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Clauser-Horne-Shimony-Holt inequality

Two distant parties – Alice and Bob – share a quantum state.

Alice measures observable Ax and obtains a result a.

Bob measures observable By and obtains a result b.

pCHSH = 1
4

∑1
x ,y=0 p(a⊕ b = xy |xy)
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Clauser-Horne-Shimony-Holt inequality

pCHSH = 1
4

∑1
x ,y=0 p(a⊕ b = xy |xy)

pCHSH = 1
4(p(a⊕ b = 0|0, 0) + p(a⊕ b = 0|0, 1) + p(a⊕ b =

0|1, 0) + p(a⊕ b = 1|1, 1))

!
x=0! x=1!

y=0! y=1!

Hence, classical theory can give value

pLRCHSH ≤
3
4 .
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What value of pCHSH can quantum mechanics give?

pCHSH = 1
4

∑1
x ,y=0 p(a⊕ b = xy |xy)

|φ+〉 = 1√
2

(|0〉|0〉+ |1〉|1〉)

Alice performs measurement in one of two blue bases.

Bob performs measurement in one of two red bases.
!

pQCHSH ≤
2+
√
2

4 = 0.85

4 / 28



Scenario

Two distant parties – Alice and Bob

Alice obtains x

Bob obtains y

Task: Bob has to calculate value of a function f (x , y) under the
condition that Alice can send to Bob at most k bits of information.
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Simple example

Alice obtains two bits x0 i x1

Bob obtains bit y

Task: Bob has to give value of a bit xy , under the condition that
Alice can send to Bob at most 1 bit of information.

M. Paw lowski, M. Żukowski, Phys. Rev. A 2010
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Simple example – classical strategy

Alice can send to Bob x0 or x1.

Bob returns bit sent by Alice.

The probability that bit sent by Alice has value xy is

p = 0.5× 1 + 0.5× 0.5 = 0.75
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Simple example – quantum strategy

|φ+〉 = 1√
2

(|0〉|0〉+ |1〉|1〉)

Alice performs measurement in a basis

|a = 0〉x = cos(πx4 )|0〉+ sin(πx4 )|1〉
|a = 1〉x = sin(πx4 )|0〉 − cos(πx4 )|1〉

where x = x0 ⊕ x1 ⊕ 1

!
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Simple example – quantum strategy

|φ+〉 = 1√
2

(|0〉|0〉+ |1〉|1〉)

Bob performs measurement in a basis

|b = 0〉y = cos(πy4 + π
8 )|0〉+ sin(πy4 + π

8 ))|1〉
|b = 1〉y = sin(πy4 + π

8 )|0〉 − cos(πy4 + π
8 ))|1〉

!
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Simple example – quantum strategy

Alice sends to Bob m = a⊕ x0.

Bob calculates xy = m ⊕ b.

p = 0.85
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Simple example

For optimal classical strategy the probability that Bob gives correct
value is 0.75.

For optimal quantum strategy the probability that Bob gives
correct value is 0.85.
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Universal scheme

Definitions

pA =
∑

x ,y p(a = 1|x , y)µ(x , y)

pB =
∑

x ,y p(b = f (x , y)|x , y , a = 1)µ(x , y)

 L. Czekaj, A. Grudka, M. Horodecki, P. Horodecki, and M.
Markiewicz, arXiv 2013
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Universal scheme

Alice performs the same measurement on many copies of state
ρAB .

On average one per m = 1
pA

measurements will give the correct
result.
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Universal scheme

Alice has to send to Bob logm = − log pA bits of information in
order to identify the correct state.

If Bob performs measurement on this state then with probability
pB he calculates a value of f (x , y).
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Universal scheme

Let us suppose that in order to calculate a value of f (x , y) with
probability pB using classical resources Alice has to send to Bob

C (pB , n) bits of classical information.

Bell inequality

− log pA ≥ C (pB , n)
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Remote state preparation

Alice and Bob share a maximally entangled state of dimension d .

Alice performs measurement in a basis containing vector |ψx〉∗.
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A. Pati, Phys. Rev. A 2000

C. H. Bennett et al, Phys. Rev. Lett. 2001
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Remote state preparation

If Alice obtains a result |ψx〉∗ then she prepares on Bob’s side a
state |ψx〉∗.

The result |ψx〉∗ happens with probability pA = 1
d .

0 1 0 1

0 1 0 1

0 0 1

x y

0 1ψx
ψx

"

x y

a b

a)

b)

message

correlations

m
ea
ss
ur
em

en
ts

1

m
eassurem

ents

A. Pati, Phys. Rev. A 2000

C. H. Bennett et al, Phys. Rev. Lett. 2001
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Universal scheme

There exist quantum protocols which require sending Q(pB , n)
qubits in a joint state |ψx〉.

Alice and Bob share many copies of maximally entangled state of
dimension d = 2Q .

Alice performs on each copy measurement in a basis containing
vector |ψx〉∗.
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Universal scheme

On average one per m = 1
pA

measurements she obtains a result
|ψx〉∗ and prepares on Bob’s side a state |ψx〉∗.

Alice has to send to Bob log d = Q(pB , n) bits of information, in
order to identify the correct state.

It is like Alice would send Q(pB , n) qubits.
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Universal scheme

If Bob performs measurement on this state then with probability
pB he calculates a value of f (x , y).
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Universal scheme

Alice and Bob share k
pA

copies of state

Probability that Alice obtains the correct result for at least one
measurement is

p′A = 1− (1− pA)
k
pA

p′A ≥ 1− 2−k

Probability of success

pS = (1− δ)pB + δ
2

δ = 2−k
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Universal scheme

The number of bits that Alice has to send to Bob

log k
pA

+ 1 = log 1
pA

+ log log 1
δ + 1

Bell inequality

log 1
pA

+ log log 1
δ + 1 ≥ C ((1− δ)pB + δ

2 , n)
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Universal scheme

C (23 , n)

C (p, n) ≥ 1
3(p − 1

2)2C (23 , n)

for 1
2 < p < 2

3

Otherwise repeating the protocol several times and taking majority
voting the parties can achieve smaller C (23 , n).
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Example

Vector subspace problem

Alice obtains description of n-dimensional vector v .

Bob obtains description of two n
2 -dimensional subspaces H i H⊥.

Assumption: v ∈ H or v ∈ H⊥.

Problem: Bob has to decide if v ∈ H, or if v ∈ H⊥.
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Example

Classical strategy

C (2/3, n) ≥ cn1/3

Quantum strategy

Φiso = pΦ+
n + (1− p) I

n2

pA = 1
n

pS ≥ 2
3

log n − log log δ > cn1/3

25 / 28



Example

Classical strategy

C (2/3, n) ≥ cn1/3

Quantum strategy

Φiso = pΦ+
n + (1− p) I

n2

pA = 1
n

pS <
2
3

log n − log log δ > c 1
3(p − 1

2)2n1/3
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Example
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Conclusions

Universal scheme for obtaining Bell inequalities from quantum
advantage in communication complexity.

Violation of constructed Bell inequality on example of vector
subspace problem.
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