Simple Method of Obtaining Bell Inequalities from Quantum Advantage in One Way-Communication Complexity

Łukasz Czekaj, Andrzej Grudka, Michał Horodecki, Paweł Horodecki, Marcin Markiewicz

Meeting on Quantum Information Processing and Applications, December 2-8, 2013, HRI, Allahabad

Clauser-Horne-Shimony-Holt inequality

Two distant parties - Alice and Bob - share a quantum state.
Alice measures observable A_{x} and obtains a result a.

Bob measures observable B_{y} and obtains a result b.

$$
p_{C H S H}=\frac{1}{4} \sum_{x, y=0}^{1} p(a \oplus b=x y \mid x y)
$$

Clauser-Horne-Shimony-Holt inequality

$$
p_{C H S H}=\frac{1}{4} \sum_{x, y=0}^{1} p(a \oplus b=x y \mid x y)
$$

$$
\begin{gathered}
p_{C H S H}=\frac{1}{4}(p(a \oplus b=0 \mid 0,0)+p(a \oplus b=0 \mid 0,1)+p(a \oplus b= \\
0 \mid 1,0)+p(a \oplus b=1 \mid 1,1))
\end{gathered}
$$

Hence, classical theory can give value

$$
p_{C H S H}^{L R} \leq \frac{3}{4} .
$$

What value of $p_{\text {CHSH }}$ can quantum mechanics give?

$$
\begin{gathered}
p_{C H S H}=\frac{1}{4} \sum_{x, y=0}^{1} p(a \oplus b=x y \mid x y) \\
\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)
\end{gathered}
$$

Alice performs measurement in one of two blue bases.
Bob performs measurement in one of two red bases.

$$
p_{C H S H}^{Q} \leq \frac{2+\sqrt{2}}{4}=0.85
$$

Scenario

Two distant parties - Alice and Bob
Alice obtains x

Bob obtains y
Task: Bob has to calculate value of a function $f(x, y)$ under the condition that Alice can send to Bob at most k bits of information.

Simple example

Alice obtains two bits x_{0} i x_{1}

Bob obtains bit y

Task: Bob has to give value of a bit x_{y}, under the condition that Alice can send to Bob at most 1 bit of information.
M. Pawłowski, M. Żukowski, Phys. Rev. A 2010

Simple example - classical strategy

Alice can send to Bob x_{0} or x_{1}.

Bob returns bit sent by Alice.

The probability that bit sent by Alice has value x_{y} is

$$
p=0.5 \times 1+0.5 \times 0.5=0.75
$$

Simple example - quantum strategy

$$
\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)
$$

Alice performs measurement in a basis

$$
\begin{gathered}
|a=0\rangle_{x}=\cos \left(\frac{\pi x}{4}\right)|0\rangle+\sin \left(\frac{\pi x}{4}\right)|1\rangle \\
|a=1\rangle_{x}=\sin \left(\frac{\pi x}{4}\right)|0\rangle-\cos \left(\frac{\pi x}{4}\right)|1\rangle \\
\text { where } x=x_{0} \oplus x_{1} \oplus 1
\end{gathered}
$$

Simple example - quantum strategy

$$
\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)
$$

Bob performs measurement in a basis

$$
\begin{aligned}
& \left.|b=0\rangle_{y}=\cos \left(\frac{\pi y}{4}+\frac{\pi}{8}\right)|0\rangle+\sin \left(\frac{\pi y}{4}+\frac{\pi}{8}\right)\right)|1\rangle \\
& \left.|b=1\rangle_{y}=\sin \left(\frac{\pi y}{4}+\frac{\pi}{8}\right)|0\rangle-\cos \left(\frac{\pi y}{4}+\frac{\pi}{8}\right)\right)|1\rangle
\end{aligned}
$$

Simple example - quantum strategy

Alice sends to Bob $m=a \oplus x_{0}$.
Bob calculates $x_{y}=m \oplus b$.

$$
p=0.85
$$

Simple example

For optimal classical strategy the probability that Bob gives correct value is 0.75 .

For optimal quantum strategy the probability that Bob gives correct value is 0.85 .

Universal scheme

Definitions

$$
\begin{gathered}
p_{A}=\sum_{x, y} p(a=1 \mid x, y) \mu(x, y) \\
p_{B}=\sum_{x, y} p(b=f(x, y) \mid x, y, a=1) \mu(x, y)
\end{gathered}
$$

Ł. Czekaj, A. Grudka, M. Horodecki, P. Horodecki, and M. Markiewicz, arXiv 2013

Universal scheme

Alice performs the same measurement on many copies of state $\rho_{A B}$.

On average one per $m=\frac{1}{p_{A}}$ measurements will give the correct result.

Universal scheme

Alice has to send to Bob $\log m=-\log p_{A}$ bits of information in order to identify the correct state.

If Bob performs measurement on this state then with probability p_{B} he calculates a value of $f(x, y)$.

Universal scheme

Let us suppose that in order to calculate a value of $f(x, y)$ with probability p_{B} using classical resources Alice has to send to Bob $C\left(p_{B}, n\right)$ bits of classical information.

Bell inequality
$-\log p_{A} \geq C\left(p_{B}, n\right)$

Remote state preparation

Alice and Bob share a maximally entangled state of dimension d.

Alice performs measurement in a basis containing vector $\left|\psi_{x}\right\rangle^{*}$.

A. Pati, Phys. Rev. A 2000
C. H. Bennett et al, Phys. Rev. Lett. 2001

Remote state preparation

If Alice obtains a result $\left|\psi_{x}\right\rangle^{*}$ then she prepares on Bob's side a state $\left|\psi_{x}\right\rangle^{*}$.

The result $\left|\psi_{x}\right\rangle^{*}$ happens with probability $p_{A}=\frac{1}{d}$.

A. Pati, Phys. Rev. A 2000
C. H. Bennett et al, Phys. Rev. Lett. 2001

Universal scheme

There exist quantum protocols which require sending $Q\left(p_{B}, n\right)$ qubits in a joint state $\left|\psi_{x}\right\rangle$.

Alice and Bob share many copies of maximally entangled state of dimension $d=2^{Q}$.

Alice performs on each copy measurement in a basis containing vector $\left|\psi_{x}\right\rangle^{*}$.

Universal scheme

On average one per $m=\frac{1}{p_{A}}$ measurements she obtains a result $\left|\psi_{x}\right\rangle^{*}$ and prepares on Bob's side a state $\left|\psi_{x}\right\rangle^{*}$.

Alice has to send to Bob $\log d=Q\left(p_{B}, n\right)$ bits of information, in order to identify the correct state.

It is like Alice would send $Q\left(p_{B}, n\right)$ qubits.

Universal scheme

If Bob performs measurement on this state then with probability p_{B} he calculates a value of $f(x, y)$.

Universal scheme

Alice and Bob share $\frac{k}{p_{A}}$ copies of state
Probability that Alice obtains the correct result for at least one measurement is

$$
\begin{gathered}
p_{A}^{\prime}=1-\left(1-p_{A}\right)^{\frac{k}{p_{A}}} \\
p_{A}^{\prime} \geq 1-2^{-k}
\end{gathered}
$$

Probability of success

$$
\begin{gathered}
p_{S}=(1-\delta) p_{B}+\frac{\delta}{2} \\
\delta=2^{-k}
\end{gathered}
$$

Universal scheme

The number of bits that Alice has to send to Bob

$$
\log \frac{k}{p_{A}}+1=\log \frac{1}{p_{A}}+\log \log \frac{1}{\delta}+1
$$

Bell inequality

$$
\log \frac{1}{p_{A}}+\log \log \frac{1}{\delta}+1 \geq C\left((1-\delta) p_{B}+\frac{\delta}{2}, n\right)
$$

Universal scheme

$$
\begin{gathered}
C\left(\frac{2}{3}, n\right) \\
C(p, n) \geq \frac{1}{3}\left(p-\frac{1}{2}\right)^{2} C\left(\frac{2}{3}, n\right) \\
\text { for } \frac{1}{2}<p<\frac{2}{3}
\end{gathered}
$$

Otherwise repeating the protocol several times and taking majority voting the parties can achieve smaller $C\left(\frac{2}{3}, n\right)$.

Example

Vector subspace problem

Alice obtains description of n-dimensional vector v.
Bob obtains description of two $\frac{n}{2}$-dimensional subspaces H i H^{\perp}.

$$
\text { Assumption: } v \in H \text { or } v \in H^{\perp} \text {. }
$$

Problem: Bob has to decide if $v \in H$, or if $v \in H^{\perp}$.

Example

Classical strategy

$$
C(2 / 3, n) \geq c n^{1 / 3}
$$

Quantum strategy

$$
\begin{gathered}
\Phi_{\text {iso }}=p \Phi_{n}^{+}+(1-p) \frac{\mathbb{I}}{n^{2}} \\
p_{A}=\frac{1}{n} \\
p_{S} \geq \frac{2}{3}
\end{gathered}
$$

$$
\log n-\log \log \delta>c n^{1 / 3}
$$

Example

Classical strategy

$$
C(2 / 3, n) \geq c n^{1 / 3}
$$

Quantum strategy

$$
\begin{gathered}
\Phi_{\text {iso }}=p \Phi_{n}^{+}+(1-p) \frac{\mathbb{I}}{n^{2}} \\
p_{A}=\frac{1}{n} \\
p_{S}<\frac{2}{3}
\end{gathered}
$$

$$
\log n-\log \log \delta>c \frac{1}{3}\left(p-\frac{1}{2}\right)^{2} n^{1 / 3}
$$

Example

Conclusions

Universal scheme for obtaining Bell inequalities from quantum advantage in communication complexity.

Violation of constructed Bell inequality on example of vector subspace problem.

