle \sum_{i=1}^{n} c_{i}\left|\psi_{i}\right\rangle \xrightarrow[\text { Process } 1]{\text { Unitary evolution }} \sum_{i=1}^{n} c_{i}\left|d_{i}\right\rangle\left|\psi_{i}\right\rangle
$$

Quantum measurement

According to von Neumann

A quantum measurement consists of two processes:
(0) Process 1: Unitary operation establishes correlation between system \& detector. Initial states: System: $\sum_{i=1}^{n} c_{i}\left|\psi_{i}\right\rangle ; \quad$ Detector: $\left|d_{0}\right\rangle$

$$
\left|d_{0}\right\rangle \sum_{i=1}^{n} c_{i}\left|\psi_{i}\right\rangle \xrightarrow[\text { Process } 1]{\text { Unitary evolution }} \sum_{i=1}^{n} c_{i}\left|d_{i}\right\rangle\left|\psi_{i}\right\rangle
$$

(2) Process 2: Non-unitary selection of a single state $\left|\psi_{k}\right\rangle$ with probability $\left|c_{k}\right|^{2}$:

Quantum measurement

According to von Neumann

A quantum measurement consists of two processes:
(0) Process 1: Unitary operation establishes correlation between system \& detector.
Initial states: System: $\sum_{i=1}^{n} c_{i}\left|\psi_{i}\right\rangle ; \quad$ Detector: $\left|d_{0}\right\rangle$

$$
\left|d_{0}\right\rangle \sum_{i=1}^{n} c_{i}\left|\psi_{i}\right\rangle \xrightarrow[\text { Process } 1]{\text { Unitary evolution }} \sum_{i=1}^{n} c_{i}\left|d_{i}\right\rangle\left|\psi_{i}\right\rangle
$$

(2) Process 2: Non-unitary selection of a single state $\left|\psi_{k}\right\rangle$ with probability $\left|c_{k}\right|^{2}$:

$$
\sum_{i=1}^{n} c_{i}\left|d_{i}\right\rangle\left|\psi_{i}\right\rangle \xrightarrow[\text { Process } 2]{ }\left|d_{k}\right\rangle\left|\psi_{k}\right\rangle
$$

Which-way Detection in Einstein's experiment

 Using von Neumann's process 1Two orthogonal states of the particle depending on the path: slit 1: $\left|\psi_{1}\right\rangle \quad$ slit 2: $\left|\psi_{2}\right\rangle$
Two momentum states of the recoiling slit: $\left|p_{1}\right\rangle$ and $\left|p_{2}\right\rangle$.

Which-way Detection in Einstein's experiment

 Using von Neumann's process 1Two orthogonal states of the particle depending on the path: slit 1: $\left|\psi_{1}\right\rangle \quad$ slit 2: $\left|\psi_{2}\right\rangle$
Two momentum states of the recoiling slit: $\left|p_{1}\right\rangle$ and $\left|p_{2}\right\rangle$.
(a) Final state of particle+slit: necessary entanglement :

$$
|\Psi\rangle=\left|\psi_{1}\right\rangle\left|p_{1}\right\rangle+\left|\psi_{2}\right\rangle\left|p_{2}\right\rangle
$$

Which-way Detection in Einstein's experiment

 Using von Neumann's process 1Two orthogonal states of the particle depending on the path: slit 1: $\left|\psi_{1}\right\rangle \quad$ slit 2: $\left|\psi_{2}\right\rangle$
Two momentum states of the recoiling slit: $\left|p_{1}\right\rangle$ and $\left|p_{2}\right\rangle$.
(a) Final state of particle+slit: necessary entanglement :

$$
|\Psi\rangle=\left|\psi_{1}\right\rangle\left|p_{1}\right\rangle+\left|\psi_{2}\right\rangle\left|p_{2}\right\rangle
$$

(b) Reading out of which-way information: correlation of "readout" states with detector states without affecting the states of the particle

Which-way Detection in Einstein's experiment

 Using von Neumann's process 1Two orthogonal states of the particle depending on the path: slit 1: $\left|\psi_{1}\right\rangle \quad$ slit 2: $\left|\psi_{2}\right\rangle$
Two momentum states of the recoiling slit: $\left|p_{1}\right\rangle$ and $\left|p_{2}\right\rangle$.
(a) Final state of particle+slit: necessary entanglement :

$$
|\Psi\rangle=\left|\psi_{1}\right\rangle\left|p_{1}\right\rangle+\left|\psi_{2}\right\rangle\left|p_{2}\right\rangle
$$

(b) Reading out of which-way information: correlation of "readout" states with detector states without affecting the states of the particle

Point (a) was not part of Bohr's reply.

Which-way Detection in Einstein's experiment

 Using von Neumann's process 1Two orthogonal states of the particle depending on the path: slit 1: $\left|\psi_{1}\right\rangle \quad$ slit 2: $\left|\psi_{2}\right\rangle$
Two momentum states of the recoiling slit: $\left|p_{1}\right\rangle$ and $\left|p_{2}\right\rangle$.
(a) Final state of particle+slit: necessary entanglement :

$$
|\Psi\rangle=\left|\psi_{1}\right\rangle\left|p_{1}\right\rangle+\left|\psi_{2}\right\rangle\left|p_{2}\right\rangle
$$

(b) Reading out of which-way information: correlation of "readout" states with detector states without affecting the states of the particle

Point (a) was not part of Bohr's reply. and is enough to rule out interference!

Outline

(1) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ... and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

Which-way Information and Interference

- Without which-way information

Amplitude for finding the particle at point x on the screen is

$$
\Psi(x)=\psi_{1}(x)+\psi_{2}(x)
$$

Which-way Information and Interference

- Without which-way information

Amplitude for finding the particle at point x on the screen is

$$
\Psi(x)=\psi_{1}(x)+\psi_{2}(x)
$$

Probability (intensity):

$$
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\underbrace{\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)} \text {. }
$$

Which-way Information and Interference

- Without which-way information

Amplitude for finding the particle at point x on the screen is

$$
\Psi(x)=\psi_{1}(x)+\psi_{2}(x)
$$

Probability (intensity):

$$
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\underbrace{\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)}_{\text {interference }} .
$$

Which-way Information and Interference

- Without which-way information

Amplitude for finding the particle at point x on the screen is

$$
\Psi(x)=\psi_{1}(x)+\psi_{2}(x)
$$

Probability (intensity):

$$
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\underbrace{\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)}_{\text {interference }} .
$$

- WITH which-way information

$$
\Psi(x)=\psi_{1}(x)\left|p_{1}\right\rangle+\psi_{2}(x)\left|p_{2}\right\rangle
$$

Which-way Information and Interference

- Without which-way information

Amplitude for finding the particle at point x on the screen is

$$
\Psi(x)=\psi_{1}(x)+\psi_{2}(x)
$$

Probability (intensity):

$$
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\underbrace{\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)}_{\text {interference }} .
$$

- WITH which-way information

$$
\begin{gathered}
\Psi(x)=\psi_{1}(x)\left|p_{1}\right\rangle+\psi_{2}(x)\left|p_{2}\right\rangle \\
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\psi_{1}^{*}(x) \psi_{2}(x)\left\langle p_{1} \mid p_{2}\right\rangle+\psi_{2}^{*}(x) \psi_{1}(x)\left\langle p_{2} \mid p_{1}\right\rangle
\end{gathered}
$$

Which-way Information and Interference

- Without which-way information

Amplitude for finding the particle at point x on the screen is

$$
\Psi(x)=\psi_{1}(x)+\psi_{2}(x)
$$

Probability (intensity):

$$
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\underbrace{\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)}_{\text {interference }} .
$$

- WITH which-way information

$$
\begin{gathered}
\Psi(x)=\psi_{1}(x)\left|p_{1}\right\rangle+\psi_{2}(x)\left|p_{2}\right\rangle \\
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\psi_{1}^{*}(x) \psi_{2}(x)\left\langle p_{1} \mid p_{2}\right\rangle+\psi_{2}^{*}(x) \psi_{1}(x)\left\langle p_{2} \mid p_{1}\right\rangle \\
=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2},
\end{gathered}
$$

Which-way Information and Interference

- Without which-way information

Amplitude for finding the particle at point x on the screen is

$$
\Psi(x)=\psi_{1}(x)+\psi_{2}(x)
$$

Probability (intensity):

$$
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\underbrace{\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)}_{\text {interference }} .
$$

- WITH which-way information

$$
\begin{gathered}
\Psi(x)=\psi_{1}(x)\left|p_{1}\right\rangle+\psi_{2}(x)\left|p_{2}\right\rangle \\
|\Psi(x)|^{2}=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}+\psi_{1}^{*}(x) \psi_{2}(x)\left\langle p_{1} \mid p_{2}\right\rangle+\psi_{2}^{*}(x) \psi_{1}(x)\left\langle p_{2} \mid p_{1}\right\rangle \\
=\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}, \text { since }\left\langle p_{1} \mid p_{2}\right\rangle=0
\end{gathered}
$$

Which-way Information and Interference

- Interference vanishes if which-way information is obtained.

Which-way Information and Interference

- Interference vanishes if which-way information is obtained.
- Another interpretation: the recoil of the slit stores which-way information.

Which-way Information and Interference

- Interference vanishes if which-way information is obtained.
- Another interpretation: the recoil of the slit stores which-way information.
- No need to invoke uncertainty!

Which-way Information and Interference

- Interference vanishes if which-way information is obtained.
- Another interpretation: the recoil of the slit stores which-way information.
- No need to invoke uncertainty!

If this entanglement between the particle and the recoiling-slit had been recognized and its implications understood

Which-way Information and Interference

- Interference vanishes if which-way information is obtained.
- Another interpretation: the recoil of the slit stores which-way information.
- No need to invoke uncertainty!

If this entanglement between the particle and the recoiling-slit had been recognized and its implications understood

Bohr could have provided a simpler rebuttal to Einstein!

Which-way Information and Interference

- Interference vanishes if which-way information is obtained.
- Another interpretation: the recoil of the slit stores which-way information.
- No need to invoke uncertainty!

If this entanglement between the particle and the recoiling-slit had been recognized and its implications understood

Bohr could have provided a simpler rebuttal to Einstein!
Can this argument be made more quantitative?

Outline

(1) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ...and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

Path-distinguishability and Interference

Suppose our detector distinguishes the two paths inaccurately.

Path-distinguishability and Interference

Suppose our detector distinguishes the two paths inaccurately. This means "which-way" states $\left\langle d_{1} \mid d_{2}\right\rangle \neq 0$.

Path-distinguishability and Interference

Suppose our detector distinguishes the two paths inaccurately. This means "which-way" states $\left\langle d_{1} \mid d_{2}\right\rangle \neq 0$.

- Define Distinguishability:

$$
\mathcal{D}=\sqrt{1-\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|^{2}}
$$

Amplitude that the paths are perfectly distinguished

Path-distinguishability and Interference

Suppose our detector distinguishes the two paths inaccurately.
This means "which-way" states $\left\langle d_{1} \mid d_{2}\right\rangle \neq 0$.

- Define Distinguishability:

$$
\mathcal{D}=\sqrt{1-\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|^{2}}
$$

Amplitude that the paths are perfectly distinguished

- Define Visibility:

$$
\mathcal{V} \equiv \frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

measure of the interference observed.

Path-distinguishability and Interference

Suppose our detector distinguishes the two paths inaccurately.
This means "which-way" states $\left\langle d_{1} \mid d_{2}\right\rangle \neq 0$.

- Define Distinguishability:

$$
\mathcal{D}=\sqrt{1-\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|^{2}}
$$

Amplitude that the paths are perfectly distinguished

- Define Visibility:

$$
\mathcal{V} \equiv \frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

measure of the interference observed.
Is there a relationship between them to capture complementarity?

Path-distinguishability and Interference

Gaussian Wave-packet Model

$t=0$: particle emerges from the double-slit with amplitude

$$
\Psi(x, 0)=
$$

Path-distinguishability and Interference

Gaussian Wave-packet Model

$t=0$: particle emerges from the double-slit with amplitude

$$
\Psi(x, 0)=A\left(\left|d_{1}\right\rangle e^{-\frac{(x-d / 2)^{2}}{4 \epsilon^{2}}}+\left|d_{2}\right\rangle e^{-\frac{(x+d / 2)^{2}}{d \epsilon^{2}}}\right),
$$

Path-distinguishability and Interference

Gaussian Wave-packet Model

$t=0$: particle emerges from the double-slit with amplitude

$$
\Psi(x, 0)=A\left(\left|d_{1}\right\rangle e^{-\frac{(x-d / 2)^{2}}{4 \epsilon^{2}}}+\left|d_{2}\right\rangle e^{-\frac{(x+d / 2)^{2}}{4 \epsilon^{2}}}\right), \quad A=\frac{1}{\sqrt[4]{8 \pi \epsilon^{2}}}
$$

Path-distinguishability and Interference

Gaussian Wave-packet Model

$t=0$: particle emerges from the double-slit with amplitude

$$
\Psi(x, 0)=A\left(\left|d_{1}\right\rangle e^{-\frac{(x-d / 2)^{2}}{d \epsilon^{2}}}+\left|d_{2}\right\rangle e^{-\frac{(x+d / 2)^{2}}{4 \epsilon^{2}}}\right), \quad A=\frac{1}{\sqrt[4]{8 \pi \epsilon^{2}}}
$$

After time t, traveling a distance L, amplitude for particle to arrive at x on screen:

$$
\Psi(x, t)=A_{t}\left(\left|d_{1}\right\rangle e^{-\frac{(x-d / 2)^{2}}{4 \epsilon^{2}+2 i t t / m}}+\left|d_{2}\right\rangle e^{-\frac{(x+d / 2)^{2}}{4 \epsilon^{2}+2 i t / / m}}\right)
$$

Path-distinguishability and Interference

Gaussian Wave-packet Model

$t=0$: particle emerges from the double-slit with amplitude

$$
\Psi(x, 0)=A\left(\left|d_{1}\right\rangle e^{-\frac{(x-d / 2)^{2}}{d \epsilon^{2}}}+\left|d_{2}\right\rangle e^{-\frac{(x+d / 2)^{2}}{4 \epsilon^{2}}}\right), \quad A=\frac{1}{\sqrt[4]{8 \pi \epsilon^{2}}}
$$

After time t, traveling a distance L, amplitude for particle to arrive at x on screen:

$$
\begin{aligned}
& \Psi(x, t)=\quad A_{t}\left(\left|d_{1}\right\rangle e^{-\frac{(x-d / 2)^{2}}{4 \epsilon^{2}+2 i \hbar t / m}}+\left|d_{2}\right\rangle e^{-\frac{(x+d / 2)^{2}}{4 \epsilon^{2}+2 i \hbar t / m}}\right), \\
& \text { where } \quad A_{t}=\frac{1}{\sqrt{2}}[\sqrt{2 \pi}(\epsilon+i \hbar t / 2 m \epsilon)]^{-1 / 2}
\end{aligned}
$$

Path-distinguishability and Interference

Gaussian Wave-packet Model

Probability of finding particle at point x on the screen

$$
\begin{aligned}
|\Psi(x, t)|^{2} & =2\left|A_{t}\right|^{2} e^{-\frac{x^{2}+d^{2} / 4}{2 \sigma_{t}^{2}}} \cosh \left(x d / 2 \sigma_{t}^{2}\right) \\
& \times\left(1+\left|\left\langle d_{1} \mid d_{2}\right\rangle\right| \frac{\cos \left(\frac{x d \lambda L / 2 \pi}{4 \epsilon^{4}+(\lambda L / 2 \pi)^{2}}+\theta\right)}{\cosh \left(x d / 2 \sigma_{t}^{2}\right)}\right)
\end{aligned}
$$

Path-distinguishability and Interference

Gaussian Wave-packet Model

Probability of finding particle at point x on the screen

$$
\begin{aligned}
|\Psi(x, t)|^{2} & =2\left|A_{t}\right|^{2} e^{-\frac{x^{2}+d^{2} / 4}{2 \sigma_{t}^{2}}} \cosh \left(x d / 2 \sigma_{t}^{2}\right) \\
& \times\left(1+\left|\left\langle d_{1} \mid d_{2}\right\rangle\right| \frac{\cos \left(\frac{x d \lambda L / 2 \pi}{4 \epsilon^{4}+(\lambda L / 2 \pi)^{2}}+\theta\right)}{\cosh \left(x d / 2 \sigma_{t}^{2}\right)}\right) \\
\left\langle d_{1} \mid d_{2}\right\rangle & =\left|\left\langle d_{1} \mid d_{2}\right\rangle\right| e^{i \theta} \\
p_{0}=h / \lambda & \Longrightarrow \hbar t / m=\lambda L / 2 \pi \\
\sigma_{t}^{2} & =\epsilon^{2}+\left(\frac{\hbar t}{2 m \epsilon}\right)^{2}
\end{aligned}
$$

Path-distinguishability and Interference

Gaussian Wave-packet Model

Probability of finding particle at point x on the screen

$$
\begin{aligned}
|\Psi(x, t)|^{2} & =2\left|A_{t}\right|^{2} e^{-\frac{x^{2}+d^{2} / 4}{2 \sigma_{t}^{2}}} \cosh \left(x d / 2 \sigma_{t}^{2}\right) \\
& \times\left(1+\left|\left\langle d_{1} \mid d_{2}\right\rangle\right| \frac{\cos \left(\frac{x d \lambda L / 2 \pi}{4 \epsilon^{4}+(\lambda L / 2 \pi)^{2}}+\theta\right)}{\cosh \left(x d / 2 \sigma_{t}^{2}\right)}\right)
\end{aligned}
$$

Fringe width =

$$
\frac{\lambda L}{d}+\frac{16 \pi^{2} \epsilon^{4}}{\lambda d L}
$$

Visibility of Interference

- Visibility $\mathcal{V} \equiv \frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}+I_{\text {min }}}$

Visibility of Interference

- Visibility $\mathcal{V} \equiv \frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}+I_{\text {min }}}=\frac{\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|}{\cosh \left(x d / 2 \sigma_{t}^{2}\right)}$

Visibility of Interference

- Visibility $\mathcal{V} \equiv \frac{I_{\max }-I_{\text {min }}}{I_{\max }+I_{\text {min }}}=\frac{\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|}{\cosh \left(x d / 2 \sigma_{t}^{2}\right)}$

$$
\cosh (y) \geq 1 \Longrightarrow \mathcal{V} \leq\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|
$$

Visibility of Interference

- Visibility $\mathcal{V} \equiv \frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}+I_{\text {min }}}=\frac{\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|}{\cosh \left(x d / 2 \sigma_{t}^{2}\right)}$

$$
\cosh (y) \geq 1 \Longrightarrow \mathcal{V} \leq\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|
$$

Using

$$
\mathcal{D}^{2}=1-\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|^{2}
$$

we get

Visibility of Interference

- Visibility $\mathcal{V} \equiv \frac{I_{\max }-I_{\text {min }}}{I_{\max }+I_{\min }}=\frac{\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|}{\cosh \left(x d / 2 \sigma_{t}^{2}\right)}$

$$
\cosh (y) \geq 1 \Longrightarrow \mathcal{V} \leq\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|
$$

Using

$$
\mathcal{D}^{2}=1-\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|^{2}
$$

we get

$$
\mathcal{V}^{2}+\mathcal{D}^{2} \leq 1
$$

Englert-Greenberger-Yasin duality relation

Visibility of Interference

- Visibility $\mathcal{V} \equiv \frac{I_{\max }-I_{\text {min }}}{I_{\max }+I_{\min }}=\frac{\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|}{\cosh \left(x d / 2 \sigma_{t}^{2}\right)}$

$$
\cosh (y) \geq 1 \Longrightarrow \mathcal{V} \leq\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|
$$

Using

$$
\mathcal{D}^{2}=1-\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|^{2}
$$

we get

$$
\mathcal{V}^{2}+\mathcal{D}^{2} \leq 1
$$

Englert-Greenberger-Yasin duality relation A quantitative statement of complementarity

Origin of Complementarity?

- Quantum correlations ?
- D.M. Greenberger, A. Yasin, Phys. Lett. A 128, 391 (1988),
"Simultaneous wave and particle knowledge in a neutron interferometer",
- B-G. Englert, Phys. Rev. Lett. 77, 2154 (1996),
"Fringe visibility and which-way information: an inequality"
- M.O. Scully, B.G. Englert, H. Walther, Nature 375, 367 (1995),
"Complementarity and uncertainty."

Origin of Complementarity?

- Quantum correlations ?
- D.M. Greenberger, A. Yasin, Phys. Lett. A 128, 391 (1988),
"Simultaneous wave and particle knowledge in a neutron interferometer",
- B-G. Englert, Phys. Rev. Lett. 77, 2154 (1996),
"Fringe visibility and which-way information: an inequality"
- M.O. Scully, B.G. Englert, H. Walther, Nature 375, 367 (1995),
"Complementarity and uncertainty."
- Uncertainty principle
- S.M. Tan, D.F. Walls, Phys. Rev. A 47, 4663-4676 (1993), "Loss of coherence in interferometry".
- E.P. Storey, S.M. Tan, M.J. Collett, D.F. Walls, Nature 367, 626 (1994).
- H. Wiseman, F. Harrison, Nature 377, 584 (1995),
"Uncertainty over complementarity?"
- H. Wiseman, Phys. Lett. A 311, 285 (2003),
"Directly observing momentum transfer in twin-slit which-way experiments"

Origin of Complementarity?

- Quantum correlations ?
- D.M. Greenberger, A. Yasin, Phys. Lett. A 128, 391 (1988),
"Simultaneous wave and particle knowledge in a neutron interferometer",
- B-G. Englert, Phys. Rev. Lett. 77, 2154 (1996),
"Fringe visibility and which-way information: an inequality"
- M.O. Scully, B.G. Englert, H. Walther, Nature 375, 367 (1995),
"Complementarity and uncertainty."
- Uncertainty principle
- S.M. Tan, D.F. Walls, Phys. Rev. A 47, 4663-4676 (1993), "Loss of coherence in interferometry".
- E.P. Storey, S.M. Tan, M.J. Collett, D.F. Walls, Nature 367, 626 (1994).
- H. Wiseman, F. Harrison, Nature 377, 584 (1995),
"Uncertainty over complementarity?"
- H. Wiseman, Phys. Lett. A 311, 285 (2003),
"Directly observing momentum transfer in twin-slit which-way experiments"
- Does the particle really receive a "momentum kick"?
- S. Durr, T. Nonn, G. Rempe, Nature 395, 33 (1998),
"Origin of quantum-mechanical complementarity probed by a which-way experiment in an atom interferometer."
- C.S. Unnikrishnan, Phys. Rev. A 62, 015601 (2000),
"Origin of quantum-mechanical complementarity without momentum back action in atom-interferometry experiments".

Uncertainty principle and complementarity

 Other work- G. Bjork, J. Soderholm, A. Trifonov, T. Tsegaye, A. Karlsson, Phys. Rev. A 60, 1874 (1999), "Complementarity and the uncertainty relations".
- K-P Marzlin, B.C. Sanders, P.L. Knight, Phys. Rev. A 78, 062107 (2008), "Complementarity and uncertainty relations for matter-wave interferometry",
- J-H Huang, S-Y Zhu, arXiv:1011.5273 [physics.optics], "Complementarity and uncertainty in a two-way interferometer".
- G.M. Bosyk, M. Portesi, F. Holik, A. Plastino, arXiv:1206.2992 [quant-ph] "On the connection between complementarity and uncertainty principles in the Mach-Zehnder interferometric setting".
- Paul Busch, Christopher R. Shilladay. arXiv:quant-ph/0609048, Phys Rep 435, 1-31 (2006)

Outline

(1) Two-Slit Experiment and Complementarity

- Two Slit Experiment with Quantum Particles
- Complementarity
- Einstein's Recoiling Slit Experiment
- ...and Bohr's Reply
(2) Complementarity and Entanglement
- von Neuman Measurements
- Which-way Information and Interference
- Path Distinguishability and Fringe Visibility
(3) Complementarity and Uncertainty
- Duality and Uncertainty
(4) Conclusions

Complementarity and Uncertainty

Uncertainty and duality

- "Which-way" states of the recoiling slit: $\left|d_{1}\right\rangle$ and $\left|d_{2}\right\rangle$
(normalized, not necessarily orthogonal)

Complementarity and Uncertainty

Uncertainty and duality

- "Which-way" states of the recoiling slit: $\left|d_{1}\right\rangle$ and $\left|d_{2}\right\rangle$ (normalized, not necessarily orthogonal)
- Orthonormal basis for recoiling slit: $\left\{\left|p_{1}\right\rangle,\left|p_{2}\right\rangle\right\}$

Complementarity and Uncertainty

Uncertainty and duality

- "Which-way" states of the recoiling slit: $\left|d_{1}\right\rangle$ and $\left|d_{2}\right\rangle$ (normalized, not necessarily orthogonal)
- Orthonormal basis for recoiling slit: $\left\{\left|p_{1}\right\rangle,\left|p_{2}\right\rangle\right\}$

Eigenstates of some observable $\hat{\boldsymbol{P}}$ with eigenvalues ± 1.

Complementarity and Uncertainty

Uncertainty and duality

- "Which-way" states of the recoiling slit: $\left|d_{1}\right\rangle$ and $\left|d_{2}\right\rangle$ (normalized, not necessarily orthogonal)
- Orthonormal basis for recoiling slit: $\left\{\left|p_{1}\right\rangle,\left|p_{2}\right\rangle\right\}$

Eigenstates of some observable $\hat{\boldsymbol{P}}$ with eigenvalues ± 1.

- Which-way states in the P-basis:

$$
\begin{aligned}
\left|d_{1}\right\rangle & =c_{1}\left|p_{1}\right\rangle+c_{2}\left|p_{2}\right\rangle \\
\left|d_{2}\right\rangle & =c_{2}^{*}\left|p_{1}\right\rangle+c_{1}^{*}\left|p_{2}\right\rangle
\end{aligned}
$$

Complementarity and Uncertainty

Uncertainty and duality

- "Which-way" states of the recoiling slit: $\left|d_{1}\right\rangle$ and $\left|d_{2}\right\rangle$ (normalized, not necessarily orthogonal)
- Orthonormal basis for recoiling slit: $\left\{\left|p_{1}\right\rangle,\left|p_{2}\right\rangle\right\}$

Eigenstates of some observable $\hat{\boldsymbol{P}}$ with eigenvalues ± 1.

- Which-way states in the P-basis:

$$
\begin{aligned}
\left|d_{1}\right\rangle & =c_{1}\left|p_{1}\right\rangle+c_{2}\left|p_{2}\right\rangle \\
\left|d_{2}\right\rangle & =c_{2}^{*}\left|p_{1}\right\rangle+c_{1}^{*}\left|p_{2}\right\rangle
\end{aligned}
$$

- $\left|c_{1}\right|=1, c_{2}=0 \rightarrow$ full which-way information $\left|c_{1}\right|=\left|c_{2}\right|=1 / \sqrt{2} \rightarrow$ no which-way information

Complementarity and Uncertainty

Uncertainty and duality

- "Which-way" states of the recoiling slit: $\left|d_{1}\right\rangle$ and $\left|d_{2}\right\rangle$ (normalized, not necessarily orthogonal)
- Orthonormal basis for recoiling slit: $\left\{\left|p_{1}\right\rangle,\left|p_{2}\right\rangle\right\}$

Eigenstates of some observable $\hat{\boldsymbol{P}}$ with eigenvalues ± 1.

- Which-way states in the P-basis:

$$
\begin{aligned}
\left|d_{1}\right\rangle & =c_{1}\left|p_{1}\right\rangle+c_{2}\left|p_{2}\right\rangle \\
\left|d_{2}\right\rangle & =c_{2}^{*}\left|p_{1}\right\rangle+c_{1}^{*}\left|p_{2}\right\rangle
\end{aligned}
$$

- $\left|c_{1}\right|=1, c_{2}=0 \rightarrow$ full which-way information $\left|c_{1}\right|=\left|c_{2}\right|=1 / \sqrt{2} \rightarrow$ no which-way information
- Uncertainty: $\quad \Delta P^{2}=\left\langle\hat{\boldsymbol{P}}^{2}\right\rangle-\langle\hat{\boldsymbol{P}}\rangle^{2}=4\left|c_{1}\right|^{2}\left|c_{2}\right|^{2}$.

Complementarity and Uncertainty

Uncertainty and duality

- "Which-way" states of the recoiling slit: $\left|d_{1}\right\rangle$ and $\left|d_{2}\right\rangle$ (normalized, not necessarily orthogonal)
- Orthonormal basis for recoiling slit: $\left\{\left|p_{1}\right\rangle,\left|p_{2}\right\rangle\right\}$

Eigenstates of some observable $\hat{\boldsymbol{P}}$ with eigenvalues ± 1.

- Which-way states in the P-basis:

$$
\begin{aligned}
\left|d_{1}\right\rangle & =c_{1}\left|p_{1}\right\rangle+c_{2}\left|p_{2}\right\rangle \\
\left|d_{2}\right\rangle & =c_{2}^{*}\left|p_{1}\right\rangle+c_{1}^{*}\left|p_{2}\right\rangle
\end{aligned}
$$

- $\left|c_{1}\right|=1, c_{2}=0 \rightarrow$ full which-way information $\left|c_{1}\right|=\left|c_{2}\right|=1 / \sqrt{2} \rightarrow$ no which-way information
- Uncertainty: $\quad \Delta P^{2}=\left\langle\hat{\boldsymbol{P}}^{2}\right\rangle-\langle\hat{\boldsymbol{P}}\rangle^{2}=4\left|c_{1}\right|^{2}\left|c_{2}\right|^{2}$.
- Distinguishability:

$$
\begin{aligned}
\mathcal{D}^{2} & =1-\left|\left\langle d_{1} \mid d_{2}\right\rangle\right|^{2}=1-4\left|c_{1}\right|^{2}\left|c_{2}\right|^{2} \\
& =1-\Delta P^{2}
\end{aligned}
$$

Uncertainty and Duality

Correlation of detector states with particle states:

$$
\Psi(x)=\psi_{1}(x)\left|p_{1}\right\rangle+\psi_{2}(x)\left|p_{2}\right\rangle
$$

Uncertainty and Duality

Correlation of detector states with particle states:

$$
\Psi(x)=\psi_{1}(x)\left|p_{1}\right\rangle+\psi_{2}(x)\left|p_{2}\right\rangle
$$

- Consider a basis change:

$$
\begin{aligned}
\left|p_{1}\right\rangle+\left|p_{2}\right\rangle & \rightarrow \psi_{1}(x)+\psi_{2}(x) \\
\left|p_{1}\right\rangle-\left|p_{2}\right\rangle & \rightarrow \psi_{1}(x)-\psi_{2}(x)
\end{aligned}
$$

Uncertainty and Duality

Correlation of detector states with particle states:

$$
\Psi(x)=\psi_{1}(x)\left|p_{1}\right\rangle+\psi_{2}(x)\left|p_{2}\right\rangle
$$

- Consider a basis change:

$$
\begin{aligned}
\left|p_{1}\right\rangle+\left|p_{2}\right\rangle & \rightarrow \psi_{1}(x)+\psi_{2}(x) \\
\left|p_{1}\right\rangle-\left|p_{2}\right\rangle & \rightarrow \psi_{1}(x)-\psi_{2}(x)
\end{aligned}
$$

- $\Longrightarrow \exists$ another observable $\hat{\boldsymbol{Q}}$ with eigenvalues ± 1 and corresponding eigenstates

$$
\begin{aligned}
\left|q_{1}\right\rangle & =\left(\left|p_{1}\right\rangle+\left|p_{2}\right\rangle\right) / \sqrt{2} \\
\left|q_{2}\right\rangle & =\left(\left|p_{1}\right\rangle-\left|p_{2}\right\rangle\right) / \sqrt{2}
\end{aligned}
$$

Uncertainty and Duality

Correlation of detector states with particle states:

$$
\Psi(x)=\psi_{1}(x)\left|p_{1}\right\rangle+\psi_{2}(x)\left|p_{2}\right\rangle
$$

- Consider a basis change:

$$
\begin{aligned}
\left|p_{1}\right\rangle+\left|p_{2}\right\rangle & \rightarrow \psi_{1}(x)+\psi_{2}(x) \\
\left|p_{1}\right\rangle-\left|p_{2}\right\rangle & \rightarrow \psi_{1}(x)-\psi_{2}(x)
\end{aligned}
$$

- $\Longrightarrow \exists$ another observable $\hat{\boldsymbol{Q}}$ with eigenvalues ± 1 and corresponding eigenstates

$$
\begin{aligned}
\left|q_{1}\right\rangle & =\left(\left|p_{1}\right\rangle+\left|p_{2}\right\rangle\right) / \sqrt{2} \\
\left|q_{2}\right\rangle & =\left(\left|p_{1}\right\rangle-\left|p_{2}\right\rangle\right) / \sqrt{2}
\end{aligned}
$$

- The particle states can be correlated with these states:

$$
\Psi(x)=\frac{c_{1}}{\sqrt{2}}\left[\psi_{1}(x)+\psi_{2}(x)\right]\left|q_{1}\right\rangle+\frac{c_{2}}{\sqrt{2}}\left[\psi_{1}(x)-\psi_{2}(x)\right]\left|q_{2}\right\rangle
$$

Uncertainty and Duality

Correlate the detected particles on the screen with the measured eigenstate of $\hat{\boldsymbol{Q}}\left(c_{1}=c_{2}\right.$ case)

Uncertainty and Duality

Correlate the detected particles on the screen with the measured eigenstate of $\hat{\boldsymbol{Q}}$ ($c_{1}=c_{2}$ case)

Two complementary interference patterns corresponding to $\left|q_{1}\right\rangle$ and $\left|q_{2}\right\rangle$.

Uncertainty and Duality

Correlate the detected particles on the screen with the measured eigenstate of $\hat{\boldsymbol{Q}}$ ($c_{1}=c_{2}$ case)

Two complementary interference patterns corresponding to $\left|q_{1}\right\rangle$ and $\left|q_{2}\right\rangle$.

Uncertainty and Duality

Correlate the detected particles on the screen with the measured eigenstate of $\hat{\boldsymbol{Q}}$ ($c_{1}=c_{2}$ case)

Two complementary interference patterns corresponding to $\left|q_{1}\right\rangle$ and $\left|q_{2}\right\rangle$.

Uncertainty and Duality

For any c_{1}, c_{2},
$|\Psi(x)|^{2}=\frac{\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}}{2}\left[\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)\right]$.

Uncertainty and Duality

For any c_{1}, c_{2},
$|\Psi(x)|^{2}=\frac{\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}}{2}\left[\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)\right]$.
Fringe visibility: $\quad \mathcal{V}^{2} \leq\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)^{2}$.

Uncertainty and Duality

For any c_{1}, c_{2},
$|\Psi(x)|^{2}=\frac{\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}}{2}\left[\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)\right]$.
Fringe visibility: $\quad \mathcal{V}^{2} \leq\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)^{2}$.
The uncertainty in $\hat{\boldsymbol{Q}}$, in this entangled state:

$$
\Delta Q^{2}=1-\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)^{2}
$$

Uncertainty and Duality

For any c_{1}, c_{2},
$|\Psi(x)|^{2}=\frac{\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}}{2}\left[\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)\right]$.
Fringe visibility: $\quad \mathcal{V}^{2} \leq\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)^{2}$.
The uncertainty in $\hat{\boldsymbol{Q}}$, in this entangled state:

$$
\Delta Q^{2}=1-\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)^{2}
$$

Thus

$$
\mathcal{V}^{2} \leq 1-\Delta Q^{2}
$$

Uncertainty and Duality

For any c_{1}, c_{2},
$|\Psi(x)|^{2}=\frac{\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}}{2}\left[\psi_{1}^{*}(x) \psi_{2}(x)+\psi_{2}^{*}(x) \psi_{1}(x)\right]$.
Fringe visibility: $\quad \mathcal{V}^{2} \leq\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)^{2}$.
The uncertainty in $\hat{\boldsymbol{Q}}$, in this entangled state:

$$
\Delta Q^{2}=1-\left(\left|c_{1}\right|^{2}-\left|c_{2}\right|^{2}\right)^{2}
$$

Thus

$$
\mathcal{V}^{2} \leq 1-\Delta Q^{2}
$$

Combining with the earlier result $\mathcal{D}^{2}=1-\Delta P^{2}$, we get

$$
\mathcal{D}^{2}+\mathcal{V}^{2} \leq 2-\left[\Delta P^{2}+\Delta Q^{2}\right]
$$

Uncertainty and Duality

The Sum Uncertainty Relation
Sum uncertainty relation for angular momenta ${ }^{1}$

$$
\Delta L_{x}^{2}+\Delta L_{y}^{2}+\Delta L_{z}^{2} \geq \ell
$$

[^0]
Uncertainty and Duality

The Sum Uncertainty Relation

Sum uncertainty relation for angular momenta ${ }^{1}$

$$
\Delta L_{x}^{2}+\Delta L_{y}^{2}+\Delta L_{z}^{2} \geq \ell
$$

Implication for Pauli spin matrices

$$
\Delta \sigma_{x}^{2}+\Delta \sigma_{y}^{2}+\Delta \sigma_{z}^{2} \geq 2, \quad \Delta \sigma_{x}^{2}+\Delta \sigma_{y}^{2} \geq 1
$$

[^1]
Uncertainty and Duality

The Sum Uncertainty Relation
Sum uncertainty relation for angular momenta ${ }^{1}$

$$
\Delta L_{x}^{2}+\Delta L_{y}^{2}+\Delta L_{z}^{2} \geq \ell
$$

Implication for Pauli spin matrices

$$
\Delta \sigma_{x}^{2}+\Delta \sigma_{y}^{2}+\Delta \sigma_{z}^{2} \geq 2, \quad \Delta \sigma_{x}^{2}+\Delta \sigma_{y}^{2} \geq 1
$$

In our case, $\hat{\boldsymbol{P}}=\hat{\boldsymbol{\sigma}}_{z}, \hat{\boldsymbol{Q}}=\hat{\boldsymbol{\sigma}}_{\boldsymbol{x}}$. So, $\Delta P^{2}+\Delta Q^{2} \geq 1$.

[^2]
Uncertainty and Duality

The Sum Uncertainty Relation
Sum uncertainty relation for angular momenta ${ }^{1}$

$$
\Delta L_{x}^{2}+\Delta L_{y}^{2}+\Delta L_{z}^{2} \geq \ell
$$

Implication for Pauli spin matrices

$$
\Delta \sigma_{x}^{2}+\Delta \sigma_{y}^{2}+\Delta \sigma_{z}^{2} \geq 2, \quad \Delta \sigma_{x}^{2}+\Delta \sigma_{y}^{2} \geq 1
$$

In our case, $\hat{\boldsymbol{P}}=\hat{\boldsymbol{\sigma}}_{z}, \hat{\boldsymbol{Q}}=\hat{\boldsymbol{\sigma}}_{\boldsymbol{x}}$. So, $\Delta P^{2}+\Delta Q^{2} \geq 1$.
Using this on

$$
\mathcal{D}^{2}+\mathcal{V}^{2} \leq 2-\left[\Delta P^{2}+\Delta Q^{2}\right]
$$

we get

$$
\mathcal{D}^{2}+\mathcal{V}^{2} \leq 1
$$

[^3]
Uncertainty and Duality

The Sum Uncertainty Relation
Sum uncertainty relation for angular momenta ${ }^{1}$

$$
\Delta L_{x}^{2}+\Delta L_{y}^{2}+\Delta L_{z}^{2} \geq \ell
$$

Implication for Pauli spin matrices

$$
\Delta \sigma_{x}^{2}+\Delta \sigma_{y}^{2}+\Delta \sigma_{z}^{2} \geq 2, \quad \Delta \sigma_{x}^{2}+\Delta \sigma_{y}^{2} \geq 1
$$

In our case, $\hat{\boldsymbol{P}}=\hat{\boldsymbol{\sigma}}_{z}, \hat{\boldsymbol{Q}}=\hat{\boldsymbol{\sigma}}_{\boldsymbol{x}}$. So, $\Delta P^{2}+\Delta Q^{2} \geq 1$.
Using this on

$$
\mathcal{D}^{2}+\mathcal{V}^{2} \leq 2-\left[\Delta P^{2}+\Delta Q^{2}\right]
$$

we get

$$
\mathcal{D}^{2}+\mathcal{V}^{2} \leq 1
$$

The duality relation also emerges from the sum uncertainty relation.
${ }^{1}$ Hoffmann, Takeuchi, Phys. Rev. A 68, 032103 (2003).

Conclusions

- For any two orthogonal states of the recoiling slit (say) $\left|\xi_{1}\right\rangle$ and $\left|\xi_{2}\right\rangle$, one can always find operators $\hat{\boldsymbol{P}}$ and $\hat{\boldsymbol{Q}}$ whose uncertainties enforce complementarity.

Conclusions

- For any two orthogonal states of the recoiling slit (say) $\left|\xi_{1}\right\rangle$ and $\left|\xi_{2}\right\rangle$, one can always find operators $\hat{\boldsymbol{P}}$ and $\hat{\boldsymbol{Q}}$ whose uncertainties enforce complementarity.

$$
\hat{\boldsymbol{P}}=\left|\xi_{1}\right\rangle\left\langle\xi_{1}\right|-\left|\xi_{2}\right\rangle\left\langle\xi_{2}\right| \quad \hat{\boldsymbol{Q}}=\left|\xi_{1}\right\rangle\left\langle\xi_{2}\right|+\left|\xi_{2}\right\rangle\left\langle\xi_{1}\right|
$$

Conclusions

- For any two orthogonal states of the recoiling slit (say) $\left|\xi_{1}\right\rangle$ and $\left|\xi_{2}\right\rangle$, one can always find operators $\hat{\boldsymbol{P}}$ and $\hat{\boldsymbol{Q}}$ whose uncertainties enforce complementarity.
$\hat{\boldsymbol{P}}=\left|\xi_{1}\right\rangle\left\langle\xi_{1}\right|-\left|\xi_{2}\right\rangle\left\langle\xi_{2}\right|$
$\hat{\boldsymbol{Q}}=\left|\xi_{1}\right\rangle\left\langle\xi_{2}\right|+\left|\xi_{2}\right\rangle\left\langle\xi_{1}\right|$
- Englert-Greenberger-Yasin duality relation emerges from correlations and also from the sum uncertainty relation.

Conclusions

- For any two orthogonal states of the recoiling slit (say) $\left|\xi_{1}\right\rangle$ and $\left|\xi_{2}\right\rangle$, one can always find operators $\hat{\boldsymbol{P}}$ and $\hat{\boldsymbol{Q}}$ whose uncertainties enforce complementarity.
$\hat{\boldsymbol{P}}=\left|\xi_{1}\right\rangle\left\langle\xi_{1}\right|-\left|\xi_{2}\right\rangle\left\langle\xi_{2}\right|$
$\hat{\boldsymbol{Q}}=\left|\xi_{1}\right\rangle\left\langle\xi_{2}\right|+\left|\xi_{2}\right\rangle\left\langle\xi_{1}\right|$
- Englert-Greenberger-Yasin duality relation emerges from correlations and also from the sum uncertainty relation.
- Complementarity enforced by correlations and the uncertainty relations are two sides of a coin (provided the observables are correctly identified).

Conclusions

- For any two orthogonal states of the recoiling slit (say) $\left|\xi_{1}\right\rangle$ and $\left|\xi_{2}\right\rangle$, one can always find operators $\hat{\boldsymbol{P}}$ and $\hat{\boldsymbol{Q}}$ whose uncertainties enforce complementarity.

$$
\hat{\boldsymbol{P}}=\left|\xi_{1}\right\rangle\left\langle\xi_{1}\right|-\left|\xi_{2}\right\rangle\left\langle\xi_{2}\right| \quad \hat{\boldsymbol{Q}}=\left|\xi_{1}\right\rangle\left\langle\xi_{2}\right|+\left|\xi_{2}\right\rangle\left\langle\xi_{1}\right|
$$

- Englert-Greenberger-Yasin duality relation emerges from correlations and also from the sum uncertainty relation.
- Complementarity enforced by correlations and the uncertainty relations are two sides of a coin (provided the observables are correctly identified).
- Momentum back-action of the recoiling slit on the particle plays no role in complementarity.

Tabish Qureshi, Radhika Vathsan

Einstein's Recoiling Slit Experiment, Complementarity and Uncertainty
Arxiv: 1210.4248 [quant-ph]
Quanta Vol. 2 (April 2013)

Tabish Qureshi, Radhika Vathsan

Einstein's Recoiling Slit Experiment, Complementarity and Uncertainty
Arxiv: 1210.4248 [quant-ph]
Quanta Vol. 2 (April 2013)

THANK YOU!

[^0]: ${ }^{1}$ Hoffmann, Takeuchi, Phys. Rev. A 68, 032103 (2003).

[^1]: ${ }^{1}$ Hoffmann, Takeuchi, Phys. Rev. A 68, 032103 (2003).

[^2]: ${ }^{1}$ Hoffmann, Takeuchi, Phys. Rev. A 68, 032103 (2003).

[^3]: ${ }^{1}$ Hoffmann, Takeuchi, Phys. Rev. A 68, 032103 (2003).

