The weak, the strong, and the pretty strong

The weak, the strong, and the pretty strong

The weak, the strong, and the pretty strong: Converses for quantum channel capacities

Andreas winter (ICREA \& UAB Barcelona) [... and many others 1999-2013]

Outline

1. Quantum channels and their capacities
2. Entropic capacity formulas; weak converse
3. What is a strong converse?
4. Ideal channel (warm-up); simulation argument
5. Rényi divergence paradigm: classical capacity
6. Min-entropies: "pretty strong" converse
7. End credits
8. Channels \& capacity

Channel $=\operatorname{cptp} \operatorname{map} N: \angle(A) \longrightarrow L(B)$, where A, B are finite-dim. Hilbert spaces.

1. Channels \& capacity

Channel $=$ cptp map $N: \angle(A) \longrightarrow L(B)$, where A, B are finite-dim. Hilbert spaces. Kraus representation, you know...

1. Channels \& capacity

Channel $=\operatorname{cptp} \operatorname{map} N: L(A) \longrightarrow L(B)$, where A, B are finite-dim. Hilbert spaces.
Kraus representation, you know...

Stinespring: $N(\rho)=T_{E} \vee \rho V$, with an isometry $V: A \hookrightarrow B \otimes E$.

1. Channels \& capacity

Channel $=\operatorname{cptp} \operatorname{map} N: L(A) \longrightarrow L(B)$, where A, B are finite-dim. Hilbert spaces. kraus representation, you know...

Stinespring: $N(\rho)=T_{E} \vee \rho V$, with an isometry $V: A \hookrightarrow B \otimes E$.

Complementary channel:

$$
\widehat{N}(\rho)=T r_{B} V \rho V^{\dagger}
$$

1. Channels \& capacity

Ex: 1) Noiseless channel = identity id ${ }_{A}$.
2) Constant channel $k(\rho)=\omega_{0}$.
3) Depolarizing channels
4) Amplitude damping channels
5) Phase damping channels
6) Erasure channel $€_{\delta}(\rho)=(1-g) \rho \oplus g|*\rangle\langle *|$

1. Channels \& capacity

Ex: 1) Noiseless channel $=$ identity id $_{A}$.
2) Constant channel $k(\rho)=\omega_{0}$.
3) Depolarizing channels
4) Amplitude damping channels
5) Phase damping channels
6) Erasure channel $€_{\delta}(\rho)=(1-g) \rho \oplus g|*\rangle\langle *|$
(Later in this talk, well look at some special classes: degradable, Hadamard, entanglement-breaking, ...)

Classical capacity $C(N):=$ maximum chit rate $\frac{k}{n}$ for asymptotically error-free transmission over $N^{8 n}$.

Classical capacity $C(N):=$ maximum chit rate $\frac{k}{n}$ for asymptotically error-free transmission over $N^{8 n}$.

message of

$$
k=k(n, \varepsilon) \text { bits }
$$

Classical capacity $C(N):=$ maximum chit rate $\frac{k}{n}$ for asymptotically error-free transmission over $N^{\otimes n}$.

$\ldots C(N)$ is not the only capacity:
$\ldots C(N)$ is not the only capacity:
Private capacity $P(N):=$ maximum chit rate as before, in addition asymptotically secret: environment almost independent.
$\ldots C(N)$ is not the only capacity:
Private capacity $P(N):=$ maximum chit rate as before, in addition asymptotically secret: environment almost independent.

Quantum capacity $Q(N):=$ maximum quit rate for asymptotically faithful transmission.
$\ldots C(N)$ is not the only capacity:
Private capacity $P(N):=$ maximum chit rate as before, in addition asymptotically secret: environment almost independent.

Quantum capacity $Q(N):=$ maximum quit rate for asymptotically faithful transmission.
... and a veritable "zoo" when allowing other free resources: $\varepsilon, \leftarrow, \rightarrow, \leftrightarrow, \ldots$

Private capacity $P(N):=$ maximum chit rate $\frac{k}{n}$ for asymptotically error-free and secret transmission over $N^{\otimes n}$.

$k=k(n, \varepsilon)$ bit msg.

$$
\operatorname{prob} \geq 1-\varepsilon
$$

Private capacity $P(N):=$ maximum chit rate $\frac{k}{n}$ for asymptotically error-free and secret transmission over $N^{\otimes n}$.

$k=k(n, \varepsilon)$ bit $n s g$.

$$
\operatorname{prob} \geq 1-\varepsilon
$$

Secret: $\left\|\widehat{N}^{8 n}\left(\rho_{m}\right)-\omega_{0}\right\|_{1} \leq \varepsilon$

Quantum capacity $Q(N)$ requires en- and decoding by cptp maps E, D:

Quantum capacity $Q(N)$ requires en- and decoding by cptp maps E, D:

(rate still $\frac{k}{n}$)

Quantum capacity $Q(N)$ requires en- and decoding by cptp maps E, D:

Digression on fidelity:

$$
\begin{aligned}
F(\rho, \sigma)= & \|\sqrt{\rho} \sqrt{\sigma}\|_{1} \\
= & \max |\langle\psi \mid \varphi\rangle| \text { st. } \\
& |\psi\rangle \text { purifies } \rho,|\varphi\rangle \text { purifies } \sigma .
\end{aligned}
$$

$P(\rho, \sigma):=\sqrt{1-F(\rho, \sigma)^{2}}$ is a metric on states; \ldots and so is $A(\rho, \sigma):=\arcsin P(\rho, \sigma)$.

Note: Both are equivalent to the trace distance $\|\rho-\sigma\|_{1}$.
[cf. M. Tomanichel, PhD thesis, ar Xiv:1203.2142]
2. Capacity formulas and weak converse
Thy (Holevo and Schumacher) Westmoreland, 1973 and 1996/7):
$C(N)=\lim _{n \rightarrow \infty} \frac{1}{n} x\left(N^{8 n}\right)$, with
$x(N)=\max \mathbb{I}(X: B)$ ort. $\left\{\left\{_{P_{x}}, \rho_{x}\right\}\right.$ and

$$
\rho_{X B}=\sum_{x} P_{x}|x\rangle\langle x| \otimes \mathbb{N}\left(\rho_{x}\right) .
$$

2. Capacity formulas and weak converse
Thy (Holevo and Schumacher) Westmoreland, 1973 and 1996/7):

$$
\begin{aligned}
& c(N)=\lim _{n \rightarrow \infty} \frac{1}{n} x\left(N^{\infty n}\right) \text { with } \\
& \left.x(N)=\max \frac{I(x: B)}{} \text { wrt. } \xi_{\rho_{X}} \rho_{x}\right\} \text { and } \\
& \rho_{X B}=\sum_{x} P_{x}|x\rangle\langle x| \otimes N\left(\rho_{x}\right) .
\end{aligned}
$$

Holevo information $S\left(\rho_{B}\right)-\sum_{X} p_{X} S\left(N\left(\rho_{X}\right)\right)$

Unfortunately,
$\chi(N)=\max I(X: B)$ ort. $\left.\varepsilon_{P_{x}}, \rho_{x}\right\}$ and

$$
\rho_{X B}=\sum_{x} P_{x}|x\rangle\langle x| \otimes N\left(\rho_{x}\right)
$$

is not additive in general [Hastings, Nat. Phys 2009 $]$, hence $C(N)>\chi(N)$ possible.

Unfortunately,
$\chi(N)=\max I(X: B)$ writ. $\left\{P_{x}, \rho_{x}\right\}$ and

$$
\rho_{X B}=\sum_{x} P_{x}|x\rangle\langle x| \otimes N\left(\rho_{x}\right)
$$

is not additive in general [Hastings, Nat. Phys 2009], hence $C(N)>\chi(N)$ possible.

However, for some classes of channels it is, and we know the classical capacity $C(N)$ as $\chi(N)$.

Interestingly, the upper bound ("converse") was proved first.

Interestingly, the upper bound ("converse") was proved first. In fact, Holevo [Probl. Inf. Transm. (1973), and other work in 1970's I showed that transmitting k bits over n uses of N with error ε,

$$
k(1-\varepsilon) \leq 1+\chi\left(N^{\otimes n}\right) \leq 1+n C(N) .
$$

Interestingly, the upper bound ("converse") was proved first. In fact, Holevo [Probl. Inf. Transm. (1973), and other work in 1970's I showed that transmitting k bits over n uses of N with error ε,

$$
\begin{gathered}
k(1-\varepsilon) \leq 1+\chi\left(N^{\otimes n}\right) \leq 1+n C(N) . \\
\frac{k}{n} \lesssim(1+\varepsilon) C(N)
\end{gathered}
$$

Interestingly, the upper bound ("converse") was proved first. In fact, Holevo [Probl. Inf. Transm. (1973), and other work in 1970's I showed that transmitting k bits over n uses of N with error ε,

$$
k(1-\varepsilon) \leq 1+\chi\left(N^{\otimes n}\right) \leq 1+n C(N) .
$$

$$
\frac{k}{n} \lesssim(1+\varepsilon) C(N)
$$

"weak converse"

Interestingly, the upper bound ("converse") was proved first. In fact, Holevo [Probl. Inf. Transm. (1973), and other work in 1970's I showed that transmitting k bits over n uses of N with error ε,

$$
k(1-\varepsilon) \leq 1+\chi\left(N^{8 n}\right) \leq 1+n C(N) .
$$

$$
\frac{k}{n} \lesssim(1+\varepsilon) C(N)
$$

"weak converse"
..is the implied trade off real?

Analogous formulas for $P(N)$ and $Q(N)$:
Thm (Devetak and Cai/Yeung/AW, 2003):

$$
\begin{aligned}
& P(N)=\lim _{n \rightarrow \infty} \frac{1}{n} P^{(1)}\left(N^{\otimes n}\right), \text { with } \\
& P^{(1)}(N)=\max \mathbb{I}(X: B)-\mathbb{I}(X: E) \text { wrt. }\left\{P_{x}, \rho_{x}\right\}
\end{aligned}
$$

Analogous formulas for $P(N)$ and $Q(N)$:
Thm (Devetak and Cai/Yeung/Aw, 2003):

$$
\begin{aligned}
& P(N)=\lim _{n \rightarrow \infty} \frac{1}{n} P^{(1)}\left(N^{\otimes n}\right), \text { with } \\
& P^{(1)}(N)=\max I(X: B)-I(X: E) \text { wrt. }\left\{_{P}, \rho_{x}\right\}
\end{aligned}
$$

Thm (Schumacher and Lloyd-ShorDevetak, 1996-2003):

$$
\begin{aligned}
& Q(N)=\lim _{n \rightarrow \infty} \frac{1}{n} Q^{(1)}\left(N^{\otimes n}\right) \text {, with } \\
& \begin{aligned}
Q^{(1)}(N) & =\max \mathbb{I}(A>B) \longleftarrow \\
& =\max S(N(\rho))-S(N(\rho)) \text { wrt. } \rho
\end{aligned}
\end{aligned}
$$

Thm (Devetak and Cai/Yeung/A W, 2003):

$$
P(N)=\lim _{n \rightarrow \infty} \frac{1}{n} P^{(1)}\left(N^{\otimes n}\right)
$$

Thm (Schumacher and Lloyd-ShorDevetak, 1996-2003):

$$
Q(N)=\lim _{n \rightarrow \infty} \frac{1}{n} Q^{(1)}\left(N^{\otimes n}\right)
$$

The (Devetak and Cai/Yeung/A W, 2003):

$$
P(N)=\lim _{n \rightarrow \infty} \frac{1}{n} P^{(1)}\left(N^{\otimes n}\right)
$$

Thy (Schumacher and Lloyd-ShorDevetak, 1996-2003):

$$
Q(N)=\lim _{n \rightarrow \infty} \frac{1}{n} Q^{(1)}\left(N^{\otimes n}\right)
$$

Have analogous weak converses for $P(N)$ and $Q(N)$, and for much every other capacity we know how to characterize.

The (Devetak and Cai/Yeung/A W, 2003):

$$
P(N)=\lim _{n \rightarrow \infty} \frac{1}{n} P^{(1)}\left(N^{\otimes n}\right)
$$

Thy (Schumacher and Lloyd-ShorDevetak, 1996-2003):

$$
Q(N)=\lim _{n \rightarrow \infty} \frac{1}{n} Q^{(1)}\left(N^{\otimes n}\right)
$$

Have analogous weak converses for $P(N)$ and $Q(N)$, and for much every other capacity we know how to characterize.
(Btw: also additivity issue with both!)
3. Strong converse?

The strong converse - in the sense of Wolfowitz [III. J. Math. 1:591 (1957)] -, is the statement that there is no rateerror trade-off. Viz., for rates R above the capacity, the error converges to 1 .
3. Strong converse?

The strong converse - in the sense of Wolfowitz [III. J. Math. 1:591 (1957)] -, is the statement that there is no rateerror trade-off. Viz., for rates R above the capacity, the error converges to 1.

By contrapositive: If error <1, then asymptotically the rate $\frac{k}{n}$ is bounded by the capacity.

Strong converse: If error <1, then asymptotically the rate $\frac{k}{n}$ is bounded by the capacity.

Strong converse: If error <1, then asymptotically the rate $\frac{k}{n}$ is bounded by the capacity.

Known in some cases:

- Classical channels [Shannon-Wolfowitz]

Strong converse: If error <1, then asymptotically the rate $\frac{k}{n}$ is bounded by the capacity.

Known in some cases:

- Classical channels [Shannon-Wolfowitz]
- Classical capacity with product state input's [Ogawal Nagaoka; Aw, IEEE-IT 45(7), 1999]

Strong converse: If error <1, then asymptotically the rate $\frac{k}{n}$ is bounded by the capacity.

Known in some cases:

- Classical channels [Shannon-Wolfowitz]
- Classical capacity with product state input's [Ogawal Nagaoka; Aw, IEEE-IT 45 (7) , 1999]
- Classical capacity of certain channels [Koenig/ Wehner, PRL 103:070504 (2009)]

Rate vs asymptotic error:

Definition/ coding
theorem $(H / 5 \omega)$

Rate vs asymptotic error:

Rate vs asymptotic error:

4. Ideal channel

As a warm-up, prove strong converse for the noiseless quit channel id ${ }_{2}$. Note:
quantum code \Rightarrow private code \Rightarrow classical code
4. Ideal Channel

As a warm-up, prove strong converse for the noiseless quit channel $i d_{2}$. Note:
quantum code \Rightarrow private code \Rightarrow classical code

Hence $Q(N) \leq P(N) \leq C(N)$ in general.
Since $Q\left(i d_{2}\right)=P\left(i d_{2}\right)=C\left(i d_{2}\right)=1$, enough to show it for the classical capacity.

Warm-up: strong converse for the noiseless quit channel id ${ }_{2}$.

Encode M message into id ${ }_{L}$ via states ρ_{m} and POVM element's D_{m} to decode:

Warm-up: strong converse for the noiseless quit channel id ${ }_{2}$.

Encode M message into id ${ }_{L}$ via states ρ_{m} and POVM element's D_{m} to decode:

$$
1-\varepsilon \leq \frac{1}{M} \sum_{m=1}^{M} T_{r}\left(\rho_{m} D_{m}\right)
$$

Warm-up: strong converse for the noiseless quit channel id ${ }_{2}$.

Encode M message into id ${ }_{L}$ via states ρ_{m} and POVM element's D_{m} to decode:

$$
1-\varepsilon \leq \frac{1}{M} \sum_{m=1}^{M} T_{r}\left(\rho_{m} D_{m}\right) \leq \frac{1}{M} \sum_{m=1}^{M} T_{r} D_{m}
$$

Warm-up: strong converse for the noiseless quit channel id ${ }_{2}$.

Encode M message into id ${ }_{L}$ via states ρ_{m} and POVM element's D_{m} to decode:

$$
1-\varepsilon \leq \frac{1}{M} \sum_{m=1}^{M} T_{r}\left(\rho_{m} D_{m}\right) \leq \frac{1}{M} \sum_{m=1}^{M} T_{r} D_{m}=\frac{L}{M} .
$$

Warm-up: strong converse for the noiseless quit channel id ${ }_{2}$.

Encode M message into id ${ }_{L}$ via states ρ_{m} and POVM element's D_{m} to decode:

$$
1-\varepsilon \leq \frac{1}{M} \sum_{m=1}^{M} T_{r}\left(\rho_{m} D_{m}\right) \leq \frac{1}{M} \sum_{m=1}^{M} T_{r} D_{m}=\frac{L}{M} .
$$

For n uses of the channel and rate $R>1$: $L=2^{n}$ and $M=2^{n R}$, so $\varepsilon \geq 1-2^{-n(R-1) \text {. }}$
[Nayak, Proc. 40th FOCS, PP. 369-376 (1999)]

The simulation argument: If you can simulate a channel N by id, at rate K, then $C(N) \leq K$ and for rates $R>K$, the error $\varepsilon \geq 1-2^{-n}(R-K)$.

In particular: If $K=C(N)$, strong converse holds.

The simulation argument: If you can simulate a channel N by id, at rate K, then $C(N) \leq K$ and for rates $R>K$, the error $\varepsilon \geq 1-2^{-n}(R-K)$.

In particular: If $K=C(N)$, strong converse holds. Almost only trivial cases, except:

Thy (ω ilde/ A $\omega, 1308.6732$): For pure loss optical channel w transmissivity η and maximum mean photon number p, $c=g\left(n_{p}\right)$, and the strong converse holds.

The simulation argument: If you can simulate a channel N by id, at rate K, then $C(N) \leq K$ and for rates $R>K$, the error $\varepsilon \geq 1-2^{-n}(R-K)$.

More interesting with free resources, eg. $C_{E}(N)=$ ent.-assisted classical capacity
$=$ minimal simulation cost assisted by ent. ("Qu. Reverse Shannon Thy.")
Ie. strong converse holds for C_{E}.
[Bennett et al., IEEE-IT 48:2637 (2002); Bennett et al. 0912.5537] [Cf. Berta et al., IEEE-IT 59:6770 (2013) - P(N) bound]
5. Rényi divergences for C What can we do for $C(N)$? Nothing general it seems...
5. Rényi divergences for C What can we do for $C(N)$? Nothing general it seems... However, unifying and extending the earlier results of Ogawal Nagaoka, Aw and König/ Wehner:

The (Wild el W/Yang, 1306.1586): If N is entanglement-breaking $(E B)$ or Hadamard (ψ), then for any code w rate $R>C(N)$, pr\{err\} converges to 1 , exponentially fast in the number n of channel uses.
5. Rényi divergences for C The (Wild el $/$ Yang, 1306.1586): If N is $E B$ or ψ, then for any code ω rate $R>$ $C(N)$, the error probability converges to I, exponentially fast in the number n of channel uses:
There exists $t \geq \Omega\left((R-C(N))^{2}\right)$ s.t.

$$
1-p\{\operatorname{err}\} \leq \exp (-t n) .
$$

5. Rényi divergences for C The (ω ide/ A ω / Y and, 1306.1586): If N is $E B$ or ψ, then for any code ω rate $R>$ $C(N)$, the error probability converges to I, exponentially fast in the number n of channel uses:
There exists $t \geq \Omega\left((R-C(N))^{2}\right)$ s.t.

$$
1-p\{\operatorname{err}\} \leq \exp (-\operatorname{tn}) .
$$

In other words, these channels satisfy the strong converse.

Hold on! I haven't even told you what these "EB" and "Y" things are...

Hold on! I haven't even told you what these "EB" and "Y" things are...

Entanglement-breaking (EB) channels:

Complementary to these: Hadamard channels (Y)

Entanglement-breaking (EB) channels:

Fact: N entanglement-breaking iff

$$
\begin{aligned}
\mathcal{N}(\rho) & =\sum_{i} T_{r}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j}\right|
\end{aligned}
$$

Fact: N entanglement-breaking iff

$$
\begin{aligned}
\mathbb{N}(\rho) & =\sum_{i} T_{r}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum_{i} M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j}\right|
\end{aligned}
$$

Fact: N entanglement-breaking iff

$$
\begin{aligned}
N(\rho) & =\sum_{i} \operatorname{Tr}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum_{i} M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j} l\right.
\end{aligned}
$$

Fact: N entanglement-breaking iff

$$
\begin{aligned}
N(\rho) & =\sum_{i} \operatorname{Tr}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum_{i} M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j} l\right.
\end{aligned}
$$

This holds also when N is only $C P$ (and M; are only positive)!

$$
\begin{aligned}
N(\rho) & =\sum_{i} \operatorname{Tr}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum_{i} M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j}\right|
\end{aligned}
$$

Stinespring: $V:|\phi\rangle_{A} \rightarrow \sum_{j}\left\langle\alpha_{j} \mid \phi\right\rangle\left|\beta_{j}\right\rangle_{B}|j\rangle_{E}$

$$
\begin{aligned}
\mathbb{N}(\rho) & =\sum_{i} \operatorname{Tr}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum_{i} M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j} l\right.
\end{aligned}
$$

Stinespring: $V:|\phi\rangle_{A} \rightarrow \sum_{j}\left\langle\alpha_{j} \mid \phi\right\rangle\left|\beta_{j}\right\rangle_{B}|\dot{\jmath}\rangle_{E}$

$$
\widehat{N}(\rho)=\sum_{j k}|j\rangle\langle k|\left\langle\alpha_{j}\right| \rho\left|\alpha_{k}\right\rangle\left\langle\beta_{k} \mid \beta_{j}\right\rangle
$$

$$
\begin{aligned}
\mathbb{N}(\rho) & =\sum_{i} T_{r}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum_{i} M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j}\right|
\end{aligned}
$$

Stinespring: $V:|\phi\rangle_{A} \rightarrow \sum_{j}\left\langle\alpha_{j} \mid \phi\right\rangle\left|\beta_{j}\right\rangle_{B}|j\rangle_{E}$

$$
\begin{aligned}
& \widehat{N}(\rho)=\sum_{j k}|j\rangle\langle k|\left\langle\alpha_{j}\right| \rho\left|\alpha_{k}\right\rangle\left\langle\beta_{k} \mid \beta_{j}\right\rangle \\
&= \\
& U \rho U^{\dagger} \circ S
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{N}(\rho) & =\sum_{i} \operatorname{T}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum_{i} M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j}\right|
\end{aligned}
$$

Stinespring: $V:|\phi\rangle_{A} \rightarrow \sum_{j}\left\langle\alpha_{j} \mid \phi\right\rangle\left|\beta_{j}\right\rangle_{B}|j\rangle_{E}$

$$
\begin{gathered}
\widehat{N}(\rho)=\sum_{j k}|j\rangle\langle k|\left\langle\alpha_{j}\right| \rho\left|\alpha_{k}\right\rangle\left\langle\beta_{k} \mid \beta_{j}\right\rangle \\
=\quad U \rho U^{\dagger} \circ S \\
\text { isometry } \left.U=\sum!j\right\rangle\left\langle\alpha_{j}\right|: A \rightarrow E
\end{gathered}
$$

$$
\begin{aligned}
\mathbb{N}(\rho) & =\sum_{i} T_{r}\left(\rho M_{i}\right) \sigma_{i} \text { s.t. } \sum M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j}\right|
\end{aligned}
$$

Stinespring: $V:|\phi\rangle_{A} \rightarrow \sum_{j}\left\langle\alpha_{j} \mid \phi\right\rangle\left|\beta_{j}\right\rangle_{B}|j\rangle_{E}$

$$
\begin{aligned}
& \widehat{N}(\rho)=\sum_{j k}|j\rangle\langle k|\left\langle\alpha_{j}\right| \rho\left|\alpha_{k}\right\rangle\left\langle\beta_{k} \mid \beta_{j}\right\rangle \\
&=\quad \text { schur } \\
&\text { isometry } \left.U=\sum!j\right\rangle\left\langle\alpha_{j}\right|: A \rightarrow E \quad \text { product }
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{N}(\rho) & =\sum_{i} \operatorname{Tr}\left(\rho M_{i}\right) \sigma_{i} \text { st. } \sum_{i} M_{i}=\mathbb{1} \\
& =\sum_{j}\left|\beta_{j}\right\rangle\left\langle\alpha_{j}\right| \rho\left|\alpha_{j}\right\rangle\left\langle\beta_{j}\right|
\end{aligned}
$$

Stinespring: $V:|\phi\rangle_{A} \rightarrow \sum_{j}\left\langle\alpha_{j} \mid \phi\right\rangle\left|\beta_{j}\right\rangle_{B}|j\rangle_{E}$

$$
\begin{aligned}
& \widehat{N}(\rho)=\sum_{j k}|j\rangle\langle k|\left\langle\alpha_{j}\right| \rho\left|\alpha_{k}\right\rangle\left\langle\beta_{k} \mid \beta_{j}\right\rangle \\
&=\quad u \rho U^{\dagger} \circ S \quad \text { chur } \\
&\text { isometry } \left.U=\sum!j\right\rangle\left\langle\alpha_{j}\right|: A \rightarrow E \quad \text { product }
\end{aligned}
$$

Channels of this form: Hadanard channels

Examples - Entanglement-breaking channels:

1) cq-channels, ie. classical input determines state preparation at output

Examples - Entanglement-breaking channels:

1) cq-channels, ie. classical input determines state preparation at output
2) gc-channe/s, ie. measurement with classical output

Examples - Entanglement-breaking channels:

1) cg-channels, ie. classical input determines state preparation at output
2) gc-channe/s, ie. measurement with classical output

Hadamard channels:
3) Phase damping channels, more generally Schur multipliers

Examples - Entanglement-breaking channels:

1) cq-channels, ie. classical input determines state preparation at output
2) gc-channels, ie. measurement with classical output

Hadamard channels:
3) Phase damping channels, more generally Schur multipliers
4) Cloning channels [cf. Brádler, IEEE-IT 2OII]

The proof is beautiful but a bit long...

The proof is beautiful but a bit long...
Departure point minimax characterization of $\chi(N)$: [Schumacher/Westmoreland, PRA 2000]

$$
\chi(N)=\min _{\sigma} \max _{\rho} D(N(\rho) \| \sigma)
$$

The proof is beautiful but a bit long...
Departure point minimax characterization of $\chi(N)$: [Schumacher/Westmoreland, PRA 2000]

$$
\begin{aligned}
\chi(N)= & \min _{\sigma} \max _{\rho} D(N(\rho) \| \sigma) \\
& \text { Relative entropy: } \\
& D(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)
\end{aligned}
$$

The proof is beautiful but a bit long...
Departure point minimax characterization of $\chi(N)$: [Schumacher/Westmoreland, PRA 2000]

Relative entropy:

$$
D(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)
$$

Note: For EB and $Y /$ channels N this is additive, and so $C(N)=\chi(N)$.
[Shot, JMP 2002 (EB); King et al., quant-ph/ 0509126 (*)]

Relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)
$$

is a special case of a whole family of "generalized divergences".
[Cf. Petz, 0909.3647; Müller-Lennert et al., 1306.3142]

Relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)
$$

is a special case of a whole family of "generalized divergences".
[Cf. Metz, 0909.3647; Müller-Lennert et al., 1306.3142]
Fundamental property is monotonicity: for any cptp map N,

$$
\tilde{D}(\rho \| \sigma) \geq \tilde{D}(\mathbb{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0 .
$$

If it also has a certain "sum" property...

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(N(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(N(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

Everything depends on right choice of \tilde{D} :
Sandwiched α-Rényi relative entropy $(\alpha>1)$

$$
\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log T_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}
$$

[Cf. Müller-Lennert et al., 1306.3142;
Beigi 1306.5920; Frank/Lieb 1306.5358 I

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(\mathbb{N}(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

Everything depends on right choice of \tilde{D} :
Sandwiched α-Rényi relative entropy ($\alpha>1$)

$$
\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \operatorname{Tr}_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}
$$

[Cf. Müller-Lennert et al., 1306.3142; Beigi 1306.5920; Frank/Lieb 1306.5358 I
Crucially additive: $\chi_{\alpha, \sigma}\left(\mathbb{N}^{\otimes n}\right)=n \chi_{\alpha, \sigma}(N)$.
(Because of identity with some min output entropy.) [King, QIC 2003; Holevo, Russ. Math. Surveys 2006]

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(\mathbb{N}(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

Everything depends on right choice of \tilde{D} :
Sandwiched α-Rényi relative entropy ($\alpha>1$)

$$
\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \operatorname{Tr}_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}
$$

[Cf. Müller-Lennert et al., 1306.3142; Beigi 1306.5920; Frank/Lieb 1306.5358 I
Crucially additive: $\chi_{\alpha, \sigma}\left(N^{\otimes n}\right)=n \chi_{\alpha, \sigma}(N)$. ... and converges to $\chi(N)$ as $\alpha \rightarrow_{1}$.

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(N(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

Everything depends on right choice of \tilde{D} : Sandwiched α-Rényi relative entropy $(\alpha>1)$

$$
\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log T_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}
$$

[Cf. Müller-Lennert et al., 1306.3142;
Beigi 1306.5920; Frank/Lieb 1306.5358 I
Crucially additive: $\chi_{\alpha, \sigma}\left(N^{\otimes n}\right)=n \chi_{\alpha, \sigma}(N)$. ... and converges to $\chi(N)$ as $\alpha \rightarrow$.
L.h.S: $\frac{1}{\alpha-1} \log (1-\varepsilon)-\log M$.
6. Min-entropies: "pretty strong" converse for Q

Stinespring: $\mathcal{N}(\rho)=T_{E} V_{\rho} V_{1}^{\dagger}$
with an isometry $V: A \hookrightarrow B \otimes E$.
Complementary channel/:

$$
\widehat{N} \rho)=T_{B} V_{\rho} V^{\dagger} .
$$

6. Min-entropies: "pretty strong" converse for Q

Stinespring: $N(\rho)=T_{E} V_{\rho} V_{t}^{\dagger}$
with an isometry $V: A \hookrightarrow B \otimes E$.
Complementary channel/:

$$
\widehat{N} \rho)=T_{r_{B}} V_{\rho} V^{\dagger}
$$

N is degradable if there exists a cptp map D st. $\widehat{N}=D \circ N$. Vice-versa: anti-degradable.

Degradability in the Church of the Larger Hilbert Space:

Degradability in the Church of the Larger Hilbert Space:

Degradability in the Church of the Larger Hilbert Space:

Degradability in the Church of the Larger Hilbert Space:

Examples:

1) Phase damping channel, more generally Schur multipliers and Hadamard channels

Examples:

1) Phase damping channel, more generally Schur multipliers and Hadamard channels
2) Amplitude damping channel

Examples:

1) Phase damping channel, more generally Schur multipliers and Hadamard channels
2) Amplitude damping channel
3) Symmetric channels, ie. trivial F, for instance 50\% erasure channel

A previous result [via E. Rains, IEEE-IT 47(7):2921-2933 (2001)]: If N is PPT entanglement-binding, then of course $Q(N)=0$, and strong converse holds (with error converging exponentially to 1).

A previous result [via E. Rains, IEEE-IT 47(7):2921-2933 (2001)]: If N is PPT entanglement-binding, then of course $Q(N)=0$, and strong converse holds (with error converging exponentially to 1).

Note: Already for symmetric (degradable \& anti-degradable) channels - for which also $Q(N)=0$ - not clear at all.

Thy (Morgan/ Aw, 1301.4927): For any degradable channel N, and codes with rate $R>Q(N)$ have error at least 0.707, asymptotically.

Thy (Morgan/ Aw, 1301.4927): For any degradable channel N, and codes with rate $R>Q(N)$ have error at least 0.707 , asymptotically. Ie., at $Q(N)$, the error has a finite "jump":

Thy (Morgan/ Aw, 1301.4927): For any degradable channel N, and codes with rate $R>Q(N)$ have error at least 0.707 , asymptotically. Ie., at $Q(N)$, the error has a finite "jump":

The: For any degradable channel N, codes with rate $R>Q(N)$ have error at least 0.707 , asymptotically.

Error/fidelity achieved by a single 50\% erasure channel - without encoding.

The: For any degradable channel N, codes with rate $R>Q(N)$ have error at least 0.707 , asymptotically.

Error/fidelity achieved by a single 50\% erasure channel - without encoding.

On the other hand: For larger error, any i.i.d. symmetric channel allows coding of $k=c \sqrt{n}$ quits, by random codes. More?

The: For any degradable channel N, codes with rate $R>Q(N)$ have error at least 0.707 , asymptotically.

Similar result for private capacity:
Thy (1301.4927): For degradable channel N, if decoding error and distance from perfect privacy are both below some universal threshold, then the rate is asymptotically bounded by $P(N)=Q(N)$.

The: For any degradable channel N, codes with rate $R>Q(N)$ have error at least 0.707 , asymptotically.

Significance of symmetric channels:
The (1301.4927): If symmetric channels (whose quantum capacity is 0) obey a strong converse, then so do all degradable channels N : for error below 1 , the rate is asymptotically bounded by $Q(N)$.

Proof uses tight finite block length characterization of P and Q via (smooth) min-entropies \& some tricks: symmetrization, de Finetti theorem, asymptotic equipartition property...
[Cf. R. Renner, PhD thesis, quant-ph/0512258 \& M. Tomanichel, PhD thesis, ar Xiv:1203.2142]

Proof uses tight finite block length characterization of P and Q via (smooth) min-entropies \& some tricks: symmetrization, de Finetti theorem, asymptotic equipartition property...
[Cf. R. Rennet, PhD thesis, quant-phl Os 12258 \& M. Tomanichel, PhD thesis, arXiv:1203.2142]

Can be viewed as a complicated version of the proof of additivity: $P(N)=Q(N)=Q^{(1)}(N)$ for degradable N... :-/
7. Conclusion (sort of...)

- The trick with the sandwiched channel reduces the additivity of $\chi(N)$ to that of the minimum output Rényi entropy of an associated family of cp (trace non-preserving) maps. Can it be applied to other channels? Other divergences?
- Can we also get "Ind order" behaviour? [Cf. Tomanichel/Tan, 1308.6503 for Cq-channels]

7. Conclusion (sort of...)

- Big open problem: from pretty strong to really strong converse for Q of degradable channels!? Bottleneck are the symmetric channels, e.g. 50\% erasure channels...
- How to prove strong converses without additivity? Note that neither P, Q nor $P^{(1)}, Q^{(1)}, \chi$ are generally additive!
(Not known for C.)

A. Proof ideas for C

A goody first: minimax characterisation of $\chi(N)$: [Schumacher/Westmoreland, PRA 2000]

$$
\chi(N)=\min _{\sigma} \max _{\rho} D(N(\rho) \| \sigma)
$$

Note: For $E B$ and ψ channels N this is additive, and so $C(N)=\chi(N)$.
[Thor, JMP 2002 (EB); King et al., quant-ph/ 0509126 (*)]
A. Proof ideas for C

A goody first: minimax characterisation of $\chi(N)$: [Schumacher/Westmoreland, PRA 2000]

$$
\chi(N)=\min _{\sigma} \max _{\rho} D(N(\rho) \| \sigma)
$$

Relative entropy:

$$
D(\rho \| \sigma)=\operatorname{Tr}_{r} \rho(\log \rho-\log \sigma)
$$

Relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)
$$

is a special case of a whole family of "generalised divergences".
[Cf. Petz, 0909.3647; Müller-Lennert et al., 1306.3142]

Relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)
$$

is a special case of a whole family of "generalised divergences".
[Cf. Metz, 0909.3647; Müller-Lennert et al., 1306.3142]
Fundamental property is monotonicity: for any cptp map N,

$$
\begin{equation*}
\tilde{D}(\rho \| \sigma) \geq \tilde{D}(\mathbb{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0 . \tag{*}
\end{equation*}
$$

Relative entropy

$$
D(\rho \| \sigma)=\operatorname{Tr} \rho(\log \rho-\log \sigma)
$$

is a special case of a whole family of "generalised divergences".
[Cf. Metz, 0909.3647; Müller-Lennert et al., 1306.3142]
Fundamental property is monotonicity: for any cptp map N,

$$
\begin{equation*}
\tilde{D}(\rho \| \sigma) \geq \tilde{D}(\mathbb{N}(\rho) \| \mathcal{N}(\sigma)) \geq 0 . \tag{*}
\end{equation*}
$$

Notation: for binary distributions $P=(p, 1-p)$ and $Q=(g, 1-g)$, write $\tilde{D}(P \| Q)=\tilde{D}(p \| g)$.

Assume furthermore that

$$
\tilde{D}\left(\underset{x}{\oplus} P_{x} \rho_{x} \| \underset{x}{\oplus} P_{x} \sigma_{x}\right)=\sum_{x} P_{x} \tilde{D}\left(\rho_{x} \| \sigma_{x}\right) .(+)
$$

Assume furthermore that

$$
\tilde{D}\left(\underset{x}{\oplus} P_{x} \rho_{x} \| \underset{x}{\oplus} P_{x} \sigma_{x}\right)=\sum_{x} P_{x} \tilde{D}\left(\rho_{x} \| \sigma_{x}\right) .(+)
$$

Then, for a code with M msg's, error $\leq \varepsilon$, and $\rho_{X B}=\frac{1}{M} \sum_{m}|m\rangle\langle m| \otimes N\left(\rho_{m}\right)$:

Assume furthermore that

$$
\tilde{D}\left(\underset{x}{\oplus} P_{x} \rho_{x} \| \underset{x}{\oplus} P_{x} \sigma_{x}\right)=\sum_{x} P_{x} \tilde{D}\left(\rho_{x} \| \sigma_{x}\right) .(t)
$$

Then, for a code with M msg's, error $\leq \varepsilon$, and $\rho_{X B}=\frac{1}{M} \sum_{m}|m\rangle\langle m| \otimes N\left(\rho_{m}\right)$:

$$
\begin{aligned}
\tilde{D}(1-\varepsilon \| 1 / M) & \stackrel{(*)}{\leq} \tilde{D}\left(\rho_{X B} \| \rho_{X} \otimes \sigma\right) \\
& \stackrel{(+)}{\leq} \frac{1}{M} \sum_{m} \tilde{D}\left(N\left(\rho_{m}\right) \| \sigma\right) \\
& \leq \max _{\rho} \tilde{D}(N(\rho) \| \sigma)=: \chi_{\widetilde{D}, \sigma}(N)
\end{aligned}
$$

Assume furthermore that

$$
\tilde{D}\left(\underset{x}{\oplus} P_{x} \rho_{x} \| \underset{x}{\oplus} P_{x} \sigma_{x}\right)=\sum_{x} P_{x} \tilde{D}\left(\rho_{x} \| \sigma_{x}\right) .(t)
$$

Then, for a code with M msg's, error $\leq \varepsilon$, and $\rho_{X B}=\frac{1}{M} \sum_{m}|m\rangle\langle m| \otimes N\left(\rho_{m}\right)$:

$$
\begin{aligned}
\tilde{D}(1-\varepsilon \| 1 / M) & \leq \tilde{D}\left(\rho_{X B} \| \rho_{X} \otimes \sigma\right) \\
& \leq \frac{(+)}{M} \sum_{m} \tilde{D}\left(N\left(\rho_{m}\right) \| \sigma\right) \\
& \leq \max _{\rho} \tilde{D}(\mathbb{N}(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
\end{aligned}
$$

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(N(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(N(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

Everything depends on right choice of \tilde{D} :

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(N(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

Everything depends on right choice of \tilde{D} :
Sandwiched α-Rényi relative entropy $(\alpha>1)$

$$
\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \operatorname{Tr}_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}
$$

$$
\tilde{D}(1-\varepsilon \| 1 / M) \leq \max _{\rho} \tilde{D}(\mathbb{N}(\rho) \| \sigma)=: \chi_{\tilde{D}, \sigma}(N)
$$

Everything depends on right choice of \tilde{D} : Sandwiched α-Rényi relative entropy ($\alpha>1$)

$$
\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log T_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}
$$

[Cf. Müller-Lennert et al., 1306.3142; Beigi 1306.5920; Frank/Lieb 1306.5358 I
It's monotonic, has property $(+)$ and is $\leq D_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \operatorname{Tr} \rho^{\alpha} \sigma^{1-\alpha}$, with which it coincides when states commute.

$$
\begin{gathered}
\tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log T_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha} \\
\tilde{D}_{\alpha}(1-\varepsilon \| / / M) \leq \max _{\rho} \tilde{D}_{\alpha}(N(\rho) \| \sigma)=: \chi_{\alpha, \sigma}(N)
\end{gathered}
$$

$$
\begin{aligned}
& \tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log T_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha} \\
& \tilde{D}_{\alpha}(1-\varepsilon \| M M) \leq \max _{\rho} \tilde{D}_{\alpha}(N(\rho) \| \sigma)=: \chi_{\alpha, \sigma}(N) \\
& L h s: \tilde{S}_{\alpha}(1-\varepsilon \| M / M) \geq \log M+\frac{\alpha}{\alpha-1} \log (1-\varepsilon)
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{D}_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log T_{r}\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha} \\
& \tilde{D}_{\alpha}(1-\varepsilon \| / M) \leq \max _{\rho} \tilde{D}_{\alpha}(N(\rho) \| \sigma)=: \chi_{\alpha, \sigma}(N) \\
& \text { Lis: } \tilde{D}_{\alpha}(1-\varepsilon \| 1 / M) \geq \log M+\frac{\alpha}{\alpha-1} \log (1-\varepsilon) \\
& \text { Crucial: }-\chi_{\alpha, \sigma}(N) \text { is the minimum } \alpha-\text { Rényi } \\
& \text { output entropy of a perturbed cp map } N^{\prime}, \\
& N^{\prime}(\rho)=\sigma^{\frac{1-\alpha}{2 \alpha}} N(\rho) \sigma^{\frac{1-\alpha}{2 \alpha}} .
\end{aligned}
$$

Have:

$$
\log (1-\varepsilon) \leq\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-\log M\right)
$$

Have:

$$
\log (1-\varepsilon) \leq\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-\log M\right)
$$

Now apply this to $N^{8 n}, \sigma^{8 n}$, and $M=2^{n R}$.

Have:

$$
\log (1-\varepsilon) \leq\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-\log M\right)
$$

Now apply this to $N^{\otimes n}, \sigma^{8 n}$, and $M=2^{n R}$.
Key observation: Sandwiched channel is $\left(N^{\prime}\right)^{\otimes n}$, and N^{\prime} is $E B$ if N is.

Have:

$$
\log (1-\varepsilon) \leq\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-\log M\right)
$$

Now apply this to $N^{8 n}, \sigma^{8 n}$, and $M=2^{n R}$.
Key observation: Sandwiched channel is $\left(N^{\prime}\right)^{\otimes n}$, and N^{\prime} is $E B$ if N is.
\Rightarrow Additivity, $\chi_{\alpha, \sigma}\left(N^{\otimes n}\right)=n \chi_{\alpha, \sigma}(N)$.
(Because of identity with min output entropy of N^{\prime} ') [King, QIC 2003; Holevo, Russ. Math. Surveys 2006]

Get, for n uses of N at rate R :

$$
\log (1-\varepsilon) \leq n\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-R\right) .
$$

Get, for n uses of N at rate R :

$$
\log (1-\varepsilon) \leq n\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-R\right) .
$$

To complete the proof, need only to observe convergence of $\chi_{\alpha, \sigma}(N)$ to $\chi(N)$;

Get, for n uses of N at rate R :

$$
\log (1-\varepsilon) \leq n\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-R\right) .
$$

To complete the proof, need only to observe convergence of $\chi_{\alpha, \sigma}(N)$ to $\chi(N)$; hence can make r.h.s. of $(\&) \leq-n t, t>0$, by choosing $\alpha>1$ close enough to 1 .

Get, for n uses of N at rate R :

$$
\log (1-\varepsilon) \leq n\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-R\right) .
$$

To complete the proof, need only to observe convergence of $\chi_{\alpha, \sigma}(N)$ to $\chi(N)$; hence can make r.h.s. of $(\&) \leq-n t, t>0$, by choosing $\alpha>1$ close enough to 1 .

Takes care of EB channels; \% similar but requires another small trick (...)

Get, for n uses of N at rate R :

$$
\log (1-\varepsilon) \leq n\left(1-\frac{1}{\alpha}\right)\left(\chi_{\alpha, \sigma}(N)-R\right) .
$$

To complete the proof, need only to observe convergence of $\chi_{\alpha, \sigma}(N)$ to $\chi(N)$; hence can make r.h.s. of $(\&) \leq-n t, t>0$, by choosing $\alpha>1$ close enough to 1 .

Takes care of $E B$ channels; \% similar but requires another small trick (...)
B. Proof ideas for $Q \& P$
(smooth) min-entropies, symmetrisation, de Finetti theorem, AE

Ideas: (smooth) min-entropies, symmetrisation, de Finetti theorem, HEP

1) Use code - for simplicity subspace with maximally entangled state Φ of k quits:

Maximally entangled state Φ of k quits:

Maximally entangled state Φ of k quits:

$$
k \leq \psi \min ^{\epsilon}(A \mid E)
$$

Maximally entangled state Φ of k quits:

$$
k \leq \psi \psi_{\text {min }}^{\epsilon}(A \mid E)=-\psi \psi_{\max }^{\epsilon}\left(A \mid E^{\prime} F\right)
$$

Maximally entangled state Φ of k quits:

$$
k \leq \psi \psi_{\text {min }}^{\epsilon}(A \mid E)=-\psi \psi_{\max }^{\epsilon}\left(A \mid E^{\prime} F\right)
$$

[For min-entropy calculus, consult
R. Rennes, PhD thesis, quant-phlos12258 \& M. Tomanichel, PhD thesis, at Xiv:1203.2142I

$$
\begin{aligned}
k & \leq H \psi_{\text {min }}^{\epsilon}(A \mid E) \\
& =-4)_{\text {max }}^{\epsilon}\left(A \mid E^{\prime} F\right)
\end{aligned}
$$

$$
\begin{aligned}
k & \leq \psi \min ^{\epsilon}(A \mid E) & & \text { IEEE-IT } 56(3), 2010 ; \\
& =-\psi \|_{\text {max }}^{\epsilon}(A \mid E ' F) & & \text { Dattal } \psi / \text { sieh, } 1103.1135]
\end{aligned}
$$

$$
\begin{aligned}
k & \leq\left. H\right|_{\text {min }} ^{\epsilon}(A \mid E) \\
& =-H \max ^{\epsilon}\left(A \mid E^{\prime} F\right)
\end{aligned}
$$

Note: If we knew that for n channel uses, the maximum min-entropy is attained on a tensor product input, wed be done by AEP (= asymptotic equipartition property)...

$$
\begin{aligned}
k & \leq \psi /_{\min }^{\epsilon}(A \mid E) \\
& =-\psi \psi^{\epsilon}\left(A \mid E^{\prime} F\right) \\
& \leq \psi /_{\text {max }}^{\lambda}\left(F I E^{\prime}\right)-\psi \psi_{\text {max }}^{\delta}\left(A F I E^{\prime}\right)+O(1)
\end{aligned}
$$

$$
\begin{aligned}
k & \leq \psi \min ^{\epsilon}(A \mid E) \\
& =-\left.\psi\right|_{\max } ^{\epsilon}\left(A \mid E^{\prime} F\right) \\
& \leq \psi H_{\text {max }}^{\lambda}\left(F \mid E^{\prime}\right)-H_{\max }^{\delta}\left(A F I E^{\prime}\right)+O(1)
\end{aligned}
$$

Chain rule, $\delta=\epsilon+3 \lambda$.

$$
\begin{aligned}
k & \leq \psi /_{\text {min }}^{\epsilon}(A \mid E) \\
& =-\psi_{\text {max }}^{\epsilon}\left(A \mid E^{\prime} F\right) \\
& \leq \psi_{\text {max }}^{\lambda}\left(F I E^{\prime}\right)-\psi_{\text {max }}^{\delta}\left(A F I E^{\prime}\right)+O(1) \\
& \leq \psi_{\text {max }}^{\lambda}\left(F I E^{\prime}\right)+O(1)
\end{aligned}
$$

$$
\begin{aligned}
k & \leq H \psi_{\text {min }}^{\epsilon}(A \mid E) \\
& =-\psi_{\text {max }}^{\epsilon}\left(A \mid E^{\prime} F\right) \\
& \leq H_{\text {max }}^{\lambda}\left(F I E^{\prime}\right)-H_{\text {max }}^{\delta}\left(A F I E^{\prime}\right)+O(1) \\
& \leq H H_{\text {max }}^{\lambda}\left(F I E^{\prime}\right)+O(1)
\end{aligned}
$$

if $\delta<0.707$, by inequality H/ min vs. H/ max , and using symmetry between E and $E^{\prime} \ldots$
2) For n channel uses, have restricted concavity of $Y_{\text {max }}^{\lambda}$:

$$
k \leq H_{\text {max }}^{\lambda}\left(F^{n} \mid E^{\prime n}\right)+O(1)
$$

2) For n channel uses, have restricted concavity of $H_{\text {max }}^{\lambda}$:

$$
\begin{aligned}
k & \leq \not \psi_{\text {max }}^{\lambda}\left(F^{n} \mid E^{\prime n}\right)+O(1) \\
& \leq \not \psi_{\text {max }}^{\lambda^{\prime}}\left(F^{n} \mid E^{\prime n}\right)_{\rho_{A}(n)}+O(1)
\end{aligned}
$$

2) For n channel uses, have restricted concavity of $H_{\text {max }}^{\lambda}$:

$$
\begin{aligned}
k & \leq \not H_{\max }^{\lambda}\left(F^{n} \mid E^{\prime n}\right)+O(1) \\
& \leq \Psi \mathcal{I}_{\text {max }}^{\lambda^{\prime}}\left(F^{n} \mid E^{\prime n}\right)_{\rho_{A}(n)}+O(1)
\end{aligned}
$$

W.r.t. a permutation symmetric input state and $\lambda^{\prime}=\lambda / \sqrt{2}$
2) For n channel uses, have restricted concavity of $H_{\text {max }}^{\lambda}$:

$$
\begin{aligned}
k & \leq H_{\text {max }}^{\lambda}\left(F^{n} \mid E^{\prime n}\right)+O(1) \\
& \leq H \psi_{\text {max }}^{\lambda^{\prime}}\left(F^{n} \mid E^{\prime n}\right)_{\rho_{A}^{(n)}}+O(1)
\end{aligned}
$$

3) By de Finetti theorem [R. Renner, PhD thesis, quant'-ph/0512258]:

$$
k \leq \max _{\rho_{A}} \not H_{\text {max }}^{\lambda^{\prime \prime}}\left(F^{n} \mid E^{\prime n}\right)_{\rho^{\otimes n}}+o(n)
$$

4) By AEP (asymptotic equipartition property) [M. Tomamichel, arXiv:1203.2142]:

$$
k \leq \max _{\rho_{A}} \not H_{\max }^{\lambda^{\prime \prime}}\left(F^{n} \mid E^{\prime n}\right)_{\rho^{\otimes n}}+o(n)
$$

4) By AEP (asymptotic equipartition property) [M. Tomanichel, arXiv:1203.2142]:

$$
\begin{aligned}
k & \leq \max _{\rho_{A}} \not \max _{\operatorname{\lambda \prime \prime }}^{\lambda^{\prime}}\left(F^{n} / E^{\prime n}\right)_{\rho} \otimes n+o(n) \\
& =\max _{\rho_{A}} n S\left(F \mid E^{\prime}\right)_{\rho}+o(n)
\end{aligned}
$$

4) By AEP (asymptotic equipartition property) [M. Tomanichel, arXiv:1203.2142]:

$$
\begin{aligned}
k & \leq \max _{\rho_{A}} \not \max ^{\lambda^{\prime \prime}}\left(F^{n} \mid E^{\prime n}\right)_{\rho} \otimes n+o(n) \\
& =\max _{\rho_{A}} n S\left(F \mid E^{\prime}\right)_{\rho}+o(n) \\
& =n Q^{(1)}(N)+o(n)
\end{aligned}
$$

4) By AEP (asymptotic equipartition property) [M. Tomamichel, arXiv:1203.2142]:

$$
\begin{aligned}
k & \leq\left.\max _{\rho_{A}} Y\right|_{\max } ^{\lambda^{\prime \prime}}\left(F^{n} \mid E^{\prime n}\right)_{\rho} \otimes n+o(n) \\
& =\max _{\rho_{A}} n S\left(F \mid E^{\prime}\right)_{\rho}+o(n) \\
& =n Q^{(1)}(N)+o(n)
\end{aligned}
$$

(by the degradability argument)
4) By AEP (asymptotic equipartition property) [M. Tomamichel, arXiv:1203.2142]:

$$
\begin{aligned}
k & \leq\left.\max _{\rho_{A}} Y\right|_{\max } ^{\lambda^{\prime \prime}}\left(F^{n} \mid E^{\prime n}\right)_{\rho} \otimes n+o(n) \\
& =\max _{\rho_{A}} n S\left(F \mid E^{\prime}\right)_{\rho}+o(n) \\
& =n Q^{(1)}(N)+o(n)
\end{aligned}
$$

(by the degradability argument)

