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Some important heat engines

◮ Stirling engine: Originally conceived in 1816 by Robert
Stirling, a scottish inventor, as a rival to the steam engine.

◮ Carnot engine: A theoretical thermodynamic cycle
proposed by Nicolas Léonard Sadi Carnot in 1823.

◮ Otto engine : The earliest prototype four stroke engine
developed by Nikolaus August Otto in Cologne, Germany
in 1876.
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Stirling cycle: Harmonic oscillator

realization
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A microscopic realization of the Stirling Engine

ω1,Tc Isothermal ω2,Tc

3 −→ 4
τc

Isochoric ↑ ↓ Isochoric
τh

2 ←− 1
ω1,Th Isothermal ω2,Th

ω2 > ω1, Th > Tc ,

Realized experimentally by Blickle and Bechinger [ Nature
Physics 8 143-146 (2012)] through a single colloidal particle in
an optical laser trap. The expression for the efficiency ηcl

s
of

the Stirling engine given in their work reads
S. Chaturvedi A quantum dynamical framework for Brownian heat engines



ηcl
s
=

ηc

1 +
1

2
ηc/ ln(

ω2

ω1
)
, ηc = 1− Tc

Th

.

To get this formula one is obliged to take the change in the
internal energy in the isochoric step from Th to Tc to be
KB(Th − Tc)/2 rather than KB(Th − Tc) as one would naively
expect for a one dimensional harmonic oscillator. Why should
that be so? A query with the authors revealed that this factor
arises from the fact that one is dealing with an overdamped
harmonic oscillator. This then raises two questions

◮ What happens when we are in the weak dissipation
regime?

◮ What is the status of this formula in the regime where
quantum effects are expected to be important?

Clearly there is a need for a quantum dynamical framework
which permits proper inclusion of dissipative effects and is
capable of accommodatiing variation of the ststem potential
and the ambient temperature.S. Chaturvedi A quantum dynamical framework for Brownian heat engines



Beyond standard thermodynamics

The desired framework is provided by the dynamics of a
quantum Brownian oscillator of frequency ω in contact with a
heat bath at temperature T is described by the master
equation [G. S. Agarwal, Phys. Rev. A 4, 739 (1971)]:

∂

∂t
ρ = − i

~
[p̂2/2m +

1

2
mω2q̂2, ρ]

− 2κmω

~
(n(ω,T ) + 1/2)([q̂, [q̂, ρ]])− iκ

~
([q̂, {p̂, ρ}]),

where q̂ and p̂ are denote the position and momentum
operators obeying the commutation relations [q̂, p̂] = i~.
This master equation enjoys the property of evolving a
Gaussian state into a Gaussian state.
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For reasons that will become clear later, it proves expedient to
transcribe the quantum dynamics described by the master
equation into a Fokker-Planck equation using the Wigner
phase space description of quantum systems

∂

∂t
W = [− ∂

∂q

( p

m

)

+
∂

∂p

(

2κp +

(

∂V (q, a)

∂q

))

+ D
∂2

∂p2
]W ,

where

V (q, a) =
1

2
aq2, a ≡ mω2,

and

D = 2m~ωκ(n(ω,T ) +
1

2
), n(ω,T ) = (eβ~ω − 1)−1.

In the following the parameter a, the ‘spring constant’, will be
taken to be controlled externally.
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The Langevin equations equivalent to the above FPE read:

q̇ =
p

m
, (1)

ṗ = −2κp − ∂

∂q
V (q, a) + f (t), (2)

< f (t)f (t ′) >= 2Dδ(t − t ′). (3)

The Langevin equations lend themselves to a nice
thermodynamics intepretation [K. Sekimoto and Shin-ichi
Sasa, J. Phys. Soc. Jpn, 66, 3326 (1997)]:
Multiplying the second by dq, after some algebraic
manipulations, one obtains

−(−2κp + f (t))dq + d(p2/2m + V (q, a))− ∂V (q, a)

∂a
da = 0.
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The three terms may now be identified as :

Q = (−2κp + f (t))dq, dU = d(p2/2m + V ),

W = −∂V (q, a)

∂a
da,

leading to the energy balance equation:

−Q+ dU +W = 0,

with Q ( -Q) understood as the heat flow into of (out) the
system and W (-W) as the work done by (on) the system.

The stochastic averages of these quantities denoted by
Q,dU and W respectively relate directly to the corresponding
thermodynamic quantities and capture the thermodynamic
conservation laws.
This self-contained approach is clearly more microscopic than
thermodynamics as it provides a framework for computing not
only the averages of these quantities but their probability
distributions as well.
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Technical Details I

The Langevin equations which in the present case are linear
stochastic equations with additive noise may be solved to yield
:

(

q(t)
p(t)

)

= M(t)

(

q(0)
p(0)

)

+

∫

t

0

dt ′M(t)M(t ′)−1

(

0
√

2D(t ′)f (t ′)

)

,

where

M(t) ≡
(

u(t) v (t)
mu̇(t) mv̇ (t)

)

,

solves the homogeneous equations

d

dt

(

q(t)
p(t)

)

=

(

1/m 0
−mω2(t) −2κ

)(

q(t)
p(t)

)

.
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For the variance matrix

V(t) ≡
(

< q2(t) > < q(t)(p(t) >
< q(t)p(t) > < p2(t) >

)

,

one has

V(t) = M(t)[ V(0)

+

∫

t

0

dt ′M−1(t ′)

(

0 0
0 2D(t ′)

)

MT−1(t ′) ]MT (t).

It is therefore clear that finding explicit solutions for the
variances in situations where both ω and D depend on time
depends on our ability to solve for M(t). We list below three
physically meaningful cases where this is indeed possible.
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Three exactly solvable models

Case I: ω independent of time

For this familiar case the functions U(t) and V (t) which
determine the matrix M(t) are explicitly given by

u(t) =
(λ+e

−λ
−
t − λ−e

−λ+t)

(λ+ − λ−)
, v (t) =

(e−λ
−
t − e−λ+t)

m(λ+ − λ−)
;

λ± = κ±
√
κ2 − ω2.

Further, owing to time translation available in this case, we
have M−1(t) = M(−t), M(t)M(t ′) = M(t + t ′), and (4)
simplifies to

V(t) = M(t)V(0)MT (t)+

∫

t

0

dt ′M(t ′)

(

0 0
0 2D(t − t ′)

)

MT (t ′).
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Case II : ω2(t) = ω2
0

(

1 + µt
T

)

, 0 ≤ t ≤ T

In this case the functions u(t) and v (t) in the range
0 ≤ t ≤ T are given by

u(t) =

[

f+(t)ḟ−(0)− f−(t)ḟ+(0)

f+(0)ḟ−(0)− f−(0)ḟ+(0)

]

,

v (t) = m

[

f+(t)f−(0)− f−(t)f+(0)
˙f+(0)f−(0)− ˙f−(0)f+(0)

]

,

f±(t) = e−κt(t + a)1/2J±1/3

(

2

3
b1/2(t + a)3/2

)

,

a =

(

1− κ2

ω2
0

)

T

µ
, b =

ω2
0µ

T
.
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Case III : ω2(t) = ω2
0e

µt

T , 0 ≤ t ≤ T

In this case the functions f+(t) and f−(t) are again given in
terms of Bessel functions as

f±(t) = e−κtJ±α

(

ae
µt

2T

)

, a =
2Tω0

µ
α =

2Tκ

µ
.
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Origin of the factor of 1/2 and its generalisation

A detailed analysis of the Langevin equations for the case
when the diffusion the diffusion coefficient is changed linearly
from D0 appropriate to temperature T0 to D1 appropriate to
temperature T1 in a time τ and then kept at that value
thereafter,

D(t) =
D0 + (D1 − D0)

t

τ
, 0 ≤ t ≤ τ

D1, t > τ.

one is able to resolve the mystery behind the factor of 1/2.
The general formulae for the classical and quantum efficiencies
turn out to be given by

ηcl
s
=

ηc

1 + ηcµ/ ln

(

ω2

ω1

) ,
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and

ηq
s
=

1− Y /X

1 + Z/X
,

X = ln

(

sinh(βh~ω2/2)

sinh(βh~ω1/2)

)

, Y =
βh

βc

ln

(

sinh(βc~ω2/2)

sinh(βc~ω1/2)

)

,

Z =
βh

2
[~ω1 coth (βh~ω1/2)− ~ω2{(1− µ) coth (βh~ω2/2)

+ µ cothβc~ω2/2 )}] . p

The appearance of the parameter µ appearing here ( for which
one has an exact expression) may be viewed as a
phenomenological way of incorporating non equilibrium effects
arising from decoupling of the system from one bath and
recoupling it to another. Further, in the overdamped regime it
does approach 1/2.
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Technical Details II

The equations for the second moments that follow from the
Langevin or the Fokker-Planck equation may be written as

d

dt
X (t) = A(t)X (t) + Y (t),

where

X (t) =





< q2 >
< qp >
< p2 >



 ,A(t) =





0 2
m

0
−mω2(t) −2κ 1

m

0 −2mω2 −4κ



 ,

Y (t) =





0
0

2D(t)



 .

(At this stage, as indicated, we allow the frequency and the
diffusion coefficients to be independent functions of t)
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Putting t = sτ and expanding X (t) as

X (t) = X (0)(s) +
1

τ
X (1)(s) + · · · ,

we obtain

A(s)X (0)(s) + Y (s) = 0⇒ X (0)(s) = −A−1(s)Y (s),

X (1)(s) = A−1(s)
d

ds
X (0)(s).

The first of these equations can be taken to describe the
situation where the system is in the steady state corresponding
to the instantaneous values of ω and D and the second as
describing deviations from this steady state.
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Finite time corrections: Complementarity relations

Using this simple algebraic method applied to the moment
equations that follow from the Langevin equations we are able
to derive finite time corrections and hence the quantum
analogues of the complementarity relations such as

Qirr × τ ≥ 2κKBT

τ

[

1

ω(1)
− 1

ω(0)

]2

,

obtained by Sekimoto and Sasa in the classical case .
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Efficiency of the Stirling engine at maximum power

In the spirit of the earlier works in the context the Carnot
cycle by Schmiedl et al and Esposito et al. we find the
efficiency for the Stirling engine at maximum power is given by

ηcl∗
s

=
ηc

(

1 +
√

TcΣc

ThΣh

)

(

1 +
√

TcΣc

ThΣh

)2

+ Tc

Th

(

1− Σc

Σh

)

+ 2µηc

log
(

ω2
ω1

)

.
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We now consider two cases:

Case A µ = 0

In the extreme weak dissipation regime i.e. µ = 0, one recovers
results similar to those in the context of the Carnot cycle :

1. In the symmetric case i.e Σc/Σh = 1, ηcl∗
s

equals the
Curzon-Ahlborn efficiency ηCA = 1−

√

Tc/Th:

Σc

Σh

= 1 : ηcl∗
s

= ηCA.

2. ηcl∗
s

is bounded by ηc/2 and ηc/(2− ηc)

ηc/2 ≤ ηcl∗
s
≤ ηc/(2− ηc).

The upper and the lower bounds respectively correspond
to Σc/Σh → 0 and Σc/Σh →∞
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Case B µ 6= 0

For small but non zero µ < 1
2
log(ω2/ω1) these results get

modified to those given below

1. In the symmetric case i.e Σc/Σh = 1, ηcl∗
s

is less than the
Curzon-Ahlborn efficiency ηCA = 1−

√

Tc/Th:

Σc

Σh

= 1 : ηcl∗
s

=
ηCA

1 +
(

µ
log(ω2/ω1)

)(

2ηCA
2−ηCA

) < ηCA.

2. ηcl∗
s

is bounded by ηc/2 and ηs/(2− ηs)

ηc/2 ≤ ηcl∗
s
≤ ηs/(2− ηs).

As before, the upper and the lower bounds respectively
correspond to Σc/Σh → 0 and Σc/Σh →∞
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On the other hand if µ > 1
2
log(ω2/ω1), one finds that

ηcl∗
s
≤ ηc/2.

In the figures below we display the bounds on ηcl∗
s

for
µ = 0.001, 0.1, 0.2, 0.4 with ω2/ω1 taken to be 2.05 where we
also give the plots for ηc , ηCA and ηc/2 for comparison.

ηcl∗
s

ηc

ηcl∗
s

ηc

(a) (b)

ηc ηCA

ηc/2

ηc

ηCA

ηc/2

ηcl∗
s

ηc

ηcl∗
s

ηc

(c) (d)

ηc
ηCA

ηc/2

ηc

ηCA

ηc/2

Fig.2 Efficiency ηcl∗s of the Stirling engine at maximum power as a function of the
Carnot efficiency ηc. The graph ηcl∗s versus ηc, for all values of Σc/Σh, lies in the
shaded regions given here for ω2/ω1 = 2.05 and (a) µ = 0.001 (b) µ = 0.1 (c) µ =
0.40 and (d) µ = 0.4. The graphs of ηc, ηCA and ηc/2 versus ηc are displayed
for comparison. While in (a)–(c), µ < 1

2
log(ω2/ω1), (d) corresponds to the case

when µ > 1

2
log(ω2/ω1).
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