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Introduction

ρ and ρ′ are said to be LU equivalent if ρ′ = UρU†: U ∈ SU(2)×N

States belonging to the same LU equivalent class can be used for

similar kind of quantum information processing tasks as they posses

the same amount entanglement.
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Symmetric States

Set of N-qubit pure states that remain unchanged by permutations of
individual particles are called symmetric states.

Symmetric states offer elegant mathematical analysis as the dimension
of the Hilbert space reduces drastically from 2N to (N + 1).

Such a Hilbert space is considered to be spanned by the eigen states
{|j ,m〉;−j ≤ m ≤ +j} of angular momentum operators J2 and Jz ,
where j = N

2 .
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Symmetric States

Examples

Bell State −→


|ψ1〉 = |↑↑〉+|↓↓〉√

2

|ψ2〉 = |↑↑〉−|↓↓〉√
2

|ψ3〉 = |↑↓〉+|↓↑〉√
2

|ψW 〉 ≡ |↑↓↓〉+|↓↑↓〉+|↓↓↑〉√
3

.

|ψGHZ 〉 = |↑↑↑〉+|↓↓↓〉√
2

.
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Majorana Representation of Pure Symmetric States1

The most general spin-j pure state |ψj〉 is given by

|ψj〉 =

+j∑
m=−j

am |jm〉 (1)

Consider a rotation R(φ, θ, 0) of the frame of reference such that the
expansion coefficient a−j in the rotated frame vanishes i.e;

(a−j)
R = 0 = 〈j − j |R−1(φ, θ, 0)|ψj〉 =

∑
m

am〈j − j |R−1(φ, θ, 0)|jm〉

=
∑
m

am D
∗j
m−j(φ, θ, 0) =

∑
m

am (−)−(j+m) D j
−mj(φ, θ, 0), (2)

1E. Majorana, Nuovo Cimento 9 (1932) 43.
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Majorana Representation of Pure Symmetric States2

D j
−mj(φ, θ, 0) are the matrix elements of Wigner rotation matrices

D j
m′m(αβγ) = e−im

′αe−imγ
∑
s

(−)s
√

(j + m)!(j −m)!(j + m′)!(j −m′)!

s!(j − s −m′)!(j + m − s)!(m′ + s −m)!

×
(

cos
β

2

)2j+m−m′−2s (
−sin

β

2

)m′−m+2s

.

where s = j + m.

2M. E. Rose Elementary theory of angular momentum (John Wiley, New York, 1957).
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Majorana Representation of Pure Symmetric States

A
+j∑

m=−j
(−1)j+m

√
2j Cj+m am z j+m = 0 where

{
z = tan

(
θ
2

)
e iφ

A = cos2j
(
θ
2

)
e−iφj

P(z) =

+j∑
m=−j

(−1)j+m
√

2j Cj+m am z j+m = 0, for θ 6= π. (3)

A′
+j∑

m=−j
(−1)j+m

√
2j Cj+m am z ′

j−m
= 0 where

{
z ′ = 1

z = cot
(
θ
2

)
e−iφ

A′ = sin2j
(
θ
2

)
e iφj

P(z ′) =

+j∑
m=−j

(−1)j−m
√

2j Cj+m am z ′
j−m

= 0, for θ 6= 0. (4)
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Majorana Representation of Pure Symmetric States

Solving either of the polynomial equation one gets 2j solutions namely
{(θ1, φ1), (θ2, φ2), ..., (θ2j , φ2j)} in general. Thus every symmetric state
|ψj〉 can be represented by a constellation of 2j points on the Block sphere
or

|ψ2j
sym〉 = N

∑
P

P̂|ε1, ε2, ..., ε2j〉, (5)

where

|εk〉 = cos(θk/2)e−iφk/2 |0〉+ sin(θk/2)e iφk/2 |1〉, k = 0, 1, ..., 2j .

(6)

refer to the 2j spinors constituting the symmetric state |ψ2j
sym〉; P̂

corresponds to the set of (2j)! permutations of the spinors and N
corresponds to an overall normalization factor.
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Majorana Representation of Pure Symmetric States
(Examples)

Bell State

|ψ〉 = |11〉+|1−1〉√
2

≡ |↑↑〉+|↓↓〉√
2

z = e±i
π
2

(π2 ,
π
2 ), (π2 ,

3π
2 )
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Majorana Representation of Pure Symmetric States
(Examples)

Bell State

|ψ〉 = |11〉−|1−1〉√
2

≡ |↑↑〉−|↓↓〉√
2

z = ±1

(π2 , 0), (π2 , π)
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Majorana Representation of Pure Symmetric States
(Examples)

Bell State

|ψ〉 = |10〉 ≡ |↑↓〉+|↓↑〉√
2

z = 0

θ = 0, θ = π
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Majorana Representation of Pure Symmetric States
(Examples)

W State

|ψW 〉 = |3/2 − 1/2〉 ≡
|↑↓↓〉+|↓↑↓〉+|↓↓↑〉√

3
.

Z1,2,3 = 0

θ = 0, θ = π
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Majorana Representation of Pure Symmetric States
(Examples)

GHZ State

|ψGHZ 〉 =
| 3
2
, 3
2
〉+| 3

2
,− 3

2
〉√

2
≡

|↑↑↑〉+|↓↓↓〉√
2

.

Z = e
2πir
3 r = 0, 1, 2

(π2 , 0), (π2 ,
2π
3 ), (π2 ,

4π
3 )

— (-) - December 2013 14 / 56



Classification of Pure Symmetric States3

Degeneracy Number : Number of identical spinors |εi 〉

Degeneracy Configuration D{ni}: {ni} is the set of degeneracy
numbers ordered in decreasing order by convention.

Number of ni
′s defines the diversity degree of the symmetric state.

Diversity Degree: [d ]

3T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata and E. Solano, Phys. Rev. Lett. 103 (2009) 070503.
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Classification of Pure Symmetric States

Example (1)

|ψ〉 ∈ DN with d = 1; . Separable Class: |ψ〉 = N|εεε...〉

Example (2)

|ψ〉 ∈ DN−2,2 with d = 2; |ψ〉 = N
∑

P P̂|ε′ε′εε...〉.
Or
|ψ′〉 ∈ DN−2,1,1 with d = 3; |ψ′〉 = N

∑
P P̂|ε′ε′′εε...〉
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Classification of Pure Symmetric States

Such a classification based on Majorana representation is valid

for symmetric pure states only. Therefore we propose a novel scheme for

the most general symmetric pure as well as mixed state based on an

equally elegant multiaxial representation of the density matrix.
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Multiaxial Representation of Pure and Mixed Symmetric
States

A standard expression4 for the most general spin-j density matrix in terms
of Fano statistical tensor parameters tkq

′s

ρ(~J) =
Tr(ρ)

(2j + 1)

2j∑
k=0

+k∑
q=−k

tkq τ
k†
q (~J) , (7)

~J is the angular momentum operator with components Jx , Jy , Jz

τkq
′s (with τ00 = I ,the identity operator) are irreducible tensor

operators of rank k in the 2j + 1 dimensional spin space with
projection q along the axis of quantization in the real 3-dimensional
space.

4 U. Fano, Phys. Rev. 90 (1953) 577.
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Multiaxial Representation of Pure and Mixed Symmetric
States

Properties of τkq

The matrix elements of τkq : 〈jm′|τkq (~J)|jm〉 = [k] C (jkj ; mqm′)

C (jkj ; mqm′) are the Clebsch-Gordan coefficients

Orthogonality relations: Tr(τk
†

q τk
′

q′
) = (2j + 1) δkk ′ δqq′ .

τkq
′s in the rotated frame: (τkq )R =

∑+k
q′=−k Dk

q′q
(φ, θ, ψ) τk

q′
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Multiaxial Representation of Pure and Mixed Symmetric
States

Properties of tkq

Average Expectation Values : tkq = Tr(ρ τkq ).

Since ρ is Hermitian and τk
†

q = (−1)qτk−q =⇒ tk
∗

q = (−1)q tk−q

tkq
′s in the rotated frame: (tkq )R =

∑+k
q′=−k Dk

q′q
(φ, θ, ψ) tk

q′
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Multiaxial Representation of Pure and Mixed Symmetric
States5

Consider a rotation R(φ, θ, 0) of the frame of reference such that tkk in the
rotated frame vanishes.

(tkk )R = 0 =
∑
q

Dk
qk(φ, θ, 0) tkq . (8)

A.
∑
q

(−1)2(k−q)
√

2k Ck+q tkq zk−q = 0 where

{
z = tan

(
θ
2

)
e iφ

A = cos2k
(
θ
2

)
e−ikφ

P(z) =
∑

q(−1)2(k−q)
√

2k Ck+q tkq zk−q = 0

5G. Ramachandran and V. Ravishankar, J. Phys. G: Nucl. Phys. 12 (1986).
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Multiaxial Representation of Pure and Mixed Symmetric
States

A′.
∑
q

(−1)2(k−q)
√

2k Ck+q tkq z ′
k+q

= 0 where

{
A′ = sin2k

(
θ
2

)
e ikφ

z ′ = 1
z = cot

(
θ
2

)
e−iφ

P(z ′) =
∑

q(−1)2(k−q)
√

2k Ck+q tkq z ′
k+q

= 0

Since (tkk )∗ = (−1)ktk−k

(tkk )R = 0 =⇒ (tk−k)R = 0
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Multiaxial Representation of Pure and Mixed Symmetric
States

Which for every k leads to 2k solutions namely
{(θ1, φ1), (θ2, φ2), ..., (θk , φk), (π − θ1, π + φ1), ..., (π − θk , π + φk)}.

Thus the 2k solutions constitute k axes or k double headed arrows.

tkq=rk (...((Q̂(θ1,φ1)⊗Q̂(θ2,φ2))2⊗Q̂(θ3,φ3))3⊗...)k−1⊗Q̂(θk ,φk ))
k
q

(Q̂(θ1,φ1)⊗Q̂(θ2,φ2))2q=
∑

q1
C(11k;q1q2q)(Q̂(θ1,φ1))1q1 (Q̂(θ2,φ2))1q2

(Q̂(θ, φ))1q =
√

4π
3 Y1q(θ, φ)
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Multiaxial Representation of Pure and Mixed Symmetric
States

Thus, one can say that there exist two sets of k-coordinate frames in
which (tk±k) = 0.

Consequently, the symmetric state of N-qubit assembly can be represented
geometrically by a set of N spheres of different radii r1, r2, ..., rk
corresponding to each value of k. The kth sphere in general consists of a
constellation of 2k points on its surface specified by Q̂(θi , φi ) and
Q̂(π − θi , π + φi ); i = 1, 2, ..., k . In other words, every tk is specified by k
double headed arrows or axes.
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Local Unitary Invariants (LUI)6

Since (Q̂(θi , φi )⊗ Q̂(θj , φj))00 is an invariant under rotation, one can

construct in general C
j(2j+1)
2 invariants out of j(2j + 1) axes together with

2j real positive scalars specifying a spin-j density matrix. Here C
j(2j+1)
2

denotes binomial coefficient.

spin-1 or symmetric two qubit state is in general parametrized in
terms of 3 axes and 2 real scalars and has C 3

2 +2=5 invariants.

spin-3/2 or symmetric three qubit state is represented by 6 axes and 3
real scalars and has C 6

2 +3 =18 invariants

spin-2 or symmetric four qubit state is characterized by 10 axes and 4
real scalars and has C 10

2 +4=49 invariants.

6
S. Sirsi and V. Adiga, 2011 Journal of Russian Laser Research 5 (2011) No. 32

— (-) - December 2013 25 / 56



Classification of Pure and Mixed Symmetric States

Degeneracy number represents the number of identical axes
characterizing the given spherical tensor parameters tk .

Degeneracy configuration D{ni} of tk are the set of degeneracy
numbers {ni} ordered by convention in the decreasing order.

Number of ni
′s define the diversity degree of the given tk such that∑

i ni = k and k = 0, 1, ..., 2j .

In addition to the above, the rank k refers to the rank of tk .

Thus the notation for the degeneracy configuration of tk becomes
Dk
{ni}.

Every Spin-j state is in general characterized by 2j configurations.
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Classification of Pure and Mixed Symmetric States

Classes of Symmetric Two Qubit Systems

(i) {D1
1} −→ ρ is pure vector polarized (Uniaxial with t1q 6= 0).

(ii) {D2
2} −→ ρ is pure tensor polarized (Biaxial with t2q 6= 0).

(iii) {D1
1,D2

2} −→ (Triaxial with t1q 6= 0, t20 6= 0) .

(iv) {D1
1,D2

1,1} −→ (Triaxial with t1q 6= 0, t2q 6= 0 ).

Classes of Symmetric Three Qubit Systems

{D1
1,D2

2,D3
3}, {D1

1,D2
2,D3

2,1},

{D1
1,D2

2,D3
1,1,1}, {D1

1,D2
1,1,D3

3},

{D1
1,D2

1,1,D3
2,1}, {D1

1,D2
1,1,D3

1,1,1} .
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Examples (Separable State)

Let |ψj〉 = |ε, ε, ..., ε〉 be a separable state with diversity degree d = 1.

Canonical form of the most general separable state
|Sn〉 ≡ | ↑↑↑ ... ↑〉 ≡ |jj〉 in the some rotated frame of reference.

〈jj |ρ|jj〉 = 1
2j+1

∑2j
k=0 tk0 C (jkj ; q0q)

√
2k + 1 = 1.

In the density matrix language,

ρ =


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , (9)
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Examples (Separable State)

Equivalently, the state has to be constructed out of j(2j + 1)

axes which are collinear and not necessarily parallel to Z axis.

Therefore the degeneracy configuration of t1, t2, ..., tk of ρ must

be
{
D1

1,D2
2,D3

3, ...Dk
k

}
respectively with the understanding that

all the axes are collinear.
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Examples (Separable State)

Local Unitary Invariants (LUI) rk
′s

rk =
tk0

(Q̂(θ,ϕ)⊗Q̂(θ,ϕ)⊗...Q̂(θ,ϕ))k0
= [k]C(jkj ;j0j)

C(112;000).C(213;000)...C(k−11k;000)

=
[k] (2j)!

(
2j+1

(2j−1)!(2j+k+1)!

) 1
2

∏
n=1,.,k

n!
(n−1)!

(
2! 2(n−1)!

(2n)!

) 1
2

(10)

Two Qubit Separable
State

ρ =

 1 0 0
0 0 0
0 0 0

 =⇒

r0 = 1, r1 =
√

3
2 , r2 =

√
3
2 .

Three Qubit Separable State

ρ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =⇒ r0 =

1, r1 = 3√
5
, r2 =

√
3
2 , r3 = 1√

2
.
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Examples (Separable State)

If Tr(ρ2) = 1, compute all the tkq
′s.

Obtain the axes characterizing each tkq . −→

(i) Even if one of the axes is different from the rest,

then the state is not separable.

(ii) If all the axes are collinear, the state may be separable.

(iii) If all the axes are collinear, then compute the values of rk
′s.

(IV ) The given state is separable iff the set of rk
′s so obtained

is identical to the set given by (10).

If Tr(ρ2) < 1, it is not clear as to the procedure to be followed to test
the separability of a given N-qubit state as the definition of
entanglement for a mixed state itself is problematic.
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Examples (Bell State (ρ ∈ D2
2))

1 |ψ〉 = |11〉+|1−1〉√
2

≡ |↑↑〉+|↓↓〉√
2

2 ρ = 1
2

 1 0 1
0 0 0
1 0 1

 .

3

{
t20 = 1√

2

t2±2 =
√
3
2

4 (π2 ,
π
2 ) , (π2 ,

3π
2 ) .

5 t2 ∈ D2
2

6 r2 =
√

3

rk=
[k] (2j)!

(
2j+1

(2j−1)!(2j+k+1)!

) 1
2

∏
n=1,.,k

n!
(n−1)!

(
2! 2(n−1)!

(2n)!

) 1
2
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Examples (Triaxial Pure State ρ ∈ {D1
1,D2

1,1} or {D1
1,D2

2})

This state can be generated by the time evolution operator U(t, t0)
commonly found in quantum optics processes involving two intense laser
beams with the same arbitrary amplitude modulation.

U(t, t0) = 1− i
1

ν
H0sin

(
ν

∫ t

t0

f (τ)dτ

)
+

1

ν2
H2
0cos

(
ν

∫ t

t0

f (τ)dτ)− 1

)
.

ρ = |ψ〉〈ψ| =

 4a2b2

ν4
0 2ab

ν4
(a2 − b2)

0 0 0
2ab
ν4

(a2 − b2) 0 1
ν4

(a2 − b2)2



t10 = −
√

3
2 + 4

√
6a2b2

ν4
, t20 = 1√

2
, t2±2 = 2

√
3ab
ν4

(a2 − b2) .
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Examples ( ρ ∈ {D1
1,D2

2,D3
3})

|ψW 〉 ≡= |3/2 − 1/2〉.

ρW =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



t1 ∈ D1
1, t2 ∈ D2

2 and t3 ∈ D3
3

t10 = −1√
5
, t20 = −1, t30 = 3√

5
.

rk=
[k] (2j)!

(
2j+1

(2j−1)!(2j+k+1)!

) 1
2

∏
n=1,.,k

n!
(n−1)!

(
2! 2(n−1)!

(2n)!

) 1
2

r1 = 1√
2
, r2 =

√
3
2 , r3 = 3√

5
.

all the 6 axes are collinear and parallel to Z axis
— (-) - December 2013 34 / 56



W State

Figure: Multiaxial representation of t1, t2 and t3 characterizing the W state.
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Examples (GHZ State (ρ ∈ {D2
2,D3

1,1,1})

|ψGHZ 〉 =
| 3
2
, 3
2
〉+| 3

2
,− 3

2
〉√

2
.

ρGHZ = 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

t20 = 1 , t33 = −1 , t3−3 = 1.

t2 ∈ D2
2 and t3 ∈ D3

1,1,1

r2 =
√

3
2 , r3 = 2

√
2

(π2 , 0), (π2 , π), (π2 ,
π
3 ), (π2 ,

4π
3 ), (π2 ,

2π
3 ), (π2 ,

5π
3 )

rk=
[k] (2j)!

(
2j+1

(2j−1)!(2j+k+1)!

) 1
2

∏
n=1,.,k

n!
(n−1)!

(
2! 2(n−1)!

(2n)!

) 1
2
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GHZ State

Figure: Multiaxial representation of t2 and t3 characterizing the GHZ state.
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Examples (Mixed States)
Uniaxial Systems (ρ ∈ D1

1)

ρ = 1
3


1 +

√
3
2 r1cosθ1

√
3
2 r1sinθ1e−iϕ1 0

√
3
2 r1sinθ1e iϕ1 1

√
3
2 r1sinθ1e−iϕ1

0
√
3
2 r1sinθ1e iϕ1 1−

√
3
2 r1cosθ1

 .

ρ ∈ D1
1 (t1q 6= 0, t2q = 0)

t10 = r1 cosθ1 , t1±1 = r1√
2

sinθ1e∓iϕ1

ρ is positive semi-definite iff 0 < r1 ≤
√

2
3

ρ is entangled for 1√
2
≤ r1 ≤

√
2
3 for all values of θ (0 ≤ θ ≤ π)

Tr(ρ2) = 1
3 [1 + r21 ] < 1, hence this class consists of mixed states only.
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Examples (Mixed States)
Biaxial Systems (ρ ∈ D2

1,1 or D2
2)

ρ = 1
3


1 + 1

2
√
3

r2(1 + cos2θ) 0 −
√
3

2 r2sin2θ

0 1− 1√
3

r2(1 + cos2θ) 0
−
√
3

2 r2sin2θ 0 1 + 1
2
√
3

r2

 .

ρ ∈ D2
1,1 or D2

2) (t1q = 0, t2q 6= 0)

t20 = r2√
6

(1 + cos2θ) , t2±2 = −r2
2 sin2θ

ρ ∈ D2
1,1 for 0 < θ < π

2 and π
2 < θ < π

ρ ∈ D2
2 for θ = 0, π2 , π

ρ is positive semi-definite iff 0 < r2 ≤
√

3 and the range of θ then
depends on r2.

ρ is positive semi-definite and separable iff 0 < r2 ≤
√
3
4 and

0 ≤ θ ≤ π.

For r2 =
√

3 and θ = π
2 , ρ is pure as well as entangled.
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Examples (Mixed States)
Triaxial Systems (ρ ∈ {D1

1,D2
1,1} or {D1

1,D2
2})

ρ = 1
3

 1+
√

3
2
r1+

1
2
√
3
r2(1+cos2θ) 0 −

√
3

2
r2sin2θ

0 1− 1√
3
r2(1+cos2θ) 0

−
√

3
2

r2sin2θ 0 1−
√

3
2
r1+

1
2
√
3
r2(1+cos2θ)


ρ ∈ {D1

1,D2
1,1} or {D1

1,D2
2} (t1q 6= 0, t2q 6= 0)

t10 = r1 , t20 = r2√
6

(1 + cos2θ) , t2±2 = −r2
2 sin2θ

ρ ∈
{
D1

1 ,D2
1,1

}
for 0 < θ < π

2 and π
2 < θ < π.

ρ ∈
{
D1

1 ,D2
2

}
for θ = 0, π2 , π.

For r1 =
√

3
2 and r2 =

√
3
2 this class is pure as well as separable only

for θ = 0, π.
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

In order to bring out the similarities and the differences between MR and
MAR, we take up the N-qubit GHZ state for a detailed investigation.
Consider symmetric N-qubit GHZ state

|ψGHZ 〉 =
1√
2

[
|N

2

N

2
〉+ |N

2

−N

2
〉
]
≡ 1√

2

[
|jj〉+ |j − j〉

]
.
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

MR of GHZ State:
(−1)2jZ 2j + 1 = 0

Depending on whether N is odd or even we have the following solutions:

Odd N(Half odd integral j) :

Z = e
2πi
2j

r ; r = 0, 1, 2, ..., 2j − 1

.
The 2j distinct spinors characterizing N (odd)-qubit GHZ state are

(
π

2
, 0), (

π

2
,

2π

2j
), (

π

2
,

4π

2j
), ...., (

π

2
,

2(2j − 1)π

2j
).
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

MR of GHZ State:

Even N(integral j ):

Z = e
2πi
2j

(r− 1
2
); r = 0, 1, 2, ..., 2j − 1

.
The 2j distinct spinors characterizing N (even)− qubit GHZ state are

(
π

2
,
π

2j
), (

π

2
,

3π

2j
), (

π

2
,

5π

2j
), ...., (

π

2
,

(4j − 1)π

2j
)

or equivalently j distinct axes.
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

According to Bastin et, al.3, N-qubit GHZ state belong to

DN
1, 1, 1 . . . 1︸ ︷︷ ︸

N

or equivalently
D2j

1, 1, 1 . . . 1︸ ︷︷ ︸
2j

for both odd and even N ′s.

3T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata and E. Solano, Phys. Rev. Lett. 103 (2009) 070503.
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

MAR of GHZ State:

To find out the axes, consider the density matrix of N-qubit GHZ state in
the |jm〉 basis; m = +j ...− j

ρGHZ =
1

2


1 0 . . . 1
0 0 . . . 0
...

...
. . .

...
1 0 . . . 1

 .

As in the case of MR, here also we take up the case of odd N and even N
separately.
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

Odd N (half odd integral j):

Since t2j±2j is the only non-zero parameter

t2 ∈ D2
2, t4 ∈ D4

4 . . . t
2j−1 ∈ D2j−1

2j−1 .

There exist 4j solutions or 2j axes namely

(
π

2
, 0), (

π

2
,
π

2j
), (

π

2
,

2π

2j
) . . . (

π

2
,

(4j − 1)π

2j
).

Thus
t2j ∈ D2j

1, 1, 1 . . . 1︸ ︷︷ ︸
2j

The degeneracy configuration of N-qubit GHZ state for odd N is

{D2
2,D4

4,D6
6, ...,D

2j−1
2j−1,D

2j

1, 1, 1 . . . 1︸ ︷︷ ︸
2j

} .
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

Even N (integral j):

Since t2j0 6= 0 and t2j±2j 6= 0

t2 ∈ D2
2, t4 ∈ D4

4 . . . t
2j−2 ∈ D2j−2

2j−2 .

There exist two identical sets of solutions or j axes namely

(
π

2
,
π

2j
), (

π

2
,

3π

2j
), (

π

2
,

5π

2j
)...(

π

2
,

(4j − 1)π

2j
).

Thus
t2j ∈ D2j

2, 2 . . . 2︸ ︷︷ ︸
j

The degeneracy configuration of N-qubit GHZ state for even N is

{D2
2, D4

4, D6
6, ...,D

2j−2
2j−2, D

2j

2, 2 . . . 2︸ ︷︷ ︸
j

} .
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

MR of 3-qubit GHZ state:

1 |ψGHZ 〉 =
| 3
2
, 3
2
〉+| 3

2
,− 3

2
〉√

2
≡ |↑↑↑〉+|↓↓↓〉√

2

2 Z 3 = 1.

3 (π2 , 0), (π2 ,
2π
3 ), (π2 ,

4π
3 ).

4 |ψGHZ 〉 ∈ D3
1,1,1 .

Z

Y

X
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

MAR of 3-qubit GHZ state:

ρGHZ = 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

t20 = 1 , t33 = −1 , t3−3 = 1 .

(π2 , 0), (π2 , π), (π2 ,
π
3 ), (π2 ,

4π
3 ), (π2 ,

2π
3 ), (π2 ,

5π
3 ).

t2 ∈ D2
2, t3 ∈ D3

1,1,1

ρ ∈ {D2
2, D3

1,1,1}.
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

Figure: Multiaxial representation of t2 and t3 characterizing the GHZ state.
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

MR of 4-qubit GHZ state:

1 |ψGHZ 〉 = |2,2〉+|2,−2〉√
2

.

2 Z 4 = −1

3 (π2 ,
π
4 ), (π2 ,

3π
4 ), (π2 ,

5π
4 ), (π2 ,

7π
4 ).

4 |ψGHZ 〉 ∈ D4
1,1,1,1.

Z

Y

X
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

MAR of 4-qubit GHZ state:

ρGHZ = 1
2


1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1

 .

t20 =
√

10
7 , t40 = 1√

14
, t44 =

√
5
2 , t4−4 =

√
5
2 .

(π2 ,
π
4 ), (π2 ,

3π
4 ), (π2 ,

5π
4 ), (π2 ,

7π
4 .

t2 ∈ D2
2 , t4 ∈ D4

2,2

ρ ∈ {D2
2, D4

2,2} .
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Comparison between Majorana Representation and
Multiaxial Representation of the GHZ State

MAR of 4-qubit GHZ state:

Figure: Multiaxial representation of t2 and t4 characterizing the GHZ state.
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Conclusion

We have developed a method of classifying LU equivalent classes of
symmetric N-qubit mixed states based on the little known Multiaxial
representation of the density matrix.

Multiaxial representation is more general than the Majorana
representation as it can be applied to pure as well as mixed states.

Our classification is characterized by three parameters namely
diversity degree, degeneracy configuration and rank.

A comparative study of Majorana representation and Multiaxial
representation for the N-qubit GHZ state has been carried out to
bring out the differences and similarities between the two
representations. We have shown that Majorana representation is not
a special case of the Multiaxial representation.

Recipe for identifying N-qubit pure separable state is described in
detail and the method is tested for some well known examples of
symmetric two and three qubit pure states.

We illustrate with examples, the classification of uniaxial, Biaxial and
triaxial mixed states which can be produced in the laboratory. It is
not clear as to why for certain configuration of the axes and certain
values of rk , the mixed states exhibit entanglement.

An indepth study of the onset of entanglement as a function of some
suitable combination of LUI is needed and will be taken up in the near
future.
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Thank You
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