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Problem

I Problem:

Given a subset of pure states (= pure state density matrices) of a quantum system
characterize the convex hull of this set (= a specific subset of mixed states of the
system)

I Examples:

1. mixed separable states as the convex hull of pure separable states

2. "bosonic" mixed separable states as the convex hull of pure symmetric separable states

3. "fermionic" mixed separable states as the convex hull of simple Slater determinants
(pure uncorrelated fermionic states)

4. mixed coherent states (mixed states with positive P-representation)

5. fermionic Gaussian states

I In all cases:
I original set of pure states = uncorrelated pure states

I its convex hull = uncorrelated mixed states



Notation

I H - a Hilbert space (finite- or infinite-dimensional) of a quantum system

I pure states = trace-one rank one density matrices = one-dimensional projections

ρψ =
|ψ〉〈ψ|
〈ψ|ψ〉

, |ψ〉 ∈ H

I M - a subset of the above - uncorrelated pure states

I conv(M) - uncorrelated mixed states

conv(M) 3 ρ =
∑

k

pkρψk , ψk ∈M, pk > 0,
∑

k

pk = 1



Characterization (strong)

I Ideally,
I a function vanishing only on uncorrelated mixed states

f (ρ) =

{
0 ρ −uncorrelated
≥ 0 otherwise

I given by the expectation values of an observable (a Hermitian operator onH)

f (ρ) = Tr(Vρ)

I Such f , in general, does not exist even for pure uncorrelated statesM.

I set of vectors |ψ〉 ∈ H such that ρψ ∈ M - "small" subset ofH in any reasonable
sense (metric, topological), but...

I usually spansH

I consequently, f (ρ) = Tr(Vρ) ≡ 0



Characterization (mild)

I We have to content ourselves with

I ρ - mixed uncorrelated⇔ f (ρ) ≥ 0 (as we demanded), but

I f can be bounded by the mean value of an observable on multiple copies of ρ

f (ρ) ≥ Tr(Vρ⊗n
)

I For arbitraryM it is (probably) still difficult, but...

I In all enumerated casesM is an orbit of some natural group of symmetry (’local
symmetry’) acting inH, i.e. all uncorrelated pure states can be obtained from a single
one by a symmetry group action

I The orbit is a very special one, i.e. the state from which all other uncorrelated pure
states (i.e. the setM) can be obtained has particular properties determined by the
concrete representation of the symmetry group in the underlying Hilbert spaceH



Notation
I K - a (Lie) group of symmetries

I k - its Lie algebra (the algebra of generators of the group K, characterized by commutation
relations between generators)

I the group K acts on the Hilbert statesH via its (irreducible) unitary representation,
K : H → H; if we choose a basis inH elements of K will be represented by unitary matrices

I the Lie algebra k is also (irreducibly) represented onH via antihermitian matrices

I g - the complexification of k,
g 3 a = x + iy, x, y ∈ k

(represented inH by general complex matrices)

I the Lie algebra g can be decomposed into three pieces

g = n
− ⊕ h⊕ n

+

in a chosen basis inH we can identify n− with strictly lower-triangular matrices, h with
diagonal matrices, and n+ with strictly upper-triangular matrices

I every irreducible representationHµ of g (and, consequently of k and K) is uniquely
characterized by a particular vector |µ〉 inH (the highest-weight vector) which is a common
eigenvector of all matrices in h and annihilated by all matrices from n+

h|µ〉 = λh|µ〉, η|µ〉 = 0, h ∈ h, η ∈ n
+

Example: angular momentum K = SU(2), total spin j, |µ〉 = |j, j〉, Jz|µ〉 = j|µ〉, J+|µ〉 = 0

I the highest weight orbit - Oµ = K.µ



Our examples
I L-partite separable states of (identical albeit distinguishable) N-dimensional

systems (’quNits’) with the single-particle Hilbert space HN ' CN

H = CN ⊗ · · · ⊗ CN︸ ︷︷ ︸
L−times

, K = SU(N)× · · · × SU(N)︸ ︷︷ ︸
L−times

, |µ〉 = |0, . . . , 0〉

highest weight orbit, Oµ = K.µ, - pure separable states

I L bosons in N-dimensional space

H = CN ∨ · · · ∨ CN︸ ︷︷ ︸
L−times

=: SymL (CN) , K = SU(N), |µ〉 = |0, . . . , 0〉

highest weight orbit, Oµ = K.µ, - pure uncorrelated bosonic states
(Eckert et al., 2002)

I L fermions in N-dimensional space

H = CN ∧ · · · ∧ CN︸ ︷︷ ︸
L−times

=:
L∧(

CN) , K = SU(N), |µ〉 = |e1〉 ∧ · · · ∧ |eL〉

highest weight orbit, Oµ = K.µ, - pure uncorrelated fermionic states
(Schliemann et al., 2001)



Our examples
I Coherent states: K - a Lie group, H - (irreducible) representation space.

(Perelomov, 1972)

Example: K = SU(2), H = C2j+1,
|µ〉 = |j, j〉 - spin j coherent states (‘atomic coherent states’ in quantum optics.
(Radcliffe, 1971)

I Gaussian fermionic states

H = HFock =
L=d⊕
L=0

L∧(
Cd
)
,

canonical set of fermionic (anti-commuting) creation and annihilation operators{
ai, a†j

}
= δijI, {ai, aj} = 0 .

a class of non-interacting (quadratic) Hamiltonians

H = θija
†
i a†j + hija

†
i aj + θ̄ijaiaj ,

pure fermionic Gaussian states = orbit of the group generated by such
Hamiltonians

M =
{

eiH |0〉
}



Bilinear characterization of pure uncorrelated states

I The highest weight orbit Oµ (= pure uncorrelated statesM) can be identified
using the following procedure (Liechtenstein theorem)

I take the symmetrized two fold tensor product of the relevant representation and
decompose it into irreducible parts

Hµ ∨Hµ = H2µ ⊕ · · ·

I |ψ〉 ∈ Oµ iff 〈ψ ⊗ ψ|I ⊗ I − P2µ|ψ ⊗ ψ〉 = 0

where P2µ - projection onH2µ inHµ ∨Hµ

I f (ρψ) = 〈ψ ⊗ ψ|A|ψ ⊗ ψ〉 with A = I ⊗ I − P2µ|ψ ⊗ ψ〉 fulfills our demands for
pure states - vanishes only on uncorrelated pure states, is positive otherwise (A is
positive-definite)

I formally one can thus characterize the convex hull via the convex roof construction
introducing

f (ρ) = inf∑
i pi|φi〉〈φi|=ρ

(∑
i

pif
(
ρφi

))

I f vanishes only on uncorrelated mixed states, but the required optimization makes
the procedure hardly effective



Estimates

I To estimate f we use the following theorem:

LetM a subset of the set of pure states on H. Assume three exist a Hermitian
operator (an observable) on H⊗H such that for an arbitrary |v〉 ∈ M and an
arbitrary |w〉 ∈ H

〈v⊗ w|V|v⊗ w〉 ≤ 0

then for an arbitrary B ≥ 0 acting on H and for an arbitrary ρ from the convex hull
ofM (i.e. for an arbitrary uncorrelated mixed state)

Tr((ρ⊗ B)V) ≤ 0

I at first sight a bit contrived, but A− Passym, with Passym = the projection on the
antisymmetric part

∧2H of the two-fold tensor product, fulfills the conditions
imposed on V

I Nonlinear correlation witness - if we find B such that Tr((ρ⊗ B)V) > 0 - ρ -
correlated

I We can choose B = ρ, one can show that f (ρ) ≥ Tr((ρ⊗ ρ)V) (and this is what
we were looking for!!!)

I Algorithm:
1. findH2µ as the largest irreducible part of the symmetrized tensor productH⊗H
2. calculate A (the projection on the complement of the above)
3. calculate V (by subtracting from A a projection on the antisymmetric part

∧2H



Applications

I For distinguishable particles - the Mintert-Buchleitner bound for the generalized
N-partite concurrence
(F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98, 140505 (2007))

I Generalization to indistinguishable particles
(M. Oszmaniec, M. K., Phys. Rev. A 88, 052328 (2013))

I Generalizations to infinite-dimensional Hilbert spaces for distinguishable and
indistinguishable particles - a bit tricky (no Lie group structure at hand)
(ibid.)

I Estimation of the fraction of (un)correlated states among all density matrices with
the same spectrum (via concentration of measure for transitive group actions)
(M. Oszmaniec, M. K. - in preparation)

I Identification of particular fermionic Gaussian states (see F. de Melo, P. Ćwikliński,
B. M. Terhal, The Power of Noisy Fermionic Quantum Computation, New J. Phys.
15 013015 (2013))
(ibid.)



Remarks, generalizations, outlook

I infinite dimensional case
I no (compact semisimple) group
I nevertheless some machinery works


