Simple Method of Obtaining Bell Inequalities from Quantum Advantage in One Way-Communication Complexity

Łukasz Czekaj, Andrzej Grudka, Michał Horodecki, Paweł Horodecki, Marcin Markiewicz

Meeting on Quantum Information Processing and Applications, December 2-8, 2013, HRI, Allahabad

Two distant parties – Alice and Bob – share a quantum state.

Alice measures observable A_x and obtains a result *a*.

Bob measures observable B_y and obtains a result b.

$$p_{CHSH} = \frac{1}{4} \sum_{x,y=0}^{1} p(a \oplus b = xy|xy)$$

Clauser-Horne-Shimony-Holt inequality

$$p_{CHSH} = \frac{1}{4} \sum_{x,y=0}^{1} p(a \oplus b = xy|xy)$$

$$p_{CHSH} = rac{1}{4}(p(a \oplus b = 0|0, 0) + p(a \oplus b = 0|0, 1) + p(a \oplus b = 0|1, 0) + p(a \oplus b = 1|1, 1))$$

Hence, classical theory can give value

$$\mathcal{P}_{CHSH}^{LR} \leq \frac{3}{4}$$
.

3/28

What value of p_{CHSH} can quantum mechanics give?

$$egin{aligned} p_{CHSH} &= rac{1}{4} \sum_{x,y=0}^{1} p(a \oplus b = xy | xy) \ &|\phi^+
angle &= rac{1}{\sqrt{2}} (|0
angle | 0
angle + |1
angle | 1
angle) \end{aligned}$$

Alice performs measurement in one of two blue bases.

Bob performs measurement in one of two red bases.

$$p_{CHSH}^Q \leq \frac{2+\sqrt{2}}{4} = 0.85$$

Two distant parties – Alice and Bob

Alice obtains x

Bob obtains y

Task: Bob has to calculate value of a function f(x, y) under the condition that Alice can send to Bob at most k bits of information.

Alice obtains two bits x_0 i x_1

Bob obtains bit y

Task: Bob has to give value of a bit x_y , under the condition that Alice can send to Bob at most 1 bit of information.

M. Pawłowski, M. Żukowski, Phys. Rev. A 2010

Alice can send to Bob x_0 or x_1 .

Bob returns bit sent by Alice.

The probability that bit sent by Alice has value x_y is

 $p = 0.5 \times 1 + 0.5 \times 0.5 = 0.75$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

7 / 28

Simple example – quantum strategy

$$|\phi^+
angle=rac{1}{\sqrt{2}}(|0
angle|0
angle+|1
angle|1
angle)$$

Alice performs measurement in a basis

$$\begin{aligned} |a = 0\rangle_x &= \cos(\frac{\pi x}{4})|0\rangle + \sin(\frac{\pi x}{4})|1\rangle \\ |a = 1\rangle_x &= \sin(\frac{\pi x}{4})|0\rangle - \cos(\frac{\pi x}{4})|1\rangle \\ & \text{where } x = x_0 \oplus x_1 \oplus 1 \end{aligned}$$

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

8/28

$$|\phi^+
angle=rac{1}{\sqrt{2}}(|0
angle|0
angle+|1
angle|1
angle)$$

Bob performs measurement in a basis

$$\begin{array}{l} |b=0\rangle_y=\cos(\frac{\pi y}{4}+\frac{\pi}{8})|0\rangle+\sin(\frac{\pi y}{4}+\frac{\pi}{8}))|1\rangle\\ |b=1\rangle_y=\sin(\frac{\pi y}{4}+\frac{\pi}{8})|0\rangle-\cos(\frac{\pi y}{4}+\frac{\pi}{8}))|1\rangle\end{array}$$

Alice sends to Bob
$$m = a \oplus x_0$$
.

Bob calculates $x_y = m \oplus b$.

p = 0.85

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

For optimal classical strategy the probability that Bob gives correct value is 0.75.

For optimal quantum strategy the probability that Bob gives correct value is 0.85.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Definitions

$$p_A = \sum_{x,y} p(a = 1|x, y) \mu(x, y)$$
$$p_B = \sum_{x,y} p(b = f(x, y)|x, y, a = 1) \mu(x, y)$$

Ł. Czekaj, A. Grudka, M. Horodecki, P. Horodecki, and M. Markiewicz, arXiv 2013

Alice performs the same measurement on many copies of state $\rho_{AB}.$

On average one per $m = \frac{1}{p_A}$ measurements will give the correct result.

Alice has to send to Bob log $m = -\log p_A$ bits of information in order to identify the correct state.

If Bob performs measurement on this state then with probability p_B he calculates a value of f(x, y).

Let us suppose that in order to calculate a value of f(x, y) with probability p_B using classical resources Alice has to send to Bob $C(p_B, n)$ bits of classical information.

Bell inequality

 $-\log p_A \geq C(p_B, n)$

<ロ> (四) (四) (三) (三) (三) (三)

15/28

Alice and Bob share a maximally entangled state of dimension d.

Alice performs measurement in a basis containing vector $|\psi_x\rangle^*$.

A. Pati, Phys. Rev. A 2000

C. H. Bennett et al, Phys. Rev. Lett. 2001

イロン イヨン イヨン イヨン

If Alice obtains a result $|\psi_x\rangle^*$ then she prepares on Bob's side a state $|\psi_x\rangle^*$.

The result $|\psi_x\rangle^*$ happens with probability $p_A = \frac{1}{d}$.

A. Pati, Phys. Rev. A 2000

C. H. Bennett et al, Phys. Rev. Lett. 2001

(ロ) (同) (E) (E) (E)

There exist quantum protocols which require sending $Q(p_B, n)$ qubits in a joint state $|\psi_x\rangle$.

Alice and Bob share many copies of maximally entangled state of dimension $d = 2^Q$.

Alice performs on each copy measurement in a basis containing vector $|\psi_{\chi}\rangle^{*}$.

Universal scheme

On average one per $m = \frac{1}{p_A}$ measurements she obtains a result $|\psi_x\rangle^*$ and prepares on Bob's side a state $|\psi_x\rangle^*$.

Alice has to send to Bob log $d = Q(p_B, n)$ bits of information, in order to identify the correct state.

It is like Alice would send $Q(p_B, n)$ qubits.

If Bob performs measurement on this state then with probability p_B he calculates a value of f(x, y).

3

Alice and Bob share
$$\frac{k}{p_A}$$
 copies of state

Probability that Alice obtains the correct result for at least one measurement is

$$p'_A = 1 - (1 - p_A)^{rac{k}{p_A}}$$
 $p'_A \ge 1 - 2^{-k}$

Probability of success

 $p_S = (1 - \delta)p_B + rac{\delta}{2}$ $\delta = 2^{-k}$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

The number of bits that Alice has to send to Bob

$$\log rac{k}{p_A} + 1 = \log rac{1}{p_A} + \log \log rac{1}{\delta} + 1$$

Bell inequality

$$\log \frac{1}{p_A} + \log \log \frac{1}{\delta} + 1 \ge C((1 - \delta)p_B + \frac{\delta}{2}, n)$$

・ロ・・雪・・ヨ・・ヨ・ シック

$$C(rac{2}{3},n)$$

 $C(p,n) \geq rac{1}{3}(p-rac{1}{2})^2 C(rac{2}{3},n)$
for $rac{1}{2}$

Otherwise repeating the protocol several times and taking majority voting the parties can achieve smaller $C(\frac{2}{3}, n)$.

Vector subspace problem

Alice obtains description of n-dimensional vector v.

Bob obtains description of two $\frac{n}{2}$ -dimensional subspaces H i H^{\perp} .

Assumption: $v \in H$ or $v \in H^{\perp}$.

Problem: Bob has to decide if $v \in H$, or if $v \in H^{\perp}$.

24 / 28

・ロト・日本・モート・モー うへの

Classical strategy

$$C(2/3, n) \ge cn^{1/3}$$

Quantum strategy

$$egin{aligned} \Phi_{\mathsf{iso}} &= p \Phi_n^+ + (1-p) rac{\mathbb{I}}{n^2} \ p_\mathcal{A} &= rac{1}{n} \ p_\mathcal{S} &\geq rac{2}{3} \end{aligned}$$

 $\log n - \log \log \delta > c n^{1/3}$

25 / 28

Classical strategy

$$C(2/3, n) \ge cn^{1/3}$$

Quantum strategy

$$\Phi_{iso} = p\Phi_n^+ + (1-p)\frac{\mathbb{I}}{n^2}$$

$$p_A = \frac{1}{n}$$

$$p_S < \frac{2}{3}$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>27/28

Universal scheme for obtaining Bell inequalities from quantum advantage in communication complexity.

Violation of constructed Bell inequality on example of vector subspace problem.

イロン イロン イヨン イヨン 三日