Sources of Cosmic Reionization

Andrea Ferrara
Scuola Normale Superiore, Pisa
SOURCE LIST

- **Stars: Pop II and/or (massive) Pop III**

 In what proportion? (4, 30, 100) × 10^3 phot/baryon into stars

- **Quasars**

 Too rare, too late; key sources for HeII reionization

- **Supernova explosions**

 Filling factor too small; Compton-y limited

- **Dark Matter: decays/annihilations**

 Light particles (LDM, sterile neutrinos) can produce a $\tau_e < 0.01$

 Heavy particles (neutralinos, gravitinos) totally negligible

- **Mini-quasars**

 Limited by unresolved SXRB

 Only 3 phot/baryon in IGM in 10 Salpeter times

- **Structure formation**

 Important for HeII reionization, bremsstrahlung has $f_{esc} \approx 1!$
REIONIZATION CHALLENGES

EXPERIMENTAL CONSTRAINTS

• Lyα Gunn-Peterson opacity
• Electron scattering optical depth
• Lyβ Gunn-Peterson opacity
• UV Background intensity
• Redshift evolution of Lyman Limit Systems
• IGM Temperature evolution
• IGM Metallicity
• Cosmic star formation history
• High-z galaxy counts
• Near Infrared Background
GLOBAL REIONIZATION MODELS

REIONIZATION HISTORY

Choudhury & AF 2005-2008

Electron sc. optical depth

Lyα G-P Optical depth

Counts

Lyβ G-P Optical depth

Temperature

Lyman Limit Systems

Counts

\[\tau_e \]

\[\tau_{\gamma} \]

\[\rho_{\text{HI}} / h \]

\[\Gamma_{\text{HI}} / 10^{-7} \text{erg}^{-1} \]

\[T_e / 10^4 \]
HIGH-Z GALAXIES

SEARCH TECHNIQUES

DROP-OUTS

- Sharp drop in flux shortwards than Lya line
- Finding galaxy candidates at z>6 : using i, z, Y, J-drops.
- Contamination by stars and low-z ellipticals

LYMAN ALPHA EMITTERS

- Narrow band filters tuned on redshifted Lya line
- Few and narrow atmospheric clean windows
- Not all spectroscopically confirmed
CHEMICAL FEEDBACK

COSMIC POP III/POP II TRANSITION

Tornatore, AF & Schneider 2007

Fraction of Pop III forming sites

Total Metallicity

z=5

z=3

z=5

z=3

Pop III
Pop II

Pop II wave
CHEMICAL FEEDBACK

Tornatore, AF & Schneider 2007; Schneider+2008

STAR FORMATION RATES

\[\langle Z \rangle_M \]

\[M_\odot \text{yr}^{-1} \text{Mpc}^{-3} \]

\[\frac{Z}{Z_\odot} \]

redshift

PopII

PopIII

(5Mpc)\(^3\)

(10Mpc)\(^3\)

(5Mpc, LR)\(^3\)
HIGH-Z GALAXIES

HIGH-Z LUMINOSITY FUNCTIONS

Simulations: Salvaterra+2010, submitted

Steep faint-end $\alpha \approx -2$
PROPERTIES

LYMAN ALPHA EMITTERS

• Halo masses $10^{10-12} \, M_\odot$
• SFR = 1-100 $M_\odot \, yr^{-1}$
• Ages > 40 – 400 Myr
• Lya LF evolves; UV LF does not in $z=5.7-6.6$
• Large EW (> 200Å) often observed
• Can be due to (a combination of):
 ✷ top-heavy IMF
 ✷ differential dust Lya/continuum extinction
 ✷ outflows //infall (also affecting line shape)
LAES IONIZING POWER

\begin{align*}
\log \left[\frac{Q_{\text{LAE}}}{s^{-1} \text{Mpc}^{-3}} \right] &= 49.32 \\
\log \left[\frac{Q_{\text{ion}}}{s^{-1} \text{Mpc}^{-3}} \right] &= 51.54 + \log C_{30}
\end{align*}

LAE contribute \(\approx 1\% \) of ionizing budget

PASSIVE TRACERS OF REIONIZATION?
DROPOUTS CONSTRAINTS

\[\rho_{\text{SFR}} \approx 0.013 \, f_{\text{esc}}^{-1} \left(\frac{1 + z}{6} \right)^3 \left(\frac{\Omega_b \, h_{50}^2}{0.08} \right)^2 \, C_{30} \, M_\odot \, \text{yr}^{-1} \, \text{Mpc}^{-3} \]

Dwarf (fainter) galaxies required?
PERSISTING PUZZLES

Inoue+2008; Siana+2010

Reionization sources

\(f_{\text{esc}} \)

- Increases from \(z=0 \) to \(z=3 \)
- Increases for low mass objects
- Larger in LAEs than in LBGs
- Too many LCE for Salpeter IMF

\(z = 3.09 \)
REIONIZATION SOURCES

Choudhury & AF 2008

SMALL OR LARGE?

Searching for the reionization sources

T. Roy Choudhury1* and A. Ferrara2†

1Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
2SISSA/ISASI, via Beirut 2-4, 34014 Trieste, Italy

5 February 2008

ABSTRACT

Using a reionization model simultaneously accounting for a number of experimental data sets, we investigate the nature and properties of reionization sources. Such model predicts that hydrogen reionization starts at \(z \approx 15 \), is initially driven by metal-free (PopIII) stars, and is 90\% complete by \(z \approx 8 \). We find that a fraction \(f_\gamma > 80\% \) of the ionizing power at \(z \geq 7 \) comes from haloes of mass \(M < 10^9 M_\odot \) predominantly harboring PopIII stars; a turnover to a PopII-dominated phase occurs shortly after, with this population, residing in \(M > 10^9 M_\odot \) haloes, yielding \(f_\gamma \approx 60\% \) at \(z = 6 \). Using Lyman-break broadband dropout techniques, \(J \)-band detection of sources contributing to 50\% (90\%) of the ionizing power at \(z \approx 7.5 \) requires to reach a magnitude \(J_{110,AB} = 31.2(31.7) \), where \(\sim 15(30) \) (PopIII) sources/arcmin\(^2\) are predicted. We conclude that \(z > 7 \) sources tentatively identified in broadband surveys are relatively massive (\(M \approx 10^9 M_\odot \)) and rare objects which are only marginally (\(\approx 1\% \)) adding to the reionization photon budget.
$f_\gamma > 80\%$ of the ionizing power from $M < 10^9 M_\odot$ halos
POSSIBLE SOURCE CANDIDATES

Salvadori & AF 2009

WHAT ARE THEY?

Willman+ 2006, Simon & Geha 2007

Ultra Faint Dwarf Spheroidals
POSSIBLE SOURCE CANDIDATES
Salvadori & AF 2009

ULTRA FAINT DSPHS: METALLICITY
UFs: MASS & FORMATION EPOCH

UF Dwarf Spheroidals
SUMMARY OF MAIN POINTS

- **Stars** dominate the reionization photon budget (mini-QSO/DM negligible contributors)
- Reionization started by metal-free stars at $z=20$; 90% complete at $z=8$
- Early reionization ($z > 7$) not in contrast with any experimental data
- $f_\gamma > 80\%$ of the ionizing power at $z > 7$ from halos of $M < 10^9 \, M_\odot$
- Current drop-out high-z candidates are not the reionization sources
- **LAEs** are passive tracers of reionization provided we break the dust-IGM HI degeneracy
- **Very/ Ultra faint** dwarfs are likely to be the dominant ionizing photons providers
- Ultra Faints are the oldest dSphs ($z > 8.5$) left-overs of H_2 cooling mini-halos