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Generic Definition

Fight between J. Loschmidt and L. Boltmann

Second Law and time reversal invariance

J. Loschmidt L.Boltzmann

Source:Wikipedia



Loschmidt Echo

The generic definition:

L(t) = |⟨ψ0|e iH1te−iH2t |ψ0⟩|2 = |⟨ψ0|e−iH2t |ψ0⟩|2

(If |ψ0⟩ Eigenstate of H1)

• Overlap between two states evolving from the same initial state
with different Hamiltonians.

• Sensitivity of the quantum evolution to external perturbation due
to coupling to the environment.
Acknowledgement: Scholarpedia



Generic properties of the Loschmidt echo

• Characterized by a short-time decay.

• Partial revivals

• Asymptotic saturation

How does the proximity to a Q critical point influence the LE?

Static Counterpart Fidelity: |⟨ψ0(λ)|ψ0(λ+ δ)⟩|2

decays exponentially with δ for a many-body system.

Finite system: Sharp dip at the QCP.

Fidelity susceptibility and fidelity in the thermodynamic limit:
Interesting scaling relations.



Quantum Phase Transitions

Phase transitions are driven by fluctuations

• Zero temperature transition due to non-commuting terms in the
Hamiltonian

• Driven by quantum fluctuations

simplest example: one dimensional Ising model in a transverse field

H = −
∑
<ij>

σzi σ
z
j − h

∑
i

σxi

• h > 1, ⟨σz⟩ = 0; paramagnetic phase

• h < 1, ⟨σz⟩ ̸= 0; ferromagnetic phase

• Quantum phase transition at h = 1.



Quantum Phase Transitions: Critical Exponents

Notion of Universality:

Symmetry, dimensionality and the nature of the fixed point

• d → (d + 1)

• Diverging length scale: ξ ∼ |λ|−ν ; λ = h − 1

• Diverging time scale: ξτ ∼ |λ|−νz Vanishing gap

• ν how one moves away from the critical point

• The dynamical exponent z associated with the critical point.



The model in consideration

Let us consider the Transverse XY spin chain

H = −Jx
∑
i

σxi σ
x
i+1 − Jy

∑
i

σyi σ
y
i+1 − h

∑
i

σzi
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Two-Level System

Jordan-Wigner transformations: Spin-1/2’s to Fermions

H =
∑
k>0

(
c†k c−k

)
Hk

(
ck
c†−k

)
,

Hk = 2

(
−(Jx + Jy ) cos(ka)− h i(Jx − Jy ) sin(ka)
−i(Jx − Jy ) sin(ka) (Jx + Jy ) cos(ka) + h

)
,

Decoupled two level systems



The central spin model and decoherence of a qubit

e

g

• A qubit coupled to a quantum critical many body system

• ”Qubit” → a single Spin-1/2

• Environment → Quantum XY Spin chain

• A global coupling

• LE: Loss of phase information of the Qubit close to the QCP.

Does a QCP influence the Loschmidt echo?



The Central Spin model

• A central spin globally coupled to an environment.

• We choose the environment to be Transverse XY spin chain

H = −Jx
∑
i

σxi σ
x
i+1 − Jy

∑
i

σyi σ
y
i+1 − h

∑
i

σzi

• and a global coupling −δ
∑

i σ
z
i σ

z
S

• Qubit State: |ϕS(t = 0)⟩ = c1| ↑⟩+ c2| ↓⟩

• The environment is in the ground state |ϕE (t = 0)⟩ = |ϕg ⟩

• Composite initial wave function:

|ψ(t = 0)⟩ = |ϕS(t = 0)⟩ ⊗ |ϕg ⟩

Quan et al , Phys. Rev. Lett. 96, 140604 (2006).



Coupling and Evolution of the environmental spin chain

• At a later time t, the composite wave function is given by
|ψ(t)⟩ = c1| ↑⟩ ⊗ |ϕ+⟩+ c2| ↓⟩ ⊗ |ϕ−⟩.

|ϕ±⟩ are the wavefunctions evolving with the environment
Hamiltonian HE (h ± δ) given by the Schrödinger equation

i∂/∂t|ϕ±⟩ = Ĥ[h ± δ]|ϕ±⟩.

• The coupling δ essentially provides two channels of evolution of
the environmental wave function with the transverse field h + δ
and h − δ.



What happens to the central spin?

The reduced density matrix:

ρS(t) =

(
|c1|2 c1c

∗
2d

∗(t)
c∗1c2d(t) |c2|2

)
.

• The decoherence factor (Loschmidt Echo)

L(t) = d∗(t)d(t) = |⟨ϕ+(t)|ϕ−(t)⟩|2

Overlap between two states evolved from the same initial state
with different Hamiltonian

• L(t) = 1, pure state. L(t) = 0 Complete Mixing

• Coupling to the environment may lead to Complete loss of
coherence



Loschmidt Echo and quantum criticality

We are interested in the small δ limit

Equilibrium Situation:

• No explicit time dependence in the Hamiltonian.

Non-Equilibrium Situation:

• |ψ0⟩ is an eigenstate of H0; but there is a sudden quenching

• Explicit time dependence in the Hamiltonian



Equilibrium situation: the LE transverse Ising chain

L(t) = |⟨ϕ0| exp (iH+t) exp (−iH−t) |ϕ0⟩|2 = |⟨ϕ+(t)|ϕ−(t)|2

H±
k (t) = 2

(
h ± δ + cos k sin k

sin k −(h ± δ + cos k)

)
Two sets of Bogoliubov transformations

L(t) =
∏
k>0

Fk =
[
1− 2 sin2(2αk) sin

2(ϵk(h+)t)
]

2αk = (θk(h+)− θk(h−)) and tan θk(h+) =
sin k

h++cos k



Equilibrium case: h independent of time

The decay of Loschmidt Echo close to QCP at a fixed t
Sum over modes close to the critical modes

L(t) = exp(−αt2); α ∼ δ2

(1− h)2N2

The scaling: t → t/p,N → N/p or δ → pδ
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• Sharp dip at the quantum critical point

• Complete loss of coherence of the qubit



The collapse and revival at the QCP h + δ = 1
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Non-equilibrium initial state

• The initial state: not an eigenstate of uncoupled Hamiltonian HF

• HF is generated through a sudden quench Hi (hi ) → HF (hf ).

HF (λ) = H0 + λVλ + gVg

Lq(λ, t, g) = |⟨G (λ, g = 0)|e iHF (λ,g)te−iHF (λ+δ,g)t |G (λ, g = 0)⟩|2

What happens to the temporal evolution of L?

Early time decay L(t) ∼ exp(−αt2)

α =
1

2

[
⟨
(
∂H

∂λ

)2

⟩ − ⟨
(
∂H

∂λ

)
⟩2
]
δ2 =

1

2
[⟨V 2

λ ⟩ − ⟨Vλ⟩2]δ2

• Independent of g

α ∼ δ2λ2νz−2(λ≫ L−1/ν) and α ∼ δ2L2/ν−2z(λ≪ L−1/ν)
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When is the quenching relevant

Lq(λ, g , t) ≈ L(λ, 0, t) + g
∂Lq(λ, g , t)

∂g
|g=0

∂Lq(λ, g , t)/∂g |g=0 ∼ g−1 ∼ L1/νg , where νg is the correlation
length exponent.

g ≪ L−1/νg , the correction due to quenching becomes irrelevant
For a fixed time t = 20 and δ = 0.025
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Variation with L with time: is there a revival
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• faster decay in comparison to the equilibrium case.

• Partial revival when quenched to the QCP, hf + δ = 1.



What happens when the environmental spin chain is
driven?

Different Quenching paths:

Jx J+ y

Jx J+ y

B A

PM

h−quenching

aniso−quenching

multicritical quenching

gapless quenching

0

PM FM

FMy

x

1

γ

h−1

Assume h(t) = 1− t/τ , driven spin chain

H±
k (t) = 2

(
h(t)± δ + cos k γ sin k

γ sin k −(h(t)± δ + cos k)

)
.

B. Damski, Quan and Zurek, Phys. Rev. A 83, 062104 (2011).



The decoherence factor L(t)

|ϕ±(t)⟩ =
∏
k

|ϕ±k (t)⟩ =
∏
k>0

[
u±k (t)|0⟩+ v±k (t)|k,−k⟩

]
.

i∂/∂t
(
u±k (t), v

±
k (t)

)T
= H±

k (t)
(
u±k (t), v

±
k (t)

)T
with

∏
k Fk(t) =

∏
k |⟨ϕk(h(t) + δ)|ϕk(h(t)− δ)⟩|2,

L(t) = exp

[
N

2π

∫ π

0
dk lnFk

]
(1)

where Fk can be written in terms of u±k and v±k .



Motivation: Kibble-Zurek Scaling

• Quenching through a QCP: Defect generation in the final state

• Universal scaling of the defect density: n ∼ 1/τνd/(νz+1)

Different Quenching paths:

Jx J+ y

Jx J+ y
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gapless quenching
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Critical point h = t/τ ; n ∼ τ−1/2

Multicritical point
Quench Jx = t/τ with h = 2Jy ; cross the MCP when Jx = Jy
We find Defect density: n ∼ τ−1/6

Quenching through the gapless critical line γ = t/τ :n ∼ τ−1/3

A. Dutta, et. al ., arxiv:1012.0653



The question we address:

We assume δ → 0 and and work within the appropriate range of
time;
λ is the driving parameter.

One finds

(i) lnL(t) ∼ (−t2f (τ)), if QCP is at λ = 0

(ii) lnL(t) ∼ {−(t − λ0τ)
2f (τ)}, if QCP is at λ0

What is the scaling of this function f (τ)?

• Is that identical to the scaling of the defect density?

Not necessarily! Even for this integrable system!



How to Calculate L(t)?

Use the integrable two-level nature of the environmental
Hamiltonian.

Far away from the QCP (|h(t)|≫1 (t → +∞))

|ϕk(h + δ)⟩ = uk |0⟩+ vke
−i∆+t |k,−k⟩

|ϕk(h − δ)⟩ = uk |0⟩+ e−i∆−tvk |k,−k⟩

∆+ = 4
√

(h + δ + 1)2 + γ2 sin k2

∆− = 4
√

(h − δ + 1)2 + γ2 sin k2,

are the energy of two excitations in |k ,−k⟩ when the transverse
field is equal to h + δ and h − δ, respectively.
Excitations occur only in the vicinity of QCPs
F. Pollman et al , Phys. Rev. E 81 020101 (R) (2010).



Landau-Zener formula

2∆
Time

Energy
− 8)

−( 8)
( 8)

‘

1
2

Forward Path

Reverse Path

2( 1 (8 )

two approaching levels ±
√
ϵ2 +∆2 with ϵ = t/τ .

Probability of excitation P = exp(−π∆2τ)

Gap protects from the excitation At the QCP , the gap for the
critical mode vanishes; Gap is small for other modes close it.
Zener, Proc. R. Soc. London Ser A 137 (1932) 696; Landau and Lifshitz,
Quantum Mechanics



How to Calculate L(t)?...
How does one know uk and vk?

• Use the Landau-Zener transition formula:
pk = |uk |2 = exp(−2πτγ2 sin2 k)

Fk(t) = |⟨ϕk(h(t) + δ)|ϕk(h(t)− δ)⟩|2

=
∣∣∣|uk |2 + |vk |2e−i(∆+−∆−)t

∣∣∣2 , (2)

In the vicinity of the quantum critical point at h = 1
∆ = (∆+ −∆−)/2,

Fk(t) = 1− 4pk(1− pk) sin
2(∆t)

= 1− 4
[
e−2πτγ2k ′2 − e−4πτγ2k ′2

]
sin2(4δt) (3)

sin k has been expanded near the critical modes k = π, with
k ′ = π − k and we have taken the limit δ → 0.



Large δ and small δ
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How to calculate L(t)?

Assume δ → 0

L(t)(t) = exp
N

2π

∫ ∞

0
dk

ln
[
1−

(
e−2πτγ2k ′2 − e−4πτγ2k′2

)
64δ2t2

]
Finally L(t) is given by

L(t) ∼ exp{−8(
√
2− 1)Nδ2t2/(γπ

√
τ)}.

• lnL(t) ∼ τ−1/2

The same scaling as the defect density



Non-linear Quenching

Non-linear Quenching: h = 1− sgn(t)(t/τ)α

The scaling form pk = |uk |2 = G (k2τ2α/(α+1))

L(t) = exp(−CNδ2t2/τα/(α+1))

• lnL(t) ∼ τ−α/(α+1)

Quenching through a MCP

lnL(t) ∼ (t − Jyτ)
2/τ1/6 ∼ (Jx − Jy )τ

11/6

• Quenching through Isolated critical points: lnL(t)(τ) ∼ n

Is this scenario true in general?



Quenching through a critical line

Change γ = t/τ with h = 1. Quenched through the MCP

Modified CSM with interaction:

HSE = −(δ/2)
∑
i

(σxi σ
x
i+1 − σyi σ

y
i+1)σ

z
S

The coupling δ provides two channels of the temporal evolution of
the environmental ground state with anisotropy γ + δ and γ − δ.
The appropriate two-level Hamiltonain

H±
k (t) = 2

(
(γ ± δ) sin k h + cos k
h + cos k −(γ ± δ) sin k

)
.

• The defect density in the final state n ∼ τ−1/3∗

Does that mean lnL(t) ∼ τ−1/3?
∗ U. Divakaran et al , Phys. Rev. B 78, 144301 (2008).



A completely different Scaling

Fk = 1− 4(e−πτk3/2 − e−πτk3
) sin2(4δkt)

• An Gaussian decay:

L(t) ∼ exp{−214/3Nδ2t2/(3πτ)}.

• Scaling of lnL(t)(∼ τ−1) is completely different!!



Numerical Justification

Non-linear Quenching
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Integrability versus non-integrability

Ising model in a skewed field:

H = −
∑
<ij>

σzi σ
z
j −

∑
i

σxi − g(σxi cosϕ+ σzi sinϕ)

Integrable ϕ = 0, ϕ

• Start from the ground state of gi ; Quench from gi → gf

• The final state |ψ(gf , τ)⟩

Look at the temporal evolution:

L(t) = |⟨ψ(gf , τ)| exp(−iH(gf )t|ψ(gf , τ)⟩|2 = exp(−α(t)L)



Integrability versus non-integrability
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Integrable Case

α(t) =
1

2π

∫ ∞

0
dk log

[
1 + 4sin2(∆f t/2)Pk(1− Pk)

]
F. Pollman et al , Phys. Rev. E 81 020101 (R) (2010).

• Dynamical phase transitions

Heyl, Polkovnikov and Keherein, Phys. Rev. Lett (2013).



Concluding Comments:

• The LE shows interesting behavior close to a Quantum critical
point: small δ; Universal Scaling?

• Non-equilbrium initial state Faster loss of coherence

• Scaling of the decoherence factor for a driven spin chain
• not necessarily identical to the scaling of the defect density.

• May be identical for quenching through isolated critical points.

• Clear deviation for quenching through critical lines.

• Dynamical Phase transitions

Points to ponder

• Integrable system reducible to two-level problems....

What happens beyond that?


