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Schrödinger Equation, a Survey on Regularity Questions

P.K. Ratnakumar

Abstract. We discuss the regularity questions for the Schrödinger propagator
e
−itL for the Hermite and special Hermite operator. Essentially the Strichartz

estimates and the analyticity properties of the Schrödinger propagator are
discussed. The result for the case of Hermite operator is a minor improvement
than the one obtained in [11],[12].
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1. Introduction

The free Schrödinger equation on Rn is the partial differential equation given
by

i∂tu(x, t) + ∆u(x, t) = 0, x ∈ R
n, t ∈ R,(1.1)

where ∆ =
∑n

j=1 ∂2
xj

is the laplace operator on Rn. In quantum mechanics, the

solution u(x, t) is known as wave function and |u(x, t)|2 gives the probability
density of finding a free particle in a given region at a given time. Knowing the
initial data,

u(x, 0) = f(x)(1.2)

one would like to know the evolution of this quantum system, which amounts
to solving the above PDE with the given initial data f . When f ∈ L2(Rn), this
equation can be solved, in a fairly elementary way, by Fourier method.

In fact taking the Fourier transform in the x variable, the above equation, re-
duces to the following initial value problem for the ordinary differential equation

i∂tû(ξ, t) − |ξ|2û(ξ, t) = 0, ξ ∈ R
n, t ∈ R.

û(ξ, 0) = f̂(ξ).
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Solving this initial value problem for the ODE in t, treating ξ as a parameter,
we see that û(ξ, t) = Ce−it|ξ|2 and from the initial data for the ODE, we conclude

that the constant C = f̂(ξ), leading to û(ξ, t) = f̂(ξ) e−it|ξ|2. Taking the inverse
Fourier transform, the solution is given by

u(x, t) =

∫

Rn

f̂(ξ) e−it|ξ|2eixξdξ.

Notice that by Fourier inversion formula, f has the representation

f(x) =

∫

Rn

f̂(ξ) eixξdξ.

Thus the solution operator f → u(x, t) is a Fourier multiplier operator, with the

multiplier given by the oscillatory function m(ξ) = e−it|ξ|2, reflecting the wave
nature of the solution u(x, t). Symbolically the solution is written as u(x, t) =
eit∆f(x). Thus we see that, the solution is given by the one parameter “oscillatory
group” {eit∆ : t ∈ R}, generated by the operator i∆. In fact, the operator eit∆

has the following integral representation as a convolution operator

eit∆f(x) =
cn

tn/2

∫

Rn

f(y)e
−i|x−y|2

4t2 dy.(1.3)

More generally one can consider the oscillatory one parameter group e−itL

associated to a self adjoint differential operator L, and in that case the the
function u(x, t) = e−itLf(x) (defined using the spectral theory for L), solves the
initial value problem for the Schrödinger equation for L:

i∂tu(x, t) = Lu(x, t), x ∈ R
n, t ∈ R.

u(·, 0) = f ∈ L2(Rn).

Of particular interest is the case when L = −∆ + V , which corresponds to the
motion of a quantum particle in a potential field V .

Since the Schrödinger propagator eit∆ is given by a Fourier multiplier opera-
tor, a natural tool to study the free Schrödinger equation is the Fourier analysis.
But Fourier analysis is essentially the spectral theory of the Euclidean Laplacian.
From this point of view, one can propose an analogous study of Schrödinger equa-
tion for L, using the spectral theory of L. The aim of this lecture is to illustrate
this idea, taking two operators of interest in in harmonic analysis, namely Her-
mite and Special Hermite operators, whose spectral theory is well known. From
the application point of view, they deal with, respectively, a quantum particle in
a scalar potential field V (x) = |x|2 on Rn or a particle in a magnetic vector field
X(x, y) = (−y, x) ∈ C

n, where ℜ(z) = x ∈ R
n.

Here we address a couple of regularity questions for the Schrödinger equations,
and do a brief survey on results around some of my work in this direction. The
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first question is about the regularity in terms of Sobolev spaces, i.e., can u(x, t),
for t > 0, have better regularity than the initial data f ∈ L2(Rn)? It is natural
to measure the regularity using a scale of Sobolev spaces W s

L, defined in terms
of the operator L:

W s
L(Rn) = {f ∈ L2(Rn) : Lsf ∈ L2(Rn)}

where Ls is defined using the spectral theory:

Lsf =

∞
∑

k=0

λs
kPkf.

where Pk denote the projection onto the eigenspace corresponding to the eigen-
value λk (For simplicity, we assume that the spectrum of L is the eigenspectrum).

The answer to this question is easily seen to be in the negative (even if L is
a smoothing operator!). Notice that for s > 0, W s

L(Rn) is a proper subspace of
L2(Rn), for nice L, say for instance L is Hypo elliptic. In fact, for t ∈ R, the
operators e−itL are unitary, in particular surjective, hence cannot map L2 to into
W s

L(Rn) for s > 0. This rules out the possibility of e−itL having any regularity in
terms of the Sobolev spaces W s

L(Cn). This is a general feature of such oscillatory
groups.

However when f has nice decay, there seems to be some smoothing property
for the oscillatory semigroup eitL. In fact, A Jenson has proved the following
weighted Sobolev estimate:

Theorem 1.4. (A Jenson 1986) Let L = −∆+V , If V ∈ L∞
k ∈ (Rn), (the space

of functions having distribution derivatives up to order k in L∞(Rn)) for some
k ≥ 0, then u(x, t) = eitLf(x) satisfies the inequality

∫

Rn

|(1 + ∆)k/2[u(x, t)(1 + |x|2)−k/2]|2dx ≤ C

∫

Rn

|f(x)|2(1 + |x|2)kdx.

The following theorem of Hayashi and Saito, regarding the analyticity prop-
erty of the solutions of eit∆ can be thought of as a limiting case of the results of
Jenson in the case of dimension one.

Theorem 1.5. (N. Hayashi, S. Saitoh, 1990) Let u(x, t) be the solution to the

initial value problem for the free Schrödinger equation. If f ∈ L2(R, e
x2

2 dx), then

for t 6= 0, the function e−
ix2

2t u(t, x) has an analytic continuation to the entire

complex plane, and e−
iz2

2t u(t, z) ∈ L2(C, e−
y2

2t2 dxdy), z = x+ iy. Moreover, u(z, t)
satisfies the identity

1

|t|√π

∫

C

e−
y2

t2 |e− iz2

2t u(t, z)|2dxdy =

∫

R

ex2 |f(x)|2dx
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for t 6= 0.

In particular, if f has exponential decay, then u has analytic extension to the
whole of C. They have also proved similar results for Schrödinger equation with
potential assuming similar analytic extension property on the potential V . Their
proof relies on certain identities valid in dimension one. However, the result can
be obtained directly for arbitrary dimension using the formula (1.3).

These results highlight the fact that the general Schrödinger propagator has
nice regularizing effect, if we restrict the initial data to a suitable sub space of
L2(Rn). But we can still ask, is there some kind of regularity if we consider initial
data from the whole of L2(Rn)? An interesting result in this context is given by
the following theorem of Strichartz, for the free Schroedinger equation:

Consider the inhomogeneous problem

i∂tu(x, t) + ∆u(x, t) = g(x, t), x ∈ R
n, t ∈ R

u(x, 0) = f(x)

where ∆ =
∑n

i=1
∂2

∂x2
i

.

Theorem 1.6 (Strichartz). Let f ∈ L2(Rn), g ∈ L
2(n+2)

n+4 (Rn×R). Then u(x, t) =

e−it∆f(x) solves the above inhomogeneous problem and u ∈ L
2(n+2)

n (Rn × R).
Moreover, u satisfies the inequality

(
∫ ∞

−∞

∫

Rn

|u(x, t)|
2(n+2)

n dxdt

)
n

2(n+2)

≤ C
(

‖f‖2 + ‖g‖ 2(n+2)
n+4

)

.

The above estimate (known as the Strichartz estimate), asserts that the so-

lution lies in a higher order Lp space, namely p = 2(n+2)
n

. Strichartz estimate
is an important tool in establishing the existence of solutions to the non linear
Schrödinger equation.

The above result has been extended to Schrödinger equations with poten-
tial, by Journe, Soffer and Sogge for a wide class of bounded potentials V (i.e.,
Schrödinger equation for L = −∆ + V in our notation). In fact in [6], they
proved analogous estimates in the case of bounded potentials satisfying certain
point wise decay at infinity. There has been considerable interest in such estimate
ever since, as a global regularity result for the solution of Schrödinger equation,
see [4] and [5], and the references there in, for results for bounded potentials.
Also see [7] for some generalizations.

An interesting case of an unbounded potential is the quadratic potential
V (x) = |x|2. In this case L = −∆+ |x|2 is the Hermite operator, usually denoted
by H , representing the harmonic oscillator Hamiltonian in quantum mechanics.
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The equation in this case can be thought of as Schrödinger equation for the Her-
mite operator. This is a joint work with A. K. Nandakumaran, and our proof
relies on the harmonic analysis of Hermite functions. We will discuss the basic
idea involved in this paper without going into much of technicalities. Before that
we introduce the special Hermite operator mentioned above.

Note that the quantum harmonic oscillator Hamiltonian H = −∆ + |x|2, for
x ∈ Rn has the representation

H =
1

2

n
∑

j=1

(AjA
∗
j + A∗

jAj)

in terms of the creation operators Aj = − d
dxj

+xj and the annihilation operators

A∗
j = d

dxj
+ xj , j = 1, 2, . . . , n. Consider the analogous operator L on Cn, given

by

L =
1

2

n
∑

j=1

(ZjZj + ZjZj)

where Zj = ∂
∂zj

+ 1
2
z̄j , Zj = − ∂

∂z̄j
+ 1

2
zj, j = 1, 2, . . . , n. Here ∂

∂zj
and ∂

∂z̄j
denote

the complex derivatives ∂
∂xj

∓ i ∂
∂yj

respectively. The operator L was introduced

by R. S. Strichartz [16], and is known as the special Hermite operator. In explicit
terms it has the form

L = −∆ +
1

4
|z|2 − i

n
∑

1

(

xj
∂

∂yj
− yj

∂

∂xj

)

(1.7)

where ∆ is the Laplacian on Cn.

What makes this operator interesting is that, it is associated to certain con-
volution structure on Cn, by virtue of which, the solutions to the initial value
problems for basic linear differential equations like heat, wave and Schrödinger
equation for L can be expressed in terms of this convolution structure on Cn.
Moreover, the Schrödinger equation for L can be expressed in the form of a
Schrödinger equation with a magnetic vector potential A and a scalar potential
V :

2n
∑

j=1

(i∂j + Aj)
2u + V u = 0

with V ≡ 0 and ∂j = ∂xj
, Aj = −yj for 1 ≤ j ≤ n, ∂j = ∂yj

, Aj = xj for
n + 1 ≤ j ≤ 2n.

There is a far reaching generalization of Strichartz estimates by M. Keel and
T. Tao, for a general one parameter family of operators U(t) : H → L2(X, dµ),
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defined on a Hilbert space H . In fact they prove a Strichartz estimate for a
general class of one parameter family of operators satisfying certain growth/decay
conditions in t for all t ∈ R. They show that for f ∈ H, u(x, t) = U(t)f(x) lies
in the mixed Lp space Lq(R : Lp(X, dµ)) over R × X, for pairs (q, p) satisfying
the admissibility conditions 1

q
= n

2
(1

2
− 1

p
).

A crucial step in the Strichartz estimate, is the so called dispersive estimate

‖eit∆f‖L∞(Rn,dx) ≤
C

t
n
2

‖f‖L1(Rn,dx).

In the case of free Schrödinger equation this follows straightaway from the for-
mula (1.3).

However such dispersive estimates are not valid for all t ∈ R, in the case of
Schrödinger propagator for the Hermite or special Hermite operators that we
considered. The reason is that they have discrete spectrum, in fact the spectrum
is a subset of integers. Consequently, the operator e−itL is periodic in t with
period 2π, hence a decay estimate of the above form clearly cannot hold in the
case of operators L with discrete spectrum, in general. It is not even clear if such
a decay estimate is valid near t = 0.

In the case of the Hermite operator, we can formally write an integral repre-
sentation of the form

e−itHf(x) =

∫

Rn

Kt(x, y)f(y)dy.

In fact every f ∈ L2(Rn) has the Hermite expansion

f(x) =
∑

α∈Zn
+

〈f, hα〉hα(x) =

∞
∑

k=0

Pkf(x)

where

Pkf(x) =

∫

Rn

f(y)Φk(x, y) dx =

∫

Rn

f(y)





∑

|α|=k

hα(x)hα(y)



 dxdy

are the Hermite projection operators. Recall that, the n-dimensional Hermite
functions are the tensor product of the one dimensional Hermite functions, i.e.,
for each multi index α and x ∈ Rn, hα(x) = Πn

i=1hαi
(xi). Moreover we, have

Hhα = 2(|α| + n)hα, i.e. hα are eigenfunctions of the Hermite operator with
eigenvalue (2|α| + n). So we can define

e−itHf(x) =

∞
∑

k=0

e−it(2k+n)Pkf(x)
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for f ∈ L2(Rn). The formal expression for the kernel is

Kt(x, y) = e−int
∑

k

ωkΦk(x, y),

which has a closed form representation (Mehler’s formula)

e−int

∞
∑

k=0

ωkΦk(x, y) = e−intπ−n
2 (1 − ω2)−

n
2 e

− 1
2

1+ω2

1−ω2 (|x|2+|y|2)+ 2ω

1−ω2 x·y
,(1.8)

which is valid only for |ω| < 1, where as in our case ω = e−2it which is of absolute
value 1. The method, we employed to get around this difficulty is a regularization
technique, which we will explain. We state our theorem regarding Strichartz’s
type estimate for the Schrödinger equation for the Hermite operator H .

Consider the initial value problem for the Schrödinger equation for H

i∂tu(ξ, t) = Hu(ξ, t), x ∈ R
n, t ∈ R.(1.9)

u(x, 0) = f(x)(1.10)

Since e−itH is periodic in t with period 2π, it is natural to look for estimate
in terms of the mixed Lp space over [−π, π] × Rn.

Theorem 1.11. Let f ∈ L2(Rn) and let u(x, t) = e−itHf(x) be the solution
of the initial value problem (1.9), (1.10). Then u is periodic in t and u ∈
Lq([−π, π]; Lp(Rn)), for all pairs (q, p) such that

2 < q < ∞,
1

q
≥ n

2

(1

2
− 1

p

)

or 1 ≤ q ≤ 2, 2 ≤ p < Λ

where Λ = ∞ for n = 1, 2 and Λ = 2n
n−2

for n > 2. Further u satisfies the
inequality

‖u‖Lq([−π,π]; Lp(Rn)) ≤ Cn‖f‖2(1.12)

for all f ∈ L2(Rn) for the above ranges of p and q.

Proof. The result presented here is a minor improvement than in [11] and [12],
following the arguments as in [13]. We briefly sketch the idea of the proof. We
embed the original one parameter group {e−itH : t ∈ R} into a complex semi
group {e−ηH : ℜ(η > 0)}. By the above discussion, the operator e−ηH , has an
integral representation

e−ηHf(x) =

∫

Rn

Kη(x, y)f(y)dy
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where e2nr Kη(x, y), is given by RHS of (0.5) with ω = e−2η. From this follows
the required dispersive estimate,

‖e−ηHf‖L∞ ≤ C

| sin t|n
2

‖f‖1

for the complex semi group. Using this basic estimate, one can obtain the
Strichartz’ type estimate for the complex semigroup

‖e−ηHf‖Lq(R;Lp(Rn)) ≤
C

tn/2
‖f‖2

with the constant C independent of ℜ(η), using the standard T ∗T method. The
next step is to obtain the result for the original semi group by a limiting argu-
ment. For this we find a sequence ηn = rn + it such that

e−ηnHf → e−itHf, for a.e. (x, t), as rn → 0.

First we observe that for each fixed t, e−ηHf → e−itHf in L2(Rn) as ℜ(η) =
r → 0. Now for any sequence ηj = rj + it, we have by orthogonality of Pk,

‖e−ηjHf − e−itHf‖2
2 =

∑

k

∣

∣e−(rj+it)λk − e−it λk
∣

∣

2 ‖Pkf‖2
2

where λk = (2k + n) ≥ 0. Since
∣

∣e−(rj+it)(λk) − e−it(λk)
∣

∣ ≤ 2 and tends to zero
as rj → 0, a dominated convergence argument applied to the above sum, shows
that the RHS tends to zero as rj → 0.

Integrating the above equality with respect to t ∈ [−π, π], and again a DCT
argument, shows that

∫ π

−π

∫

Rn

|e−(rj+it)Hf(x) − e−itHf(x)|2dxdt → 0

as rj → 0. In other words e−ηjHf converges to e−itHf in L2(Rn × [−π, π]). Thus
we can extract a subsequence of this sequence, denoted by e−ηnHf(x), for which

lim
ℜ(ηn)→0

e−ηnHf(x) = e−itHf(x)(1.13)

for a.e. (x, t) ∈ Rn × [−π, π].

Now application of Fatou’s lemma twice, with respect to the variable x and
t separately, after taking suitable powers gives the required norm estimate for
e−itH . This completes the proof.

We remark that, in contrast to the Keel-Tao estimate, the result is also valid
for the pair (p, q) when 1 < q < 2 and moreover, no admissibility condition is
required in this case. We obtain this improvement, by proving a result on the
convolution on the circle, instead of using the usual Hardy-Littlewood-Sobolev
estimate. Here is that elementary lemma.
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Lemma 1.14. Let T denote the convolution operator on the circle given by

Tf(t) =

∫

S1

K(t − s)f(s)ds.

Assume that K belongs to the weak Lp space L
ρ
W (S1), for some ρ > 1. Then the

inequality
‖Tf‖q ≤ CK‖f‖q′

is valid for q = 2ρ and also for 1 ≤ q ≤ 2, where CK is a constant depending
only on K.

Proof. By the generalized Young’s inequality, we have (see [3]):

‖Tf‖r ≤ C[K]ρ‖f‖q′

where [K]ρ denoting the weak Lρ(S1) norm of K, and is valid for all r such that
1
q′

+ 1
ρ

= 1 + 1
r
, ρ > 1, q′ > 1. Setting r = q, this reads

‖Tf‖q ≤ C[K]ρ‖f‖q′(1.15)

for q = 2ρ. Notice that these arguments are valid for 2 < q < ∞, since ρ > 1
and q′ > 1 by assumption.

Now we observe that the weak Lp spaces L
ρ
W are in L1

loc for ρ > 1 : In fact,
for any compact set Θ, set g = fχΘ. The distribution function of g is given
by λg(α) = |{x : |g(x)| > α}| = |{x ∈ Θ : |f(x)| > α}| ≤ |Θ|. Hence λg(α)
is bounded for α > 0. Also λg(α) ≤ λf(α) ≤ C

αρ , since f ∈ L
ρ
W . These two

inequalities yield λg(α) ≤ C
1+αρ . Thus

∫

Θ
|f | = ‖g‖1 =

∫ ∞

0
λg(α)dα ≤

∫ ∞

0
dα

1+αρ .

This integral is finite for ρ > 1, showing that f ∈ L1
loc.

By the above observation, we have K ∈ L1(S1). Hence by Minkowski’s in-
equality for integrals,

‖Tf‖q ≤ ‖K‖1‖f‖q for 1 ≤ q ≤ ∞.

Integrating this inequality for q = ∞ over S1 yields

‖Tf‖1 ≤ 2π‖K‖1‖f‖∞.

Interpolating this with the above Lq estimate for q = 2, we get

‖Tf‖q ≤ C‖K‖1‖f‖q′ for 1 ≤ q ≤ 2.

This completes the proof.

To illustrate an application of the above Strichartz estimate, we now consider
the inhomogeneous problem:

i∂tu(x, t)− Hu(x, t) = g(x, t), x ∈ R
n, t ∈ R

u(x, 0) = f(x).
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In this case the solution is given by the Duhamel’s formula :

u(x, t) = e−itHf(x) − i

∫ t

0

e−i(t−s)Hg(x, s)ds.

Using the Strichartz estimate for e−itH , we prove the following

Theorem 1.16. Let f ∈ L2(Rn) and g(x, t) ∈ Lq′(S1; Lp′(Rn)) then the solution
u(x, t) to the above problem lies in Lq(S1; Lp(Rn)), for all pairs (q, p) such that
2 < q < ∞, 1

q
≥ n

2
(1

2
− 1

p
) or 1 ≤ q ≤ 2, 2 ≤ p < λ, where λ = ∞ for n = 1, 2

and λ = 2n
n−2

for n > 2 . Further u(x, t) satisfies the inequality

‖u(z, t)‖Lq(S1; Lp(Rn)) ≤ Cn(‖f‖2 + ‖g‖Lq′(S1;Lp′ (Rn)))

for the above pairs (p, q) with some constant Cn independent of f and g.

Proof. Follows from Duhamel’s formula, and the estimates :

‖u‖Lq(S1; Lp(Rn)) ≤ Cn‖f‖2

∥

∥

∥

∥

∫ t

0

e−i(t−s)Lg(x, s)ds

∥

∥

∥

∥

Lq(S1;Lp(Rn))

≤ C‖g‖Lq′(S1;Lp′ (Rn))

which also follows by arguments as in the proof for Theorem 1.11.

2. The case of special Hermite operator

Analogous results hold for the special Hermite operator as well. In fact us-
ing the spectral theory of the special Hermite operator, one can show that the
corresponding complex semi group has the following integral representation as a
twisted convolution operator

e−ηLf(z) = f × Kη(z)(2.1)

with kernel

Kη(z) = (2π)−n
∞

∑

k=0

e−η(2k+n)ϕk(z),

where ϕk are given in terms of the Laguerre polynomials Ln−1
k :

ϕk(z) = Ln−1
k (

1

2
|z|2)e− 1

4
|z|2,

see [17] for the definition of Laguerre polynomials.

The relevant Strichartz type estimate, in this case is

‖e−itLf‖Lq([−π,π];Lp(Cn)) ≤ Cn‖f‖2(2.2)
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valid for all f ∈ L2(Cn), for all pairs (q, p) such that

2 < q < ∞,
1

q
≥ n(

1

2
− 1

p
) or 1 ≤ q ≤ 2, 2 ≤ p <

2n

n − 1
.

For more details we refer the reader to [13].

The above Strichartz estimate leads to an existence theorem for the inhomo-
geneous problem as before:

i∂tu(z, t)− Lu(z, t) = g(z, t), z ∈ C
n, t ∈ R

u(z, 0) = f(z).

Theorem 2.3. Let f ∈ L2(Cn) and g(z, t) ∈ Lq′(S1; Lp′(Cn)) then the solution
u(z, t) to the above problem lies in Lq(S1; Lp(Cn)), for all pairs (q, p) such that
1 ≤ q ≤ 2, 2 ≤ p < 2n

2n−1
or 2 < q < ∞, 1

q
≥ n(1

2
− 1

p
). Further u(z, t) satisfies

the inequality

‖u(z, t)‖Lq(S1; Lp(Cn)) ≤ Cn(‖f‖2 + ‖g‖Lq′(S1;Lp′ (Cn)))

for the above pairs (p, q) with some constant Cn independent of f and g.

Proof. Follows from Duhamel’s formula

u(z, t) = e−itLf(z) − i

∫ t

0

e−i(t−s)Lg(z, s)ds

with the similar arguments as before. For more details see [13].

3. Analyticity Property

As mentioned above the Schrödinger propagator e−itL has some interesting
regularity property. Here we state one such result for Schrödinger group eitL

associated to the Special Hermite operator L on Cn, which concerns the analytic
extension property of e−itL.

We think of C
n as R

2n and write z = (x, y), x, y ∈ R
n. Let

St(x, u) = e−itLg(x, u)

:=

∞
∑

k=0

e−it(2k+n)g × ϕk(x, u).(3.1)

The following result is a part of a joint work with Thangavelu and Sanjay Parui,
which concerns the the analytic extension of St(g).
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Theorem 3.2. If g ∈ L2(R2n, e(x2+u2)dx du), then St(x, u) = e−itLg(x, u) extends

as an entire function on C2n, for t 6= nπ, n ∈ Z. Moreover, St(z, w) e−i cot(t)
4

(z2+w2)

lies in the Bergman space L2(C2n, e−
csc2(t)

4
(y2+v2)dz dw) and satisfies the identity

‖St(z, w) e−i cot(t)
4

(z2+w2)‖
L2(C2n,e−

csc2(t)
4 (y2+v2)dz dw)

=

(

sin(t)√
π

)n

‖g(x, y)‖L2(R2n,e
2(x2+u2)dx du).

This is a crucial step in proving such analytic extension property of Schrödinger
equation for the sublaplacian on the Heisenberg group. For similar results for the
Hermite operator and the Heisenberg sublaplacian, we refer the reader to [10].
The result presented in [10] for the special Hermite operator is slightly different,
but proof follows by similar reasoning.
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