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Complementary channel:
              N( ) = Tr  V  V.B

†
ρρ̂

where A, B are finite-dim. Hilbert spaces.
Kraus representation, you know...
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1. Channels & capacity

(Later in this talk, we’ll look at some 
special classes: degradable, Hadamard,
entanglement-breaking, ...)

Ex: 1) Noiseless channel = identity id .
2) Constant channel K(ρ) = ω .

A
0

3) Depolarizing channels
4) Amplitude damping channels
5) Phase damping channels
6) Erasure channel ! (ρ)=(1-q)ρ! q|*><*|q
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Private capacity P(N) := maximum cbit 
rate as before, in addition asymptotically 
secret: environment almost independent.

Quantum capacity Q(N) := maximum 
qubit rate for asymptotically faithful 
transmission.

...and a veritable ”zoo” when allowing 
other free resources: E, ←, →, ↔, ...
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Private capacity P(N) := maximum cbit 
rate - for asymptotically error-free and 
secret transmission over N . ⊗nn
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k=k(n,ε) EPR pairs Approximates input:
P( ,  )   ε.σΦ

Quantum capacity Q(N) requires en- and 
decoding by cptp maps E, D:
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F( ,  ) = ||       ||
        = max |<  |  >| s.t.
          |  > purifies  , |  > purifies  .ρ σ

1
ψ

ψ

ϕ

ϕ

ρ σ
√

ρ
√

σ

Digression on fidelity:

P( ,  ) :=  1-F( ,  )  is a metric on states;
...and so is A( ,  ) := arcsin P( ,  ).

Note: Both are equivalent to the trace 
distance ||  -  || .1

2
ρ ρ

ρ ρ

ρ

σ σ

σ σ

σ

√

[cf. M. Tomamichel, PhD thesis, arXiv:1203.2142]
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is not additive in general [Hastings, Nat. 
Phys 2009], hence C(N) > χ(N) possible.

!

Unfortunately,
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However, for some classes of channels 
it is, and we know the classical capacity 
C(N) as χ(N).
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Interestingly, the upper bound 
(”converse”) was proved first. In fact, 
Holevo [Probl. Inf. Transm. (1973), and 
other work in 1970’s] showed that 
transmitting k bits over n uses of N 
with error ε,

k (1-ε) " 1 + χ(N   ) " 1 + n C(N).⊗n

...is the implied tradeoff real?

-    (1 +ε) C(N)k
n !

”weak converse”
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Thm (Schumacher and Lloyd-Shor-
Devetak, 1996-2003):
  Q(N) = lim  - Q  (N   ), with

 Q  (N) = max I(A>B) 
         = max S(N(ρ)) - S(N(ρ)) wrt. ρ

1
n

⊗n(1)
→ ∞n

(1)

coherent
information
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→ ∞n

Have analogous weak converses for P(N) 
and Q(N), and for much every other 
capacity we know how to characterize.

(Btw: also additivity issue with both!)
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The strong converse - in the sense of 
Wolfowitz [Ill. J. Math. 1:591 (1957)] -, 
is the statement that there is no rate-
error trade-off. Viz., for rates R above 
the capacity, the error converges to 1.

By contrapositive: If error < 1, then 
asymptotically the rate - is bounded by 
the capacity.

k
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4. Ideal channel

As a warm-up, prove strong converse for 
the noiseless qubit channel id . Note:

quantum code ⇒ private code ⇒ classical code

Hence Q(N) " P(N) " C(N) in general. 
Since Q(id ) = P(id ) = C(id ) = 1, enough 
to show it for the classical capacity.

2

2 2 2
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Warm-up: strong converse for the 
noiseless qubit channel id .

Encode M message into id   via states ρ  

and POVM elements D   to decode:

2

L m

m

1-ε" -     Tr(ρ D ) " -     Tr D  = - .
∑ ∑1 1

M Mm=1 m=1

MM
m

L
Mmm

For n uses of the channel and rate R>1:
L=2  and M=2   , so ε! 1 - 2       .  QEDn nR -n(R-1)

[Nayak, Proc. 40th FOCS, pp. 369-376 (1999)]



The simulation argument: If you can 
simulate a channel N by id  at rate K, 
then C(N) " K and for rates R>K, the 
error ε! 1 - 2       .-n(R-K)

In particular: If K=C(N), strong converse 
holds. Almost only trivial cases, except:
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The simulation argument: If you can 
simulate a channel N by id  at rate K, 
then C(N) " K and for rates R>K, the 
error ε! 1 - 2       .-n(R-K)

2

More interesting with free resources, eg. 
C (N) = ent.-assisted classical capacity
       = minimal simulation cost assisted
    by ent. (”Qu. Reverse Shannon Thm.”)

E

[Bennett et al., IEEE-IT 48:2637 (2002); Bennett et al. 0912.5537]
[Cf. Berta et al., IEEE-IT 59:6770 (2013) - P(N) bound]

Ie. strong converse holds for C .E
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Thm (Wilde/AW/Yang, 1306.1586): If N is 
entanglement-breaking (EB) or Hadamard 
(H), then for any code w rate R > C(N), 
Pr{err} converges to 1, exponentially fast 
in the number n of channel uses.

What can we do for C(N)? Nothing 
general it seems... However, unifying and 
extending the earlier results of Ogawa/
Nagaoka, AW and König/Wehner:
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EB or H, then for any code w rate R > 
C(N), the error probability converges to 1, 
exponentially fast in the number n of 
channel uses:



There exists t ! #((R-C(N)) ) s.t.2

1-P{err} " exp(-tn).

In other words, these channels satisfy 
the strong converse.

5. Rényi divergences for C
Thm (Wilde/AW/Yang, 1306.1586): If N is 
EB or H, then for any code w rate R > 
C(N), the error probability converges to 1, 
exponentially fast in the number n of 
channel uses:
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Entanglement-breaking (EB) channels:

σAB separable

Hold on! I haven’t even told you what 
these ”EB” and ”H” things are...

Complementary to these: 
Hadamard channels (H)
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Fact: N entanglement-breaking iff

N(ρ) =     Tr(ρM )σ  s.t.      M =

       =     |β><α|ρ|α><β|

11

∑ ∑

∑ ii i i i

j j j j j

A

N

Bρ M σii i

This holds also when N is only cp (and M  
are only positive)!

i
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Channels of this form: Hadamard channels

Schur 
productisometry U=   |j><α| : A→E

∑
j
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Departure point minimax characterization 
of χ(N): [Schumacher/Westmoreland, PRA 2000]

χ(N) = min max D(N(ρ)||σ)
ρσ

The proof is beautiful but a bit long...

Relative entropy: 
D(ρ||σ) = Tr ρ(logρ- logσ)

Note: For EB and H channels N this is 
additive, and so C(N) = χ(N).

[Shor, JMP 2002 (EB); King et al., quant-ph/0509126 (H)]
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is a special case of a whole family of 
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Relative entropy
       D(ρ||σ) = Tr ρ(logρ- logσ)
is a special case of a whole family of 
”generalized divergences”.
[Cf. Petz, 0909.3647; Müller-Lennert et al., 1306.3142]

Fundamental property is monotonicity: for 
any cptp map N,
    D(ρ||σ) ! D(N(ρ)||N(σ)) ! 0.~ ~

If it also has a certain ”sum” property...
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(Because of identity with some min output entropy.)
[King, QIC 2003; Holevo, Russ. Math. Surveys 2006]
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...and converges to χ(N) as α→1. 
Crucially additive: χ   (N   ) = n χ   (N).α,σ α,σ

⊗n

L.h.s.:      log(1-ε)-log M.
1
α-1 ...we win.
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Stinespring: N( ) = Tr  V  V,
              with an isometry V:A    B  E.

E
⊗

ρ ρ
†

↪→

Complementary channel:
              N( ) = Tr  V  V.B

†
ρρ̂

N is degradable if there exists a cptp map D 
s.t. N = D  N. Vice-versa: anti-degradable.̂ ◦



A’ V

A

B
A’A
φ

E

ψABE

Degradability in the Church of the 
Larger Hilbert Space:



A’ V

A

B
A’A
φ

E

ψABE

Apply degrading map
(Stinespring form)

Degradability in the Church of the 
Larger Hilbert Space:



A’ V

A
A’A
φ

E

ψABE

W
E’
F

AEE’Fϕ

Degradability in the Church of the 
Larger Hilbert Space:



A’ V

A
A’A
φ

E

ψABE

W
E’
F

AEE’Fϕ

Degradability in the Church of the 
Larger Hilbert Space:
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   for instance 50% erasure channel
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1) Phase damping channel, more generally
  Schur multipliers and Hadamard channels
2) Amplitude damping channel
3) Symmetric channels, i.e. trivial F,
   for instance 50% erasure channel

Examples:



A previous result [via E. Rains, IEEE-IT 
47(7):2921-2933 (2001)]: If N is PPT 
entanglement-binding, then of course 
Q(N)=0, and strong converse holds (with 
error converging exponentially to 1).



A previous result [via E. Rains, IEEE-IT 
47(7):2921-2933 (2001)]: If N is PPT 
entanglement-binding, then of course 
Q(N)=0, and strong converse holds (with 
error converging exponentially to 1).

Note: Already for symmetric (degradable 
& anti-degradable) channels - for which 
also Q(N)=0 - not clear at all.



Thm (Morgan/AW, 1301.4927): For any 
degradable channel N, and codes with rate 
R > Q(N) have error at least 0.707, 
asymptotically. I.e., at Q(N), the error 
has a finite ”jump”:
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.707 Pretty strong
converse

Thm (Morgan/AW, 1301.4927): For any 
degradable channel N, and codes with rate 
R > Q(N) have error at least 0.707, 
asymptotically. I.e., at Q(N), the error 
has a finite ”jump”:
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erasure channel - without encoding.
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Thm: For any degradable channel N, codes 
with rate R > Q(N) have error at least 
0.707, asymptotically. I.e., at Q(N), the 
error has

Error/fidelity achieved by a single 50% 
erasure channel - without encoding.

On the other hand: For larger error, any 
i.i.d. symmetric channel allows coding of 
k = c$n qubits, by random codes. More?—



Thm: For any degradable channel N, codes 
with rate R > Q(N) have error at least 
0.707, asymptotically. I.e., at Q(N), the 
error has

Similar result for private capacity:

Thm (1301.4927): For degradable channel N, 
if decoding error and distance from 
perfect privacy are both below some 
universal threshold, then the rate is 
asymptotically bounded by P(N)=Q(N).



Thm: For any degradable channel N, codes 
with rate R > Q(N) have error at least 
0.707, asymptotically. I.e., at Q(N), the 
error has

Significance of symmetric channels:

Thm (1301.4927): If symmetric channels 
(whose quantum capacity is 0) obey a 
strong converse, then so do all degradable 
channels N: for error below 1, the rate is 
asymptotically bounded by Q(N).



Proof uses tight finite block length
   characterization of P and Q via
   (smooth) min-entropies & some tricks:
   symmetrization, de Finetti theorem,
   asymptotic equipartition property...

[Cf. R. Renner, PhD thesis, quant-ph/0512258 
& M. Tomamichel, PhD thesis, arXiv:1203.2142]



Proof uses tight finite block length
   characterization of P and Q via
   (smooth) min-entropies & some tricks:
   symmetrization, de Finetti theorem,
   asymptotic equipartition property...

[Cf. R. Renner, PhD thesis, quant-ph/0512258 
& M. Tomamichel, PhD thesis, arXiv:1203.2142]

Can be viewed as a complicated version of 
the proof of additivity: P(N)=Q(N)=Q  (N)
for degradable N... :-/

[Devetak/Shor, CMP 256:287 (2005)]

(1)



The trick with the sandwiched channel 
reduces the additivity of χ(N) to that 

of the minimum output Rényi entropy 
of an associated family of cp (trace 
non-preserving) maps. Can it be applied 
to other channels? Other divergences?
 Can we also get ”2nd order” behaviour? 
[Cf. Tomamichel/Tan, 1308.6503 for cq-channels]

7. Conclusion (sort of...)



Big open problem: from pretty strong to 
really strong converse for Q of 
degradable channels!? Bottleneck are the 
symmetric channels, e.g. 50% erasure 
channels...
How to prove strong converses 
without additivity? Note that neither P, 
Q nor P  , Q  , χ are generally additive! 

(Not known for C.)

(1)

7. Conclusion (sort of...)

(1)
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A goody first: minimax characterisation 
of χ(N): [Schumacher/Westmoreland, PRA 2000]

χ(N) = min max D(N(ρ)||σ)
ρσ

Note: For EB and H channels N this is 
additive, and so C(N) = χ(N).

[Shor, JMP 2002 (EB); King et al., quant-ph/0509126 (H)]
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Relative entropy
       D(ρ||σ) = Tr ρ(logρ- logσ)
is a special case of a whole family of 
”generalised divergences”.
[Cf. Petz, 0909.3647; Müller-Lennert et al., 1306.3142]

Fundamental property is monotonicity: for 
any cptp map N,
    D(ρ||σ) ! D(N(ρ)||N(σ)) ! 0.      (*)

Notation: for binary distributions P=(p,1-p) 
and Q=(q,1-q), write D(P||Q) = D(p||q).

~ ~

~ ~
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∑

m m⊗and

XB ⊗X

(+)

(*)

M
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D(1-ε||1/M) " max D(N(ρ)||σ) =: χ   (N)
ρ D,σ
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~[Cf. Nagaoka (%2000); 
Polyanskiy/Verdú (2010);
Sharma/Warsi, 1205.1712.]
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ρ D,σ

~ ~
~

Everything depends on right choice of D: ~

D (ρ||σ) :=      log Tr (σ   ρσ   )α
1
α-1

~ α1-α
2α

1-α
2α

Sandwiched α-Rényi relative entropy (α> 1)

[Cf. Müller-Lennert et al., 1306.3142;
Beigi 1306.5920; Frank/Lieb 1306.5358]

It’s monotonic, has property (+) and is
" D (ρ||σ) :=     log Tr ρ σ   , withα

1
α-1

α 1-α

which it coincides when states commute.
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~ ~

D (ρ||σ) :=      log Tr (σ   ρσ   )α
1
α-1

~ α1-α
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Crucial: -χ   (N) is the minimum α-Rényi 

output entropy of a perturbed cp map N’,
α,σ

N’(ρ) = σ   N(ρ)σ  .
1-α
2α

1-α
2α

Lhs: D (1-ε||1/M) ! log M +     log(1-ε)~
α

α
α-1
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Now apply this to N   , σ  , and M=2   .nR⊗n ⊗n

Have:

Key observation: Sandwiched channel is 
(N’)  , and N’ is EB if N is. 

⊗n

⇒ Additivity, χ   (N   ) = n χ   (N).α,σ α,σ
⊗n

(Because of identity with min output entropy of N’)
[King, QIC 2003; Holevo, Russ. Math. Surveys 2006]
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  with maximally entangled state    of k 
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Maximally entangled state    of k qubits:

Φ

Φ

k    H  (A|E) = -H  (A|E’F)≤
εε

min max

[For min-entropy calculus, consult
 R. Renner, PhD thesis, quant-ph/0512258 

& M. Tomamichel, PhD thesis, arXiv:1203.2142]
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k    H  (A|E) 
   = -H  (A|E’F)

≤

ε

ε
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max

[Cf. also Buscemi/Datta,
IEEE-IT  56(3), 2010;
Datta/Hsieh, 1103.1135]



k    H  (A|E) 
   = -H  (A|E’F)

≤

ε

ε

min
max Note: If we knew that for n 

channel uses, the maximum 
min-entropy is attained on a 
tensor product input, we’d be 
done by AEP (= asymptotic 
equipartition property)...
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Chain rule,   =  +3  .δ ε λ

     H  (F|E’) + O(1)≤ max
λ

...if   <0.707, by inequality 
H   vs. H   , and using symmetry
between E and E’...

δ

maxmin
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2) For n channel uses, have restricted
   concavity of H   :max

λ

nn

k    H   (F  |E’  )    + O(1)≤ max
nn

W.r.t. a permutation
symmetric input state
and λ = λ/   

(n)ρ
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‘ √
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k    H  (F  |E’  ) + O(1)≤ max
λ

2) For n channel uses, have restricted
   concavity of H   :max

λ

nn

k    H   (F  |E’  )    + O(1)≤ max
nn

3) By de Finetti theorem
  [R. Renner, PhD thesis, quant-ph/0512258]:

k    max H   (F  |E’  )    + o(n)≤ max
nn

ρ
A

ρ
⊗n

(n)ρ
A

λ‘

λ‘‘



4) By AEP (asymptotic equipartition
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QED


